肝硬化门静脉血栓形成危险因素研究进展
Research Progress on Risk Factors of Portal Vein Thrombosis in Liver Cirrhosis
DOI: 10.12677/acm.2025.1571961, PDF, HTML, XML,    科研立项经费支持
作者: 李先柳, 赵红雲*:重庆医科大学附属第二医院消化内科,重庆
关键词: 肝硬化门静脉血栓危险因素 Liver Cirrhosis Portal Vein Thrombosis Risk Factor
摘要: 肝硬化患者门静脉血栓(PVT)形成的危险因素复杂多样,涉及血流动力学改变、凝血功能异常及炎症反应等多方面因素。近年来研究表明,肝硬化严重程度(如Child-Pugh分级和MELD评分)、门静脉血流速度减慢、脾功能亢进、凝血因子失衡(如蛋白C、蛋白S缺乏)以及遗传性易栓症(如因子V Leiden突变)是PVT发生的重要危险因素。此外,感染、手术和介入治疗等也可能增加PVT形成风险。为临床早期识别高危患者和制定预防策略提供理论依据,本文对肝硬化PVT形成的危险因素及其机制研究进展进行综述。
Abstract: The formation of portal vein thrombosis (PVT) in patients with liver cirrhosis involves complex and diverse risk factors, including hemodynamic changes, coagulation dysfunction, and inflammatory responses, among others. Recent studies have showed that the severity of liver cirrhosis (such as Child-Pugh classification and MELD score), decreased portal vein blood flow velocity, hypersplenism, imbalance in coagulation factors (e.g., deficiency of protein C and protein S), and inherited thrombophilia (such as factor V Leiden mutation) are significant risk factors for PVT. Furthermore, the risk of PVT formation may also be heightened by infections, surgeries, and interventional treatments. This article reviews the research advancements related to the risk factors and mechanisms of PVT formation in liver cirrhosis in order to establish a theoretical foundation for the early clinical identification of high-risk patients and the formulation of preventive strategies.
文章引用:李先柳, 赵红雲. 肝硬化门静脉血栓形成危险因素研究进展[J]. 临床医学进展, 2025, 15(7): 90-96. https://doi.org/10.12677/acm.2025.1571961

1. 引言

肝硬化是各种慢性肝病进展至以肝脏慢性炎症、弥漫性纤维化、假小叶、再生结节和肝内外血管增殖为病理特征的病理阶段。门静脉血栓(portal vein thrombosis, PVT)形成,是失代偿期肝硬化常见且严重的并发症之一,PVT是指门静脉主干和(或)门静脉左、右分支发生血栓,伴或不伴肠系膜静脉和脾静脉血栓形成[1]。PVT形成可能与肝硬化的进展有关,包括门静脉高压的出现和失代偿事件的增加[2]。PVT可引起内脏充血和局部缺血,临床表现为腹痛、恶心、呕吐、消化道出血、发热、脓毒症和酸中毒。急性PVT可导致严重缺血性事件,严重者可危及生命,如肠坏死、脾梗死、缺血性肠梗阻,也可导致继发性的肠系膜血栓扩展;慢性PVT可引起门静脉闭塞或门静脉海绵样变,进而加重门静脉高压[3]。此外在晚期肝硬化患者中,PVT的存在增加了肝移植操作的技术难度,并增加了移植后短期死亡率[4]。肝硬化PVT患者的预后取决于肝病的严重程度、血栓的体积和年龄以及开始治疗的初始时间。肝硬化PVT患者约5%~19%可自发再通[5],具体机制尚不明确。关于肝硬化PVT形成的危险因素目前还未完全阐明,本文就当前PVT形成的危险因素的相关研究进行综述,以期为后续预测PVT形成高危患者提供重要参考。

2. 流行病学

在全球范围内,肝硬化是第11位最常见死因[6],肝硬化每年约导致200万人死亡[2],而失代偿期是肝硬化的终末阶段,此期患者的死亡风险极高。一项荟萃分析研究结果指出,大约七分之一的肝硬化患者患有PVT,十分之一的肝硬化患者将发展为PVT [7]。肝硬化PVT由于诊断方法和肝硬化所处阶段以及肝硬化的病因不同,每年的发病率有差异,大约为1.6%~12.8% [8]-[10]

