|
[1]
|
Dolmans, D.E.J.G.J., Fukumura, D. and Jain, R.K. (2003) Photodynamic Therapy for Cancer. Nature Reviews Cancer, 3, 380-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Huisin’t Veld, R.V., Heuts, J., Ma, S., Cruz, L.J., Ossendorp, F.A. and Jager, M.J. (2023) Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics, 15, Article No. 330. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sultana, N., Pathak, R., Samanta, S. and Sen Sarma, N. (2025) A Comprehensive Analysis of Photothermal Therapy (PTT) and Photodynamic Therapy (PDT) for the Treatment of Cancer. Process Biochemistry, 148, 17-31. [Google Scholar] [CrossRef]
|
|
[4]
|
Singh, P.P., Sinha, S., Gahtori, P., Mishra, D.N., Pandey, G. and Srivastava, V. (2024) Recent Advancement in Photosensitizers for Photodynamic Therapy. Dyes and Pigments, 229, Article ID: 112262. [Google Scholar] [CrossRef]
|
|
[5]
|
Yu, L., Liu, Z., Xu, W., Jin, K., Liu, J., Zhu, X., et al. (2024) Towards Overcoming Obstacles of Type II Photodynamic Therapy: Endogenous Production of Light, Photosensitizer, and Oxygen. Acta Pharmaceutica Sinica B, 14, 1111-1131. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., et al. (2011) Photodynamic Therapy of Cancer: An Update. CA: A Cancer Journal for Clinicians, 61, 250-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sobhani, N. and Samadani, A.A. (2021) Implications of Photodynamic Cancer Therapy: An Overview of PDT Mechanisms Basically and Practically. Journal of the Egyptian National Cancer Institute, 33, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Viana Cabral, F., Quilez Alburquerque, J., Roberts, H.J. and Hasan, T. (2024) Shedding Light on Chemoresistance: The Perspective of Photodynamic Therapy in Cancer Management. International Journal of Molecular Sciences, 25, Article No. 3811. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, X., Lovell, J.F., Yoon, J. and Chen, X. (2020) Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer. Nature Reviews Clinical Oncology, 17, 657-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ni, J., Wang, Y., Zhang, H., Sun, J.Z. and Tang, B.Z. (2021) Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules, 26, Article No. 268. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Tang, B.Z., Chen, H., et al. (2001) Aggregation-Induced Emission of 1-Methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, No. 18, 1740-1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ding, D., Li, K., Liu, B. and Tang, B.Z. (2013) Bioprobes Based on AIE Fluorogens. Accounts of Chemical Research, 46, 2441-2453. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yuan, C., Saito, S., Camacho, C., Kowalczyk, T., Irle, S. and Yamaguchi, S. (2014) Hybridization of a Flexible Cyclooctatetraene Core and Rigid Aceneimide Wings for Multiluminescent Flapping Π Systems. Chemistry—A European Journal, 20, 2193-2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xu, W., Lee, M.M.S., Nie, J., Zhang, Z., Kwok, R.T.K., Lam, J.W.Y., et al. (2020) Three‐Pronged Attack by Homologous Far-Red/NIR AIEgens to Achieve 1 + 1 + 1 > 3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie International Edition, 59, 9610-9616. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hu, F., Yuan, Y., Wu, W., Mao, D. and Liu, B. (2018) Dual-Responsive Metabolic Precursor and Light-Up AIEgen for Cancer Cell Bio-Orthogonal Labeling and Precise Ablation. Analytical Chemistry, 90, 6718-6724. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lucky, S.S., Soo, K.C. and Zhang, Y. (2015) Nanoparticles in Photodynamic Therapy. Chemical Reviews, 115, 1990-2042. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lovell, J.F., Jin, C.S., Huynh, E., Jin, H., Kim, C., Rubinstein, J.L., et al. (2011) Porphysome Nanovesicles Generated by Porphyrin Bilayers for Use as Multimodal Biophotonic Contrast Agents. Nature Materials, 10, 324-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hu, F., Yuan, Y., Mao, D., Wu, W. and Liu, B. (2017) Smart Activatable and Traceable Dual-Prodrug for Image-Guided Combination Photodynamic and Chemotherapy. Biomaterials, 144, 53-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, Y.Y., Zhang, X., Li, K., Peng, Q.C., Qin, Y.J., Hou, H.W., et al. (2021) Restriction of Intramolecular Vibration in Aggregation‐Induced Emission Luminogens: Applications in Multifunctional Luminescent Metal-Organic Frameworks. Angewandte Chemie International Edition, 60, 22417-22423. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Murphy, M.P., Bayir, H., Belousov, V., Chang, C.J., Davies, K.J.A., Davies, M.J., et al. (2022) Guidelines for Measuring Reactive Oxygen Species and Oxidative Damage in Cells and in Vivo. Nature Metabolism, 4, 651-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xu, J., Jin, X., Wu, X., Li, X., Li, C., Li, S., et al. (2024) Regulating Donor Configuration to Develop AIE-Active Type I Photosensitizers for Lipid Droplet Imaging and High-Performance Photodynamic Therapy under Hypoxia. Journal of Materials Chemistry B, 12, 6384-6393. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tang, Y., Li, Y., Li, B., Song, W., Qi, G., Tian, J., et al. (2024) Oxygen-Independent Organic Photosensitizer with Ultralow-Power NIR Photoexcitation for Tumor-Specific Photodynamic Therapy. Nature Communications, 15, Article No. 2530. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383. [Google Scholar] [CrossRef] [PubMed]
|