CXC类趋化因子与糖尿病肾脏病:思考与展望
CXC Chemokines and Diabetic Kidney Disease: Reflections and Prospects
DOI: 10.12677/acm.2025.1571956, PDF, HTML, XML,   
作者: 王新强:山东第一医科大学第一附属医院内分泌与代谢病科,山东 济南;山东第一医科大学(山东省医学科学院)研究生部,山东 济南;周晓君*:山东第一医科大学第一附属医院内分泌与代谢病科,山东 济南
关键词: 糖尿病肾脏病趋化因子炎症反应纤维化Diabetic Kidney Disease Chemokines Inflammatory Response Fibrosis
摘要: 糖尿病肾脏病(Diabetic kidney disease, DKD)作为糖尿病微血管疾病(Diabetic microvascular disease, DMiVD)的常见临床表现类型,其全球发病率逐年攀升,目前已成为影响全球健康的问题之一。趋化因子是具有调控细胞活动、炎症反应和促进细胞迁移等功能的小分子蛋白。近年研究表明,作为趋化因子家族的重要亚型,CXC类趋化因子通过调控炎性反应和纤维化进程在DKD发生发展中发挥关键作用。深入解析其作用机制可为DKD的早期诊断和靶向治疗提供新策略。
Abstract: Diabetic kidney disease (DKD), as a common clinical manifestation of diabetic microvascular complications (DMiVD), has seen a steadily increasing global incidence and has become one of the significant global health concerns. Chemokines are small molecular proteins that regulate cellular activities, inflammatory responses, and promote cell migration. Recent studies have shown that CXC chemokines, a critical subtype within the chemokine family, play a pivotal role in the pathogenesis and progression of DKD by modulating inflammatory reactions and fibrotic processes. Elucidating their underlying mechanisms may provide novel strategies for early diagnosis and targeted therapy of DKD.
文章引用:王新强, 周晓君. CXC类趋化因子与糖尿病肾脏病:思考与展望[J]. 临床医学进展, 2025, 15(7): 55-59. https://doi.org/10.12677/acm.2025.1571956

1. 引言

糖尿病肾脏病(Diabetic kidney disease, DKD)又名糖尿病肾病(Diabetic nephropathies, DN),是糖尿病的主要微血管并发症之一,也是终末期肾病的主要病因。由高血糖引发的肾脏损伤时,常伴随肾功能逐渐衰退,最终导致肾衰竭(终末期肾病)。DKD作为糖尿病微血管疾病(Diabetic microvascular disease, DMiVD)常见临床表现类型,目前已成为影响全球健康的问题之一。研究数据显示,病程不足1年的糖尿病(Diabetes mellitus, DM)患者,DMiVD患病率约为20%,病程超过10年的则高达50%,中国DKD患病率为30%~40%,严重影响人们的生活质量[1]

趋化因子(chemokines)是一类具有调控细胞活动、炎症反应和促进细胞迁移等功能的小分子蛋白[2]。根据一级氨基酸序列和两个位于分子N端的二硫键半胱氨酸残基序列之间位置的不同,趋化因子分为四个经典家族:CC、CXC、C和CX3C [3]。CXC类趋化因子作为趋化因子中常见的亚族,在趋化因子中占有非常重要的地位,包括CXCL-1至CXCL-17等多种趋化因子。由于CXC类趋化因子家族在免疫反应和炎症中的核心作用,它们已成为医学研究的重要目标,主要研究集中在肿瘤微环境、炎症反应疾病方面,但与DKD相关的研究较少。

CXC趋化因子在糖尿病肾脏病的发生与发展中发挥重要作用,尤其是在炎症和纤维化过程中。主要影响DKD进展的CXCL16、CXCL8和CXCL12等趋化因子可通过促进免疫细胞的迁移、激活炎症反应以及引导肾脏细胞的修复和保护,调控肾脏损伤进程。此外,也有研究报道CXCL1、CXCL2、CXCL3、CXCL5、CXCL6、CXCL10趋化因子在DKD发挥作用。

