|
[1]
|
GBD 2021 Stroke Risk Factor Collaborators (2024) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23, 973-1003.
|
|
[2]
|
Anwar, N., Karimi, H., Ahmad, A., Mumtaz, N., Saqulain, G. and Gilani, S.A. (2021) A Novel Virtual Reality Training Strategy for Poststroke Patients: A Randomized Clinical Trial. Journal of Healthcare Engineering, 2021, Article ID: 6598726. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Dai, S., Piscicelli, C., Clarac, E., Baciu, M., Hommel, M. and Pérennou, D. (2021) Balance, Lateropulsion, and Gait Disorders in Subacute Stroke. Neurology, 96, 2147-2159. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bower, K., Thilarajah, S., Pua, Y., Williams, G., Tan, D., Mentiplay, B., et al. (2019) Dynamic Balance and Instrumented Gait Variables Are Independent Predictors of Falls Following Stroke. Journal of NeuroEngineering and Rehabilitation, 16, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wu, W., Zhou, C., Wang, Z., Chen, G., Chen, X., Jin, H., et al. (2020) Effect of Early and Intensive Rehabilitation after Ischemic Stroke on Functional Recovery of the Lower Limbs: A Pilot, Randomized Trial. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104649. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lee, D. and Bae, Y. (2022) Interactive Videogame Improved Rehabilitation Motivation and Walking Speed in Chronic Stroke Patients: A Dual-Center Controlled Trial. Games for Health Journal, 11, 268-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Janssen, A.M., Oostendorp, T.F. and Stegeman, D.F. (2015) The Coil Orientation Dependency of the Electric Field Induced by TMS for M1 and Other Brain Areas. Journal of NeuroEngineering and Rehabilitation, 12, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Parikh, V., Medley, A. and Goh, H. (2024) Effects of rTMS to Primary Motor Cortex and Cerebellum on Balance Control in Healthy Adults. European Journal of Neuroscience, 60, 3984-3994. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, Q., Yao, F., Sun, H., Chen, Z., Ke, J., Liao, J., et al. (2021) Combining Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Improves Motor Function by Modulating GABA in Acute Ischemic Stroke Patients. Restorative Neurology and Neuroscience, 39, 419-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bai, Z., Zhang, J. and Fong, K.N.K. (2022) Effects of Transcranial Magnetic Stimulation in Modulating Cortical Excitability in Patients with Stroke: A Systematic Review and Meta-Analysis. Journal of NeuroEngineering and Rehabilitation, 19, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gao, Q., Xie, Y., Chen, Y., Tan, H., Guo, Q. and Lau, B. (2021) Repetitive Transcranial Magnetic Stimulation for Lower Extremity Motor Function in Patients with Stroke: A Systematic Review and Network Meta-Analysis. Neural Regeneration Research, 16, 1168-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Palesi, F., De Rinaldis, A., Castellazzi, G., Calamante, F., Muhlert, N., Chard, D., et al. (2017) Contralateral Cortico-Ponto-Cerebellar Pathways Reconstruction in Humans in Vivo: Implications for Reciprocal Cerebro-Cerebellar Structural Connectivity in Motor and Non-Motor Areas. Scientific Reports, 7, Article No. 12841. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhu, P., Li, Z., Lu, Q., Nie, Y., Liu, H., Kiernan, E., et al. (2024) Can Cerebellar Theta-Burst Stimulation Improve Balance Function and Gait in Stroke Patients? A Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 60, 391-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019 [J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
|
[15]
|
Koch, G., Bonnì, S., Casula, E.P., Iosa, M., Paolucci, S., Pellicciari, M.C., et al. (2019) Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurology, 76, 170-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liao, L., Xie, Y., Chen, Y. and Gao, Q. (2020) Cerebellar Theta-Burst Stimulation Combined with Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 35, 23-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cristine de Faria, L., Barbosa Marques, D., Hellen dos Santos Cerqueira Gomes, L., dos Anjos, S. and Pereira, N.D. (2022) Self-Reported Use of the Paretic Lower Extremity of People with Stroke: A Reliability and Validity Study of the Lower-Extremity Motor Activity Log (LE-MAL)—Brazil. Physiotherapy Theory and Practice, 39, 1727-1735. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Blum, L. and Korner-Bitensky, N. (2008) Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Physical Therapy, 88, 559-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ortega-Bastidas, P., Gómez, B., Aqueveque, P., Luarte-Martínez, S. and Cano-de-la-Cuerda, R. (2023) Instrumented Timed up and Go Test (ITUG)—More than Assessing Time to Predict Falls: A Systematic Review. Sensors, 23, Article No. 3426. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cheng, D.K., Nelson, M., Brooks, D. and Salbach, N.M. (2019) Validation of Stroke-Specific Protocols for the 10-Meter Walk Test and 6-Minute Walk Test Conducted Using 15-Meter and 30-Meter Walkways. Topics in Stroke Rehabilitation, 27, 251-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liao, L., Zhu, Y., Peng, Q., Gao, Q., Liu, L., Wang, Q., et al. (2023) Intermittent Theta-Burst Stimulation for Stroke: Primary Motor Cortex versus Cerebellar Stimulation: A Randomized Sham-Controlled Trial. Stroke, 55, 156-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Grimaldi, G., Argyropoulos, G.P., Boehringer, A., Celnik, P., Edwards, M.J., Ferrucci, R., et al. (2013) Non-Invasive Cerebellar Stimulation—A Consensus Paper. The Cerebellum, 13, 121-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Holdefer, R.N., Miller, L.E., Chen, L.L. and Houk, J.C. (2000) Functional Connectivity between Cerebellum and Primary Motor Cortex in the Awake Monkey. Journal of Neurophysiology, 84, 585-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Taib, N.O.B., Manto, M., Laute, M. and Brotchi, J. (2005) The Cerebellum Modulates Rodent Cortical Motor Output after Repetitive Somatosensory Stimulation. Neurosurgery, 56, 811-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Farias da Guarda, S.N. and Conforto, A.B. (2014) Effects of Somatosensory Stimulation on Corticomotor Excitability in Patients with Unilateral Cerebellar Infarcts and Healthy Subjects—Preliminary Results. Cerebellum & Ataxias, 1, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Tanaka, M., Kameda, M. and Okada, K. (2024) Temporal Information Processing in the Cerebellum and Basal Ganglia. In: Merchant, H. and de Lafuente, V., Eds., Neurobiology of Interval Timing, Springer International Publishing, 95-116. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gopalakrishnan, R., Cunningham, D.A., Hogue, O., Schroedel, M., Campbell, B.A., Baker, K.B., et al. (2024) Electrophysiological Correlates of Dentate Nucleus Deep Brain Stimulation for Poststroke Motor Recovery. The Journal of Neuroscience, 44, e2149232024. [Google Scholar] [CrossRef] [PubMed]
|