3. 肝硬化PVT形成的危险因素

3.1. 肝硬化严重程度

Child-Pugh分级和MELD评分是评估肝硬化严重程度的常用工具,二者均与PVT的发生风险密切相关。研究表明,随着肝硬化病情的加重,患者可出现显著的血流动力学改变和凝血功能紊乱,三者相互影响,共同促进导致PVT的发生率显著增加。Child-Pugh分级较高的患者(如B级和C级)由于肝功能失代偿、门静脉血流动力学改变以及凝血功能异常,肝功能分级越靠后的患者发生PVT的风险显著高于Child-Pugh A级患者[11]。此外,MELD评分较高的患者(>15分)由于肝功能恶化、凝血因子失衡和门静脉高压的加重,PVT的发生率也显著升高[12]。这些发现提示,肝硬化的严重程度不仅是疾病进展的标志,也是PVT发生的重要危险因素。因此,对于Child-Pugh分级较高或MELD评分较高的肝硬化患者,临床应加强PVT的监测和预防。随着疾病的进展,患者可出现显著的血流动力学改变和凝血功能紊乱,三者相互影响,共同促进肝硬化并发症的发生与发展。

3.2. 血流动力学改变

根据前瞻性和回顾性研究,门静脉血流速度 < 15 cm/s被认为是发生PVT的重要危险因素[13],它使PVT发生的风险增加10~20倍。然而,也有研究表明PVT形成与门静脉血液流速无关[14],有待进一步的研究证实。在肝硬化失代偿期病人门静脉压力升高的治疗中,非选择性β受体阻断剂(NSBB)的治疗效果是显著的,而NSBB的应用是否会导致PVT的形成,目前还没有形成统一的结论。NSBB可能会减少门静脉血液的流动速度,从而相应地增加PVT的发病机会。一项荟萃分析显示,接受NSBB治疗的肝硬化患者的PVT发生率显著高于未接受NSBB的患者(OR: 4.62) [15],与此同时,一项小样本的前瞻性研究也证实了这一结论[16]。然而,另一项前瞻性研究中,作者通过多变量分析NSBB并未被确定为PVT的危险因素,为了进一步探讨接受NSBB治疗与PVT的关系,作者在调整了混杂因素后,通过时间依赖性分析仍显示NSBB与PVT发生无显著相关性(p = 0.71; HR 0.745 [0.154~3.60]) [10],关于NSBB与PVT形成的关系,尚需更进一步的研究来证实两者之间的关系。存在肝硬化食管胃底静脉曲张的患者如未进行干预,存在极大的出血风险,对肝硬化食管胃底静脉曲张尚未出血的患者的治疗目标为预防出血或减少出血发生率。内镜下治疗是目前一级预防肝硬化食管胃曲张静脉破裂出血的主要手段。内镜下治疗对PVT形成的影响还存在争议。Wang等人在一项回顾性研究中发现内镜下治疗可能会导致更高的PVT发生风险[17]。文章中指出,内镜下治疗用于控制出血,而不是预防出血时,与PVT发生显著相关。其原因可能是曲张静脉破裂本身可导致局部血管内皮损伤、血流动力学紊乱和凝血激活,从而进一步加重PVT的风险。同时,也有一项荟萃分析发现,患者在接受内镜下治疗后发生PVT的风险较高,可能的机制是硬化剂向门静脉及其属支逃逸,并导致血管内皮细胞受损[18]。同时,有研究也认为,所有的内镜下治疗技术在阻断曲张静脉的同时,可能会改变门静脉系统血流动力学,主要表现为门静脉血流速度的增加和门静脉系统内血流紊乱,从而导致PVT的发生。Zhang等人通过对2个独立队列共纳入3790例慢性肝病急性加重期患者的临床资料进行分析后发现内镜下硬化治疗可增加肝硬化合并急性失代偿事件的患者发生PVT的风险。因此,在肝硬化患者的临床管理中,应加强对接受内镜下治疗患者的血栓风险评估与监测,以预防恶性失代偿事件的发生。

