[1]
|
中国微循环学会糖尿病与微循环专业委员会, 中华医学会内分泌学分会基层内分泌代谢病学组. 基层糖尿病微血管疾病筛查与防治专家共识(2024) [J]. 中国全科医学, 2024, 27(32): 3969-3986.
|
[2]
|
Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S. and Saparov, A. (2021) Immunology of Acute and Chronic Wound Healing. Biomolecules, 11, Article No. 700. https://doi.org/10.3390/biom11050700
|
[3]
|
Li, Y., Yu, H. and Feng, J. (2023) Role of Chemokine-Like Factor 1 as an Inflammatory Marker in Diseases. Frontiers in Immunology, 14, Article ID: 1085154. https://doi.org/10.3389/fimmu.2023.1085154
|
[4]
|
Cui, S., Qiao, L., Yu, S., Men, L., Li, Y., Li, F., et al. (2019) The Antagonist of CXCR1 and CXCR2 Protects db/db Mice from Metabolic Diseases through Modulating Inflammation. American Journal of Physiology-Endocrinology and Metabolism, 317, E1205-E1217. https://doi.org/10.1152/ajpendo.00117.2019
|
[5]
|
Bai, Y., Li, H. and Dong, J. (2020) Up-Regulation of mIR-20a Weakens Inflammation and Apoptosis in High-Glucose-Induced Renal Tubular Cell Mediating Diabetic Kidney Disease by Repressing CXCL8 Expression. Archives of Physiology and Biochemistry, 128, 1603-1610. https://doi.org/10.1080/13813455.2020.1785506
|
[6]
|
Wang, Y., Liu, L., Ge, M., Cui, J., Dong, X. and Shao, Y. (2023) Acacetin Attenuates the Pancreatic and Hepatorenal Dysfunction in Type 2 Diabetic Rats Induced by High-Fat Diet Combined with Streptozotocin. Journal of Natural Medicines, 77, 446-454. https://doi.org/10.1007/s11418-022-01675-6
|
[7]
|
Eleftheriadis, T., Pissas, G., Filippidis, G., Efthymiadi, M., Liakopoulos, V. and Stefanidis, I. (2022) Dapagliflozin Prevents High-Glucose-Induced Cellular Senescence in Renal Tubular Epithelial Cells. International Journal of Molecular Sciences, 23, Article No. 16107. https://doi.org/10.3390/ijms232416107
|
[8]
|
Takashima, S., Fujita, H., Fujishima, H., Shimizu, T., Sato, T., Morii, T., et al. (2016) Stromal Cell-Derived Factor-1 Is Upregulated by Dipeptidyl Peptidase-4 Inhibition and Has Protective Roles in Progressive Diabetic Nephropathy. Kidney International, 90, 783-796. https://doi.org/10.1016/j.kint.2016.06.012
|
[9]
|
Zhang, Q., He, L., Dong, Y., Fei, Y., Wen, J., Li, X., et al. (2020) Sitagliptin Ameliorates Renal Tubular Injury in Diabetic Kidney Disease via Stat3‐Dependent Mitochondrial Homeostasis through Sdf‐1α/CXCR4 Pathway. The FASEB Journal, 34, 7500-7519. https://doi.org/10.1096/fj.201903038r
|
[10]
|
G, S.K., N, K., Elumalai, E. and Gupta, K.K. (2023) Identification of CXCR4 Inhibitors as a Key Therapeutic Small Molecule in Renal Fibrosis. Journal of Biomolecular Structure and Dynamics, 42, 8441-8453. https://doi.org/10.1080/07391102.2023.2246575
|
[11]
|
Sayyed, S.G., Hägele, H., Kulkarni, O.P., Endlich, K., Segerer, S., Eulberg, D., et al. (2009) Podocytes Produce Homeostatic Chemokine Stromal Cell-Derived Factor-1/CXCL12, Which Contributes to Glomerulosclerosis, Podocyte Loss and Albuminuria in a Mouse Model of Type 2 Diabetes. Diabetologia, 52, 2445-2454. https://doi.org/10.1007/s00125-009-1493-6
|
[12]
|
Hu, Z., Ma, K., Zhang, Y., Wang, G., Liu, L., Lu, J., et al. (2018) Inflammation-Activated CXCL16 Pathway Contributes to Tubulointerstitial Injury in Mouse Diabetic Nephropathy. Acta Pharmacologica Sinica, 39, 1022-1033. https://doi.org/10.1038/aps.2017.177
|
[13]
|
Gutwein, P., Abdel‐Bakky, M.S., Doberstein, K., Schramme, A., Beckmann, J., Schaefer, L., et al. (2009) CXCL16 and oxLDL Are Induced in the Onset of Diabetic Nephropathy. Journal of Cellular and Molecular Medicine, 13, 3809-3825. https://doi.org/10.1111/j.1582-4934.2009.00761.x
|
[14]
|
Zhao, L., Wu, F., Jin, L., Lu, T., Yang, L., Pan, X., et al. (2014) Serum CXCL16 as a Novel Marker of Renal Injury in Type 2 Diabetes Mellitus. PLOS ONE, 9, e87786. https://doi.org/10.1371/journal.pone.0087786
|
[15]
|
Ye, S., Zhang, M., Zheng, X., Li, S., Fan, Y., Wang, Y., et al. (2024) YAP1 Preserves Tubular Mitochondrial Quality Control to Mitigate Diabetic Kidney Disease. Redox Biology, 78, Article ID: 103435. https://doi.org/10.1016/j.redox.2024.103435
|
[16]
|
Tang, H., Yang, M., Liu, Y., Liu, H., Sun, L. and Song, P. (2021) The CXCL1-CXCR2 Axis Mediates Tubular Injury in Diabetic Nephropathy through the Regulation of the Inflammatory Response. Frontiers in Physiology, 12, Article ID: 782677. https://doi.org/10.3389/fphys.2021.782677
|
[17]
|
Chen, C., Lin, L., Wu, Y., Chen, J. and Chang, T. (2024) CXCL5 Inhibition Improves Kidney Function by Protecting Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Clinical Immunology, 268, Article ID: 110369. https://doi.org/10.1016/j.clim.2024.110369
|
[18]
|
Sun, M., Wang, S., Li, X., Shen, Y., Lu, J., Tian, X., et al. (2019) RETRACTED: CXCL6 Promotes Renal Interstitial Fibrosis in Diabetic Nephropathy by Activating JAK/STAT3 Signaling Pathway. Frontiers in Pharmacology, 10, Article No. 224. https://doi.org/10.3389/fphar.2019.00224
|
[19]
|
Wang, S., Chen, S., Gao, Y. and Zhou, H. (2023) Bioinformatics Led Discovery of Biomarkers Related to Immune Infiltration in Diabetes Nephropathy. Medicine, 102, e34992. https://doi.org/10.1097/md.0000000000034992
|
[20]
|
Gao, Q., Jin, H., Xu, W. and Wang, Y. (2023) Predicting Diagnostic Gene Biomarkers in Patients with Diabetic Kidney Disease Based on Weighted Gene Co Expression Network Analysis and Machine Learning Algorithms. Medicine, 102, e35618. https://doi.org/10.1097/md.0000000000035618
|
[21]
|
Jin, D., Tu, X., Xu, W., Zheng, H., Zeng, J., Bi, P., et al. (2024) Identification and Validation of Diagnostic Markers Related to Immunogenic Cell Death and Infiltration of Immune Cells in Diabetic Nephropathy. International Immunopharmacology, 143, Article ID: 113236. https://doi.org/10.1016/j.intimp.2024.113236
|