2. CXCL8与DKD

CXCL8作为炎症趋化因子一员,与DKD的进程有着密切关系,通过参与炎症和氧化应激等过程影响着DKD的进展。(1) 炎症反应。CXCL8可与CXCR1/2受体结合,招募炎症细胞浸润及炎症反应,加剧DKD炎症反应。相关研究发现,CXCL8在DKD的微量白蛋白尿阶段增加,并且靶向其受体CXCR1和CXCR2,增加炎症细胞的浸润,而应用CXCL8拮抗剂可以减轻db/db小鼠的组织炎症和代谢紊乱的发展[4]。同时,发现抑制CXCL8表达,可以减轻高糖诱导的肾小管细胞炎症反应和细胞凋亡介导的糖尿病肾病发生[5]。(2) 氧化应激。高糖刺激下,可增加足细胞产生CXCL8,引起活性氧的增加,导致肾脏细胞损伤和纤维化。在探究金合欢素的抗氧化作用中,发现足细胞可分泌CXCL8,具有抗氧化作用的金合欢素能够降低血清CXCL8,减轻糖尿病小鼠肾功能的损害[6]。有学者通过对达格列净治疗DKD中,证实高葡萄糖诱导人肾小管上皮细胞过度产生CXCL8,并增加了活性氧的产生;而达格列净减少了高糖诱导的ROS过度产生和CXCL8过度产生[7]。因此,提示CXCL8可能通过氧化应激参与DKD发生。

3. CXCL12与DKD

CXCL12作为趋化因子的一员,也称基质细胞衍生因子-1 (Stromal cell-derived factor-1, SDF-1),是小分子的细胞因子,属于趋化因子蛋白家族。它主要有两种形式,SDF-1α和SDF-1β,SDF-1α为CXCL12常见表示形式,其受体为CXC类趋化因子受体4 (CXCR4),CXCR4被认为是CXCL12的特异性受体,通过结合介导其生物学功能。CXCL12通过与CXCR4的相互作用参与肾脏发育和血管生成。CXCL12/CXCR4轴在DKD进展中发挥双重作用。(1) 保护作用。CXCL12/CXCR4轴可通过延缓足细胞的损伤,减缓糖尿病肾病的进程。众所周知,SDF-1α (CXCL12的亚型)也是DPP-4酶的底物之一[8]。近期研究发现,SDF-1α/CXCR4通路在DPP-4下游被显著抑制时,延缓足细胞损伤,改善糖尿病肾病[9]。(2) 致病作用。几乎所有慢性肾病的最后阶段都是肾纤维化。DKD作为慢性肾脏病的一种,长期的高糖刺激,导致肾小球硬化和肾小管间质纤维化。相关研究表明,肾脏损伤和纤维化是由CXCR4表达升高引起的,应用CXCR4抑制剂后,可延缓肾纤维化[10]。有研究表示,足细胞产生的CXCL12升高导致2型糖尿病小鼠模型中蛋白尿和肾小球硬化,抑制CXCL12可显著降低肾小球硬化程度,增加足细胞数量[11]。CXCL12/CXCR4轴在DKD中的保护性与促纤维化作用孰为主导尚未明确,有待于进一步研究。

4. CXCL16与DKD

CXCL16通过炎症和氧化应激加剧DKD纤维化。(1) 炎症反应。在CXCL16与DKD肾损伤的相关性研究中,发现注射酪蛋白的db/db小鼠表现出CXCL16和CXCR6 (CXCL16的特异性受体)的蛋白质表达水平增加。进一步研究发现CXCL16与AQP-1 (近端小管的特异性生物标志物)表达位置具有一致性,提示炎症诱导的CXCL16通路的激活可能介导了细胞脂质沉积和肾小管间质损伤,加剧肾脏纤维化,证实了CXCL16/CXCR6通路的激活通过炎症来介导肾小管间质损伤[12]。(2) 氧化应激。CXCL16可与OX-LDL结合,增加足细胞对OX-LDL的摄取,导致肾脏细胞损伤和纤维化,促进DKD的发展。相关研究发现,CXCL16在足细胞中高表达,协助足细胞摄取OX-LDL,介导足细胞脂质损伤,DKD患者活检组织的免疫荧光分析显示肾小球CXCL16表达增加,CXCL16表达上调可能促进足细胞OX-LDL摄取增加并加重DKD的进展[13] [14]。因此,认为CXCL16可能是2型糖尿病肾损伤的新标志物,在DKD中发挥着重要作用。