3.3. 凝血、抗凝系统紊乱

Lisman等人在研究中发现肝硬化时形成止血凝血再平衡时会更倾向于形成相对高凝状态[19]。肝硬化患者的促凝系统和抗凝系统的同时变化导致了复杂的止血变化,而传统的凝血功能检验,如凝血酶原时间测定(pt)、国际标准化比值(INR)和活化部分凝血活酶时间(APTT)和血小板计数在评估肝硬化患者的凝血功能时,往往只部分评估了止血系统的功能,未能完全考虑到抗凝系统的因素[20],在预测PVT形成时存在一定的局限性。促凝因子VIII与抗凝蛋白C (FVIII/PC)的比值作为一个新指标,被认为是肝硬化高凝状态的重要指标[21]。然而Scheiner等人在近期的一项前瞻性研究中表明,FVIII/PC比率未能明显预测血栓或出血的发生,缺乏预测PVT发生的证据[22]。因此,关于FVIII/PC比率是否预测PVT的产生,还需进一步研究探讨。此外,血栓弹力图是一项新的非侵入性检查指标,用于评估肝硬化患者的止血状态。然而,目前仍没有强有力的证据表明TEG与PVT之间存在关联[8]。血栓调节蛋白抵抗(TM-R)的产生会抑制蛋白C (PC)向活化蛋白C (APC)的转化,从而增加新发血栓形成的风险并降低肝硬化PVT患者的生存率[23]。因此,TM-R可作为PVT形成的危险因素。蛋白S(PS)主要在肝脏合成,作为蛋白C和维生素K依赖的凝血酶–血栓调节蛋白复合物的辅助因子,选择性抑制形成活化因子V和VIII [24]。研究发现,天然蛋白质缺陷与静脉血栓栓塞症有关,并使血栓形成的风险增加3~10倍[25]。此前,PS水平的改变被认为与PVT的发生无关。最近,在Hung等人的研究中证实,低PS水平是PVT发生的一个独立的危险因素[26]。如果PS ≤ 正常水平的60%,PVT的发生风险将增加2.46倍。肝硬化合并门脉高压导致内皮损伤和门脉血流紊乱,进一步导致一系列纤维化作用和伴随的天然蛋白质消耗[27],从而导致PS缺乏。在功能失代偿的肝硬化患者中,PS缺乏可能会打破促凝和抗凝过程之间的平衡,导致PVT的发生[26]。关于纤溶标记物,Zhou等人在一项随机对照试验中报道D-二聚体与PVT的再通有关[28]。Gao等人也在一项多中心随机对照试验中通过单因素分析证明D-二聚体 < 2.00 ug/mL (P = 0.030, OR: 3.600, 95% CI: 1.134~11.430)是PVT再通的预测因素之一[29]

3.4. 肝硬化PVT与炎症的关系

关于细菌感染与PVT形成之间的关系,一项长达5年的前瞻性研究显示,细菌感染可被视为肝硬化患者发生PVT的一个新的独立危险因素[30]。肝硬化病人,特别是失代偿期病人,更易发生细菌感染,如自发性细菌性腹膜炎,肺炎,泌尿道感染,血流感染,胃肠道感染(包括艰难梭菌感染),丹毒,皮肤炎,皮下感染等。慢性炎症会导致血清白蛋白含量下降[31],最近一项研究亦表明低蛋白血症也是肝硬化患者发生PVT的高危因素[32],这为感染导致PVT形成的机制提供了新的思路。肝硬化失代偿期的病人,由于其肝功能的失代偿,会导致肝细胞合成白蛋白的能力下降,也会导致白蛋白的合成减低。肝硬化低白蛋白血症定义为血清白蛋白(SA)含量低于35 g/L。最近发表的一项研究表明,与SA > 35 g/L的肝硬化患者相比,SA ≤ 35 g/L的肝硬化患者发生PVT的风险更高[32]。白蛋白是最重要的循环蛋白,除了可调节胶体渗透压之外,还发挥多种功能[33]。失代偿性肝硬化患者的全身促炎和促氧化状态也导致白蛋白分子的结构和功能变化,从而破坏其多效性和非胶体特性,例如抗氧化、清除、免疫调节和内皮保护功能。白蛋白在血液循环中可转运蛋白质、脂肪酸和药物,并通过其硫醇基团淬灭活性氧化剂从而发挥抗炎活性,进而调节氧化还原状态[31]。肝硬化失代偿期的细菌感染与天然抗凝因子如蛋白C、蛋白S和抗凝血酶的减少有关[34],这些原因均会导致凝血平衡向高凝状态和血栓形成倾斜。最近有研究发现,根据血浆C反应蛋白水平进行评估,肝硬化失代偿期的患者在发生急性失代偿事件时,如果同时存在PVT形成,这样的患者的全身炎症严重程度高于未发生PVT的患者,这表明由细菌感染或其他炎症诱发的全身炎症风暴也可能是感染导致PVT的形成的机制之一[35]

