[1]
|
GBD 2021 Stroke Risk Factor Collaborators (2024) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet Neurology, 23, 973-1003.
|
[2]
|
Anwar, N., Karimi, H., Ahmad, A., Mumtaz, N., Saqulain, G. and Gilani, S.A. (2021) A Novel Virtual Reality Training Strategy for Poststroke Patients: A Randomized Clinical Trial. Journal of Healthcare Engineering, 2021, Article ID: 6598726. https://doi.org/10.1155/2021/6598726
|
[3]
|
Dai, S., Piscicelli, C., Clarac, E., Baciu, M., Hommel, M. and Pérennou, D. (2021) Balance, Lateropulsion, and Gait Disorders in Subacute Stroke. Neurology, 96, 2147-2159. https://doi.org/10.1212/wnl.0000000000011152
|
[4]
|
Bower, K., Thilarajah, S., Pua, Y., Williams, G., Tan, D., Mentiplay, B., et al. (2019) Dynamic Balance and Instrumented Gait Variables Are Independent Predictors of Falls Following Stroke. Journal of NeuroEngineering and Rehabilitation, 16, Article No. 3. https://doi.org/10.1186/s12984-018-0478-4
|
[5]
|
Wu, W., Zhou, C., Wang, Z., Chen, G., Chen, X., Jin, H., et al. (2020) Effect of Early and Intensive Rehabilitation after Ischemic Stroke on Functional Recovery of the Lower Limbs: A Pilot, Randomized Trial. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 104649. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104649
|
[6]
|
Lee, D. and Bae, Y. (2022) Interactive Videogame Improved Rehabilitation Motivation and Walking Speed in Chronic Stroke Patients: A Dual-Center Controlled Trial. Games for Health Journal, 11, 268-274. https://doi.org/10.1089/g4h.2021.0123
|
[7]
|
Janssen, A.M., Oostendorp, T.F. and Stegeman, D.F. (2015) The Coil Orientation Dependency of the Electric Field Induced by TMS for M1 and Other Brain Areas. Journal of NeuroEngineering and Rehabilitation, 12, Article No. 47. https://doi.org/10.1186/s12984-015-0036-2
|
[8]
|
Parikh, V., Medley, A. and Goh, H. (2024) Effects of rTMS to Primary Motor Cortex and Cerebellum on Balance Control in Healthy Adults. European Journal of Neuroscience, 60, 3984-3994. https://doi.org/10.1111/ejn.16386
|
[9]
|
Chen, Q., Yao, F., Sun, H., Chen, Z., Ke, J., Liao, J., et al. (2021) Combining Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Improves Motor Function by Modulating GABA in Acute Ischemic Stroke Patients. Restorative Neurology and Neuroscience, 39, 419-434. https://doi.org/10.3233/rnn-211195
|
[10]
|
Bai, Z., Zhang, J. and Fong, K.N.K. (2022) Effects of Transcranial Magnetic Stimulation in Modulating Cortical Excitability in Patients with Stroke: A Systematic Review and Meta-Analysis. Journal of NeuroEngineering and Rehabilitation, 19, Article No. 24. https://doi.org/10.1186/s12984-022-00999-4
|
[11]
|
Gao, Q., Xie, Y., Chen, Y., Tan, H., Guo, Q. and Lau, B. (2021) Repetitive Transcranial Magnetic Stimulation for Lower Extremity Motor Function in Patients with Stroke: A Systematic Review and Network Meta-Analysis. Neural Regeneration Research, 16, 1168-1176. https://doi.org/10.4103/1673-5374.300341
|
[12]
|
Palesi, F., De Rinaldis, A., Castellazzi, G., Calamante, F., Muhlert, N., Chard, D., et al. (2017) Contralateral Cortico-Ponto-Cerebellar Pathways Reconstruction in Humans in Vivo: Implications for Reciprocal Cerebro-Cerebellar Structural Connectivity in Motor and Non-Motor Areas. Scientific Reports, 7, Article No. 12841. https://doi.org/10.1038/s41598-017-13079-8
|
[13]
|
Zhu, P., Li, Z., Lu, Q., Nie, Y., Liu, H., Kiernan, E., et al. (2024) Can Cerebellar Theta-Burst Stimulation Improve Balance Function and Gait in Stroke Patients? A Randomized Controlled Trial. European Journal of Physical and Rehabilitation Medicine, 60, 391-399. https://doi.org/10.23736/s1973-9087.24.08307-2
|
[14]
|
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国各类主要脑血管病诊断要点2019 [J]. 中华神经科杂志, 2019, 52(9): 710-715.
