[1]
|
Luo, Q., Liu, P., Yu, P. and Qin, T. (2023) Cancer Stem Cells Are Actually Stem Cells with Disordered Differentiation: The Monophyletic Origin of Cancer. Stem Cell Reviews and Reports, 19, 827-838. https://doi.org/10.1007/s12015-023-10508-2
|
[2]
|
Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. https://doi.org/10.1016/j.jncc.2024.01.006
|
[3]
|
Han, L., Meng, Y. and Jianguo, Z. (2024) Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Current Cancer Drug Targets, 24, 1104-1115. https://doi.org/10.2174/0115680096278251240108152600
|
[4]
|
Zhao, M., Zhang, Y., Miao, J., Zhou, H., Jiang, Y., Zhang, Y., et al. (2023) An Activatable Phototheranostic Probe for Anti‐hypoxic Type I Photodynamic‐ and Immuno-Therapy of Cancer. Advanced Materials, 36, Article 2305243. https://doi.org/10.1002/adma.202305243
|
[5]
|
Yin, W., Wang, J., Jiang, L. and James Kang, Y. (2021) Cancer and Stem Cells. Experimental Biology and Medicine, 246, 1791-1801. https://doi.org/10.1177/15353702211005390
|
[6]
|
Nyamao, R.M., Wu, J., Yu, L., Xiao, X. and Zhang, F. (2019) Roles of DDX5 in the Tumorigenesis, Proliferation, Differentiation, Metastasis and Pathway Regulation of Human Malignancies. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1871, 85-98. https://doi.org/10.1016/j.bbcan.2018.11.003
|
[7]
|
Li, F., Fountzilas, C., Puzanov, I., et al. (2021) Multiple Functions of the DEAD-Box RNA Helicase, DDX5 (p68), Make DDX5 a Superior Oncogenic Biomarker and Target for Targeted Cancer Therapy. American Journal of Cancer Research, 11, 5190-5213.
|
[8]
|
Li, F., Ling, X., Chakraborty, S., Fountzilas, C., Wang, J., Jamroze, A., et al. (2023) Role of the Dead-Box RNA Helicase DDX5 (p68) in Cancer DNA Repair, Immune Suppression, Cancer Metabolic Control, Virus Infection Promotion, and Human Microbiome (Microbiota) Negative Influence. Journal of Experimental & Clinical Cancer Research, 42, Article No. 213. https://doi.org/10.1186/s13046-023-02787-x
|
[9]
|
Tabassum, S. and Ghosh, M.K. (2023) Dead-Box RNA Helicases with Special Reference to P68: Unwinding Their Biology, Versatility, and Therapeutic Opportunity in Cancer. Genes & Diseases, 10, 1220-1241. https://doi.org/10.1016/j.gendis.2022.02.008
|
[10]
|
Dai, T., Cao, L., Yang, Z., Li, Y., Tan, L., Ran, X., et al. (2014) P68 RNA Helicase as a Molecular Target for Cancer Therapy. Journal of Experimental & Clinical Cancer Research, 33, Article No. 64. https://doi.org/10.1186/s13046-014-0064-y
|
[11]
|
Dardenne, E., Polay Espinoza, M., Fattet, L., Germann, S., Lambert, M., Neil, H., et al. (2014) RNA Helicases DDX5 and DDX17 Dynamically Orchestrate Transcription, Mirna, and Splicing Programs in Cell Differentiation. Cell Reports, 7, 1900-1913. https://doi.org/10.1016/j.celrep.2014.05.010
|
[12]
|
Zheng, G., Zhu, Y., Xu, L., Chen, S., Zhang, X., Li, W., et al. (2023) LncRNA MACC1-AS1 Associates with DDX5 to Modulate MACC1 Transcription in Breast Cancer Cells. iScience, 26, Article 107642. https://doi.org/10.1016/j.isci.2023.107642
|
[13]
|
Lan, H., Lin, C. and Yuan, H. (2022) Knockdown of KRAB Domain-Associated Protein 1 Suppresses the Proliferation, Migration and Invasion of Thyroid Cancer Cells by Regulating P68/DEAD Box Protein 5. Bioengineered, 13, 11945-11957. https://doi.org/10.1080/21655979.2022.2067289
|
[14]
|
Cao, J., Wang, J., Shi, B., et al. (2024) DDX5-Targeting Fragile X Mental Retardation Protein Regulates the WNT/β-Catenin Signaling Pathway to Promote Epithelial Mesenchymal Transition in Breast Cancer. Journal of Sichuan University Medical Science Edition, 55, 1138-1149.