3.5. 肝硬化PVT与药物应用的关系

最近有研究发现使用他汀类药物的失代偿期肝硬化患者的PVT发生率低于未使用他汀类药物的患者,而在代偿期肝硬化患者中并未观察到此现象[36],还有证据表明,他汀类药物的使用与肝硬化失代偿事件的发生减少有关[37]。从作用机制来说,他汀类药物可能是通过抑制胆固醇产生,减少氧化应激和炎症,并通过产生一氧化氮改善内皮细胞功能来实现减少肝硬化患者PVT的发生。而他汀类药物的抗血栓特性还可以通过以下几种机制来解释:首先,他汀类药物可以下调凝血级联反应,减少凝血酶的产生[38]。其次,他汀类药物可以增加蛋白C的抗血栓活性[39]。第三,他汀类药物可以降低纤溶酶原激活物抑制物I的活性,导致高组织纤溶酶原激活物[40]。既往也有研究表明,他汀类药物可减少深静脉血栓的形成[41]。然而,PVT预防和治疗和他汀类药物的关系,尚还需要前瞻性的研究来加以证实。

4. 展望

当前研究已经探究出一些与肝硬化PVT发生相关的可能的危险因素,但仍需更多循证医学证据证实。未来的研究需进一步探索这些因素如何相互作用,以及它们对PVT发生的可能机制。未来的治疗策略将更加个性化和精准化。这可能包括更早期的抗凝治疗、更有针对性地介入治疗,以及基于患者特定情况的治疗决策中,将会扮演越来越重要的角色。

基金项目

1) 重庆医科大学附属第二医院“宽仁英才”项目(2021240308);2) 重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX0909)。