除上述CXCL8、CXCL12、CXCL16主要趋化因子密切参与DKD发生发展外,DKD的进展也涉及其他趋化因子,但目前研究较少或机制不明。CXCL1通过CXCL1/CXCR2轴来增加了肾脏微环境中炎症细胞的浸润促进肾小管损伤[15] [16];CXCL5具有促炎能力,可调节免疫反应并将免疫细胞募集到损伤部位,同时放大炎症反应促进肾小管上皮细胞损伤与纤维化[17];CXCL6可通过激活JAK/STAT3信号通路,有助于高糖诱导肾成纤维细胞增殖和活化,加速肾间质纤维化,从而促进DKD进展[18];相关文章发现CXCL2是糖尿病肾病免疫浸润相关的枢纽基因,参与DKD发生,但参与DKD机制尚不清楚[19],考虑可能因CXCL2驱动的中性粒细胞浸润和炎症反应,损伤肾小球滤过屏障和肾小管上皮细胞来参与DKD的进展;研究人员发现在糖尿病肾病差异表达基因筛选中CXCL3高表达,可作为诊断DKD的生物标志物,但其机制尚不清楚[20];有学者通过KEGG通路富集分析发现,DKD的发病可能和CXCL10有关,但参与DKD机制尚不清楚[21]

5. 总结与展望

糖尿病肾脏病的发病机制复杂,多种趋化因子参与其发生及进展。CXC类趋化因子亚型多样,相互作用,通过调控炎性反应和参与纤维化进程等多种途径促进糖尿病肾脏病的进展,目前关于CXC类趋化因子与糖尿病肾脏病的研究相对较少,其中机制仍待进一步探究,由此入手,有望为糖尿病肾脏病的治疗提供新的思路。