|
[15]
|
Koch, G., Bonnì, S., Casula, E.P., Iosa, M., Paolucci, S., Pellicciari, M.C., et al. (2019) Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients with Hemiparetic Stroke: A Randomized Clinical Trial. JAMA Neurology, 76, 170-178. https://doi.org/10.1001/jamaneurol.2018.3639
|
[16]
|
Liao, L., Xie, Y., Chen, Y. and Gao, Q. (2020) Cerebellar Theta-Burst Stimulation Combined with Physiotherapy in Subacute and Chronic Stroke Patients: A Pilot Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 35, 23-32. https://doi.org/10.1177/1545968320971735
|
[17]
|
Cristine de Faria, L., Barbosa Marques, D., Hellen dos Santos Cerqueira Gomes, L., dos Anjos, S. and Pereira, N.D. (2022) Self-Reported Use of the Paretic Lower Extremity of People with Stroke: A Reliability and Validity Study of the Lower-Extremity Motor Activity Log (LE-MAL)—Brazil. Physiotherapy Theory and Practice, 39, 1727-1735. https://doi.org/10.1080/09593985.2022.2043966
|
[18]
|
Blum, L. and Korner-Bitensky, N. (2008) Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Physical Therapy, 88, 559-566. https://doi.org/10.2522/ptj.20070205
|
[19]
|
Ortega-Bastidas, P., Gómez, B., Aqueveque, P., Luarte-Martínez, S. and Cano-de-la-Cuerda, R. (2023) Instrumented Timed up and Go Test (ITUG)—More than Assessing Time to Predict Falls: A Systematic Review. Sensors, 23, Article No. 3426. https://doi.org/10.3390/s23073426
|
[20]
|
Cheng, D.K., Nelson, M., Brooks, D. and Salbach, N.M. (2019) Validation of Stroke-Specific Protocols for the 10-Meter Walk Test and 6-Minute Walk Test Conducted Using 15-Meter and 30-Meter Walkways. Topics in Stroke Rehabilitation, 27, 251-261. https://doi.org/10.1080/10749357.2019.1691815
|
[21]
|
Liao, L., Zhu, Y., Peng, Q., Gao, Q., Liu, L., Wang, Q., et al. (2023) Intermittent Theta-Burst Stimulation for Stroke: Primary Motor Cortex versus Cerebellar Stimulation: A Randomized Sham-Controlled Trial. Stroke, 55, 156-165. https://doi.org/10.1161/strokeaha.123.044892
|
[22]
|
Grimaldi, G., Argyropoulos, G.P., Boehringer, A., Celnik, P., Edwards, M.J., Ferrucci, R., et al. (2013) Non-Invasive Cerebellar Stimulation—A Consensus Paper. The Cerebellum, 13, 121-138. https://doi.org/10.1007/s12311-013-0514-7
|
[23]
|
Holdefer, R.N., Miller, L.E., Chen, L.L. and Houk, J.C. (2000) Functional Connectivity between Cerebellum and Primary Motor Cortex in the Awake Monkey. Journal of Neurophysiology, 84, 585-590. https://doi.org/10.1152/jn.2000.84.1.585
|
[24]
|
Taib, N.O.B., Manto, M., Laute, M. and Brotchi, J. (2005) The Cerebellum Modulates Rodent Cortical Motor Output after Repetitive Somatosensory Stimulation. Neurosurgery, 56, 811-820. https://doi.org/10.1227/01.neu.0000156616.94446.00
|
[25]
|
Farias da Guarda, S.N. and Conforto, A.B. (2014) Effects of Somatosensory Stimulation on Corticomotor Excitability in Patients with Unilateral Cerebellar Infarcts and Healthy Subjects—Preliminary Results. Cerebellum & Ataxias, 1, Article No. 16. https://doi.org/10.1186/s40673-014-0016-5
|
[26]
|
Tanaka, M., Kameda, M. and Okada, K. (2024) Temporal Information Processing in the Cerebellum and Basal Ganglia. In: Merchant, H. and de Lafuente, V., Eds., Neurobiology of Interval Timing, Springer International Publishing, 95-116. https://doi.org/10.1007/978-3-031-60183-5_6
|
[27]
|
Gopalakrishnan, R., Cunningham, D.A., Hogue, O., Schroedel, M., Campbell, B.A., Baker, K.B., et al. (2024) Electrophysiological Correlates of Dentate Nucleus Deep Brain Stimulation for Poststroke Motor Recovery. The Journal of Neuroscience, 44, e2149232024. https://doi.org/10.1523/jneurosci.2149-23.2024
|