NOTES

*通讯作者。

参考文献

[1] Hepatobiliary Disease Study Group, Chinese Society of Gastroenterology and Chinese Medical Association (2021) Consensus for Management of Portal Vein Thrombosis in Liver Cirrhosis (2020, Shanghai). Journal of Digestive Diseases, 22, 176-186.
https://doi.org/10.1111/1751-2980.12970
[2] Wanless, I.R., Wong, F., Blendis, L.M., Greig, P., Heathcote, E.J. and Levy, G. (1995) Hepatic and Portal Vein Thrombosis in Cirrhosis: Possible Role in Development of Parenchymal Extinction and Portal Hypertension. Hepatology, 21, 1238-1247.
https://doi.org/10.1002/hep.1840210505
[3] Hepatobiliary Disease Study Group, Chinese Society of Gastroenterology and Chinese Medical Association (2020) Consensus for Management of Portal Vein Thrombosis in Liver Cirrhosis (2020, Shanghai). Chinese Journal of Hepatology, 28, 999-1007.
[4] Eshraghian, A., Nikeghbalian, S., Kazemi, K., Mansoorian, M., Shamsaeefar, A., Eghlimi, H., et al. (2018) Portal Vein Thrombosis in Patients with Liver Cirrhosis and Its Impact on Early and Long-Term Outcomes after Liver Transplantation. International Journal of Clinical Practice, 73, e13309.
https://doi.org/10.1111/ijcp.13309
[5] Senzolo, M., Garcia-Tsao, G. and García-Pagán, J.C. (2021) Current Knowledge and Management of Portal Vein Thrombosis in Cirrhosis. Journal of Hepatology, 75, 442-453.
https://doi.org/10.1016/j.jhep.2021.04.029
[6] Asrani, S.K., Devarbhavi, H., Eaton, J. and Kamath, P.S. (2019) Burden of Liver Diseases in the World. Journal of Hepatology, 70, 151-171.
https://doi.org/10.1016/j.jhep.2018.09.014
[7] Pan, J., Wang, L., Gao, F., An, Y., Yin, Y., Guo, X., et al. (2022) Epidemiology of Portal Vein Thrombosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis. European Journal of Internal Medicine, 104, 21-32.
https://doi.org/10.1016/j.ejim.2022.05.032
[8] Noronha Ferreira, C., Marinho, R.T., Cortez‐Pinto, H., Ferreira, P., Dias, M.S., Vasconcelos, M., et al. (2019) Incidence, Predictive Factors and Clinical Significance of Development of Portal Vein Thrombosis in Cirrhosis: A Prospective Study. Liver International, 39, 1459-1467.
https://doi.org/10.1111/liv.14121
[9] Maruyama, H., Okugawa, H., Takahashi, M. and Yokosuka, O. (2013) De Novo Portal Vein Thrombosis in Virus-Related Cirrhosis: Predictive Factors and Long-Term Outcomes. American Journal of Gastroenterology, 108, 568-574.
https://doi.org/10.1038/ajg.2012.452
[10] Turon, F., Driever, E.G., Baiges, A., Cerda, E., García-Criado, Á., Gilabert, R., et al. (2021) Predicting Portal Thrombosis in Cirrhosis: A Prospective Study of Clinical, Ultrasonographic and Hemostatic Factors. Journal of Hepatology, 75, 1367-1376.
https://doi.org/10.1016/j.jhep.2021.07.020
[11] Amitrano, L., Anna Guardascione, M., Brancaccio, V., Margaglione, M., Manguso, F., Iannaccone, L., et al. (2004) Risk Factors and Clinical Presentation of Portal Vein Thrombosis in Patients with Liver Cirrhosis. Journal of Hepatology, 40, 736-741.
https://doi.org/10.1016/j.jhep.2004.01.001
[12] Nery, F., Chevret, S., Condat, B., de Raucourt, E., Boudaoud, L., Rautou, P., et al. (2015) Causes and Consequences of Portal Vein Thrombosis in 1,243 Patients with Cirrhosis: Results of a Longitudinal Study. Hepatology, 61, 660-667.
https://doi.org/10.1002/hep.27546
[13] Stine, J.G., Wang, J., Shah, P.M., et al. (2018) Decreased Portal Vein Velocity Is Predictive of the Development of Portal Vein Thrombosis: A Matched Case-Control Study. Liver International, 38, 94-101.
https://doi.org/10.1111/liv.13500
[14] Francoz, C., Valla, D. and Durand, F. (2012) Portal Vein Thrombosis, Cirrhosis, and Liver Transplantation. Journal of Hepatology, 57, 203-212.