NOTES

*通讯作者。

参考文献

[1] 中国微循环学会糖尿病与微循环专业委员会, 中华医学会内分泌学分会基层内分泌代谢病学组. 基层糖尿病微血管疾病筛查与防治专家共识(2024) [J]. 中国全科医学, 2024, 27(32): 3969-3986.
[2] Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek, K., Jimi, S. and Saparov, A. (2021) Immunology of Acute and Chronic Wound Healing. Biomolecules, 11, Article No. 700.
https://doi.org/10.3390/biom11050700
[3] Li, Y., Yu, H. and Feng, J. (2023) Role of Chemokine-Like Factor 1 as an Inflammatory Marker in Diseases. Frontiers in Immunology, 14, Article ID: 1085154.
https://doi.org/10.3389/fimmu.2023.1085154
[4] Cui, S., Qiao, L., Yu, S., Men, L., Li, Y., Li, F., et al. (2019) The Antagonist of CXCR1 and CXCR2 Protects db/db Mice from Metabolic Diseases through Modulating Inflammation. American Journal of Physiology-Endocrinology and Metabolism, 317, E1205-E1217.
https://doi.org/10.1152/ajpendo.00117.2019
[5] Bai, Y., Li, H. and Dong, J. (2020) Up-Regulation of mIR-20a Weakens Inflammation and Apoptosis in High-Glucose-Induced Renal Tubular Cell Mediating Diabetic Kidney Disease by Repressing CXCL8 Expression. Archives of Physiology and Biochemistry, 128, 1603-1610.
https://doi.org/10.1080/13813455.2020.1785506
[6] Wang, Y., Liu, L., Ge, M., Cui, J., Dong, X. and Shao, Y. (2023) Acacetin Attenuates the Pancreatic and Hepatorenal Dysfunction in Type 2 Diabetic Rats Induced by High-Fat Diet Combined with Streptozotocin. Journal of Natural Medicines, 77, 446-454.
https://doi.org/10.1007/s11418-022-01675-6
[7] Eleftheriadis, T., Pissas, G., Filippidis, G., Efthymiadi, M., Liakopoulos, V. and Stefanidis, I. (2022) Dapagliflozin Prevents High-Glucose-Induced Cellular Senescence in Renal Tubular Epithelial Cells. International Journal of Molecular Sciences, 23, Article No. 16107.
https://doi.org/10.3390/ijms232416107
[8] Takashima, S., Fujita, H., Fujishima, H., Shimizu, T., Sato, T., Morii, T., et al. (2016) Stromal Cell-Derived Factor-1 Is Upregulated by Dipeptidyl Peptidase-4 Inhibition and Has Protective Roles in Progressive Diabetic Nephropathy. Kidney International, 90, 783-796.
https://doi.org/10.1016/j.kint.2016.06.012
[9] Zhang, Q., He, L., Dong, Y., Fei, Y., Wen, J., Li, X., et al. (2020) Sitagliptin Ameliorates Renal Tubular Injury in Diabetic Kidney Disease via Stat3‐Dependent Mitochondrial Homeostasis through Sdf‐1α/CXCR4 Pathway. The FASEB Journal, 34, 7500-7519.
https://doi.org/10.1096/fj.201903038r
[10] G, S.K., N, K., Elumalai, E. and Gupta, K.K. (2023) Identification of CXCR4 Inhibitors as a Key Therapeutic Small Molecule in Renal Fibrosis. Journal of Biomolecular Structure and Dynamics, 42, 8441-8453.
https://doi.org/10.1080/07391102.2023.2246575
[11] Sayyed, S.G., Hägele, H., Kulkarni, O.P., Endlich, K., Segerer, S., Eulberg, D., et al. (2009) Podocytes Produce Homeostatic Chemokine Stromal Cell-Derived Factor-1/CXCL12, Which Contributes to Glomerulosclerosis, Podocyte Loss and Albuminuria in a Mouse Model of Type 2 Diabetes. Diabetologia, 52, 2445-2454.
https://doi.org/10.1007/s00125-009-1493-6
[12] Hu, Z., Ma, K., Zhang, Y., Wang, G., Liu, L., Lu, J., et al. (2018) Inflammation-Activated CXCL16 Pathway Contributes to Tubulointerstitial Injury in Mouse Diabetic Nephropathy. Acta Pharmacologica Sinica, 39, 1022-1033.
https://doi.org/10.1038/aps.2017.177
[13] Gutwein, P., Abdel‐Bakky, M.S., Doberstein, K., Schramme, A., Beckmann, J., Schaefer, L., et al. (2009) CXCL16 and oxLDL Are Induced in the Onset of Diabetic Nephropathy. Journal of Cellular and Molecular Medicine, 13, 3809-3825.
https://doi.org/10.1111/j.1582-4934.2009.00761.x
[14] Zhao, L., Wu, F., Jin, L., Lu, T., Yang, L., Pan, X., et al. (2014) Serum CXCL16 as a Novel Marker of Renal Injury in Type 2 Diabetes Mellitus. PLOS ONE, 9, e87786.
https://doi.org/10.1371/journal.pone.0087786
[15] Ye, S., Zhang, M., Zheng, X., Li, S., Fan, Y., Wang, Y., et al. (2024) YAP1 Preserves Tubular Mitochondrial Quality Control to Mitigate Diabetic Kidney Disease. Redox Biology, 78, Article ID: 103435.
https://doi.org/10.1016/j.redox.2024.103435
[16] Tang, H., Yang, M., Liu, Y., Liu, H., Sun, L. and Song, P. (2021) The CXCL1-CXCR2 Axis Mediates Tubular Injury in Diabetic Nephropathy through the Regulation of the Inflammatory Response. Frontiers in Physiology, 12, Article ID: 782677.
https://doi.org/10.3389/fphys.2021.782677
[17] Chen, C., Lin, L., Wu, Y., Chen, J. and Chang, T. (2024) CXCL5 Inhibition Improves Kidney Function by Protecting Renal Tubular Epithelial Cells in Diabetic Kidney Disease. Clinical Immunology, 268, Article ID: 110369.
https://doi.org/10.1016/j.clim.2024.110369
[18] Sun, M., Wang, S., Li, X., Shen, Y., Lu, J., Tian, X., et al. (2019) RETRACTED: CXCL6 Promotes Renal Interstitial Fibrosis in Diabetic Nephropathy by Activating JAK/STAT3 Signaling Pathway. Frontiers in Pharmacology, 10, Article No. 224.
https://doi.org/10.3389/fphar.2019.00224
[19] Wang, S., Chen, S., Gao, Y. and Zhou, H. (2023) Bioinformatics Led Discovery of Biomarkers Related to Immune Infiltration in Diabetes Nephropathy. Medicine, 102, e34992.
https://doi.org/10.1097/md.0000000000034992
[20] Gao, Q., Jin, H., Xu, W. and Wang, Y. (2023) Predicting Diagnostic Gene Biomarkers in Patients with Diabetic Kidney Disease Based on Weighted Gene Co Expression Network Analysis and Machine Learning Algorithms. Medicine, 102, e35618.
https://doi.org/10.1097/md.0000000000035618
[21] Jin, D., Tu, X., Xu, W., Zheng, H., Zeng, J., Bi, P., et al. (2024) Identification and Validation of Diagnostic Markers Related to Immunogenic Cell Death and Infiltration of Immune Cells in Diabetic Nephropathy. International Immunopharmacology, 143, Article ID: 113236.
https://doi.org/10.1016/j.intimp.2024.113236