https://doi.org/10.1016/j.jhep.2011.12.034
[15] Xu, X., Guo, X., De Stefano, V., Silva-Junior, G., Goyal, H., Bai, Z., et al. (2019) Nonselective Beta-Blockers and Development of Portal Vein Thrombosis in Liver Cirrhosis: A Systematic Review and Meta-Analysis. Hepatology International, 13, 468-481.
https://doi.org/10.1007/s12072-019-09951-6
[16] Nery, F., Correia, S., Macedo, C., Gandara, J., Lopes, V., Valadares, D., et al. (2019) Nonselective Beta-Blockers and the Risk of Portal Vein Thrombosis in Patients with Cirrhosis: Results of a Prospective Longitudinal Study. Alimentary Pharmacology & Therapeutics, 49, 582-588.
https://doi.org/10.1111/apt.15137
[17] Wang, L., Guo, X., Shao, X., Xu, X., Zheng, K., Wang, R., et al. (2022) Association of Endoscopic Variceal Treatment with Portal Venous System Thrombosis in Liver Cirrhosis: A Case-Control Study. Therapeutic Advances in Gastroenterology, 15, 1-12.
https://doi.org/10.1177/17562848221087536
[18] Wang, L., Guo, X., Xu, X., Philips, C.A., Primignani, M., Mendez-Sanchez, N., et al. (2021) Association of Portal Venous System Thrombosis with Endoscopic Variceal Treatment: A Systematic Review and Meta-Analysis. European Journal of Gastroenterology & Hepatology, 32, 125-131.
https://doi.org/10.1097/meg.0000000000001774
[19] Lisman, T., Caldwell, S.H. and Intagliata, N.M. (2022) Haemostatic Alterations and Management of Haemostasis in Patients with Cirrhosis. Journal of Hepatology, 76, 1291-1305.
https://doi.org/10.1016/j.jhep.2021.11.004
[20] Northup, P.G., Garcia‐Pagan, J.C., Garcia‐Tsao, G., et al. (2021) Vascular Liver Disorders, Portal Vein Thrombosis, and Procedural Bleeding in Patients with Liver Disease: 2020 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 73, 366-413.
https://doi.org/10.1002/hep.31646
[21] Intagliata, N.M., Caldwell, S.H. and Tripodi, A. (2019) Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients with and Without Cirrhosis. Gastroenterology, 156, 1582-1599.E1.
https://doi.org/10.1053/j.gastro.2019.01.265
[22] Scheiner, B., Balcar, L., Nussbaumer, R.J., Weinzierl, J., Paternostro, R., Simbrunner, B., et al. (2022) Factor VIII/Protein C Ratio Independently Predicts Liver-Related Events but Does Not Indicate a Hypercoagulable State in ACLD. Journal of Hepatology, 76, 1090-1099.
https://doi.org/10.1016/j.jhep.2021.12.038
[23] La Mura, V., Tripodi, A., Tosetti, G., Cavallaro, F., Chantarangkul, V., Colombo, M., et al. (2016) Resistance to Thrombomodulin Is Associated with de Novo Portal Vein Thrombosis and Low Survival in Patients with Cirrhosis. Liver International, 36, 1322-1330.
https://doi.org/10.1111/liv.13087
[24] Thomas, R.H. (2001) Hypercoagulability Syndromes. Archives of Internal Medicine, 161, 2433-2439.
https://doi.org/10.1001/archinte.161.20.2433
[25] Goodwin, A.J., Rosendaal, F.R., Kottke-Marchant, K. and Bovill, E.G. (2002) A Review of the Technical, Diagnostic, and Epidemiologic Considerations for Protein S Assays. Archives of Pathology & Laboratory Medicine, 126, 1349-1366.
https://doi.org/10.5858/2002-126-1349-arottd
[26] Hung, H.C., Lee, J.C., Cheng, C.H., et al. (2020) Protein S for Portal Vein Thrombosis in Cirrhotic Patients Waiting for Liver Transplantation. Journal of Clinical Medicine, 9, Article 1181.
https://doi.org/10.3390/jcm9041181
[27] Tacke, F., Schöffski, P., Trautwein, C., Manns, M.P., Ganser, A. and von Depka, M. (2001) Tissue Factor and Thrombomodulin Levels Are Correlated with Stage of Cirrhosis in Patients with Liver Disease. Blood Coagulation & Fibrinolysis, 12, 539-545.
https://doi.org/10.1097/00001721-200110000-00005
[28] Zhou, T., Sun, X., Zhou, T., Li, Y., Chen, X., Cheng, B., et al. (2020) Efficacy and Safety of Nadroparin Calcium-Warfarin Sequential Anticoagulation in Portal Vein Thrombosis in Cirrhotic Patients: A Randomized Controlled Trial. Clinical and Translational Gastroenterology, 11, e00228.
https://doi.org/10.14309/ctg.0000000000000228
[29] Gao, Z., Li, S., Zhao, J., Li, J. and Gao, Y. (2023) Anticoagulation Therapy Early Is Safe in Portal Vein Thrombosis Patients with Acute Variceal Bleeding: A Multi-Centric Randomized Controlled Trial. Internal and Emergency Medicine, 18, 513-521.
https://doi.org/10.1007/s11739-023-03206-x
[30] Dalbeni, A., Cattazzo, F., De Marco, L., et al. (2024) Bacterial Infections as a Risk Factor for Non-Neoplastic Portal Vein Thrombosis Development in Cirrhotic Patients. Digestive and Liver Disease, 56, 477-483.
https://doi.org/10.1016/j.dld.2023.09.012
[31] Bernardi, M., Angeli, P., Claria, J., et al. (2020) Albumin in Decompensated Cirrhosis: New Concepts and Perspectives. Gut, 69, 1127-1138.
https://doi.org/10.1136/gutjnl-2019-318843
[32] Cangemi, R., Raparelli, V., Talerico, G., Basili, S., Violi, F., Giuseppe, P., et al. (2024) Hypoalbuminemia and Risk of Portal Vein Thrombosis in Cirrhosis. Gastro Hep Advances, 3, 646-653.
https://doi.org/10.1016/j.gastha.2024.03.006
[33] Gatta, A., Verardo, A. and Bolognesi, M. (2012) Hypoalbuminemia. Internal and Emergency Medicine, 7, S193-199.
https://doi.org/10.1007/s11739-012-0802-0
[34] Zanetto, A., Campello, E., Bulato, C., Gavasso, S., Saggiorato, G., Shalaby, S., et al. (2022) Global Hemostatic Profiling in Patients with Decompensated Cirrhosis and Bacterial Infections. JHEP Reports, 4, Article 100493.
https://doi.org/10.1016/j.jhepr.2022.100493
[35] Zanetto, A., Pelizzaro, F., Campello, E., Bulato, C., Balcar, L., Gu, W., et al. (2023) Severity of Systemic Inflammation Is the Main Predictor of ACLF and Bleeding in Individuals with Acutely Decompensated Cirrhosis. Journal of Hepatology, 78, 301-311.
https://doi.org/10.1016/j.jhep.2022.09.005
[36] Amjad, W., Jiang, Z. and Lai, M. (2024) Statin Use in Cirrhosis and Its Association with Incidence of Portal Vein Thrombosis. Journal of Gastroenterology and Hepatology, 39, 955-963.
https://doi.org/10.1111/jgh.16495
[37] Kim, R.G., Loomba, R., Prokop, L.J. and Singh, S. (2017) Statin Use and Risk of Cirrhosis and Related Complications in Patients with Chronic Liver Diseases: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 15, 1521-1530.e8.
https://doi.org/10.1016/j.cgh.2017.04.039
[38] Ferro, D., Basili, S., Alessandri, C., Cara, D. and Violi, F. (2000) Inhibition of Tissue-Factor-Mediated Thrombin Generation by Simvastatin. Atherosclerosis, 149, 111-116.
https://doi.org/10.1016/s0021-9150(99)00291-9
[39] Sen-Banerjee, S., Mir, S., Lin, Z., Hamik, A., Atkins, G.B., Das, H., et al. (2005) Kruppel-Like Factor 2 as a Novel Mediator of Statin Effects in Endothelial Cells. Circulation, 112, 720-726.
https://doi.org/10.1161/circulationaha.104.525774
[40] Nishino, M., Hoshida, S., Kato, H., Egami, Y., Shutta, R., Yamaguchi, H., et al. (2008) Preprocedural Statin Administration Can Reduce Thrombotic Reaction after Stent Implantation. Circulation Journal, 72, 232-237.
https://doi.org/10.1253/circj.72.232
[41] Rahimi, K., Bhala, N., Kamphuisen, P., Emberson, J., Biere-Rafi, S., Krane, V., et al. (2012) Effect of Statins on Venous Thromboembolic Events: A Meta-Analysis of Published and Unpublished Evidence from Randomised Controlled Trials. PLOS Medicine, 9, e1001310.
https://doi.org/10.1371/journal.pmed.1001310