|
[15]
|
Li, Z., Kim, W., Utturkar, S., Yan, B., Lanman, N.A., Elzey, B.D., et al. (2024) DDX5 Deficiency Drives Non-Canonical NF-κB Activation and NRF2 Expression, Influencing Sorafenib Response and Hepatocellular Carcinoma Progression. Cell Death & Disease, 15, Article No. 583. https://doi.org/10.1038/s41419-024-06977-z
|
[16]
|
Nicol, S.M., Bray, S.E., Derek Black, H., Lorimore, S.A., Wright, E.G., Lane, D.P., et al. (2013) The RNA Helicase P68 (DDX5) Is Selectively Required for the Induction of p53-Dependent p21 Expression and Cell-Cycle Arrest after DNA Damage. Oncogene, 32, 3461-3469. https://doi.org/10.1038/onc.2012.426
|
[17]
|
Yu, Z., Mersaoui, S.Y., Guitton-Sert, L., Coulombe, Y., Song, J., Masson, J., et al. (2020) DDX5 Resolves R-Loops at DNA Double-Strand Breaks to Promote DNA Repair and Avoid Chromosomal Deletions. NAR Cancer, 2, zcaa028. https://doi.org/10.1093/narcan/zcaa028
|
[18]
|
Wen, C., Cao, L., Wang, S., Xu, W., Yu, Y., Zhao, S., et al. (2024) MCM8 Interacts with DDX5 to Promote R-Loop Resolution. The EMBO Journal, 43, 3044-3071. https://doi.org/10.1038/s44318-024-00134-0
|
[19]
|
Xu, C.M., Chen, L.X., Gao, F., et al. (2019) miR-431 Suppresses Proliferation and Metastasis of Lung Cancer via down-Regulating DDX5. European Review for Medical and Pharmacological Sciences, 23, 699-707.
|
[20]
|
Fuller-Pace, F.V. (2013) DEAD Box RNA Helicase Functions in Cancer. RNA Biology, 10, 121-132. https://doi.org/10.4161/rna.23312
|
[21]
|
Wang, Z., Luo, Z., Zhou, L., Li, X., Jiang, T. and Fu, E. (2015) DDX5 Promotes Proliferation and Tumorigenesis of Non-Small-Cell Lung Cancer Cells by Activating β-Catenin Signaling Pathway. Cancer Science, 106, 1303-1312. https://doi.org/10.1111/cas.12755
|
[22]
|
Xing, Z., Russon, M.P., Utturkar, S.M. and Tran, E.J. (2020) The RNA Helicase DDX5 Supports Mitochondrial Function in Small Cell Lung Cancer. Journal of Biological Chemistry, 295, 8988-8998. https://doi.org/10.1074/jbc.ra120.012600
|
[23]
|
Zhang, Y., Ye, S., Lu, W., Zhong, J., Leng, Y., Yang, T., et al. (2023) RNA Helicase Dead-Box Protein 5 Alleviates Nonalcoholic Steatohepatitis Progression via Tethering TSC Complex and Suppressing mTORC1 Signaling. Hepatology, 77, 1670-1687. https://doi.org/10.1002/hep.32651
|
[24]
|
Fu, P., Lin, L., Zhou, H., Zhao, S. and Jie, Z. (2021) Circular RNA circEGFR Regulates Tumor Progression via the miR-106a-5p/DDX5 Axis in Colorectal Cancer. Brazilian Journal of Medical and Biological Research, 54, e10940. https://doi.org/10.1590/1414-431x2020e10940
|
[25]
|
Wang, X., Yang, P., Zhang, D., Lu, M., Zhang, C. and Sun, Y. (2021) LncRNA SNHG14 Promotes Cell Proliferation and Invasion in Colorectal Cancer through Modulating miR-519b-3p/DDX5 Axis. Journal of Cancer, 12, 4958-4970. https://doi.org/10.7150/jca.55495
|
[26]
|
Tabassum, S., Basu, M. and Ghosh, M.K. (2023) The Dead-Box RNA Helicase DDX5 (p68) and β-Catenin: The Crucial Regulators of FOXM1 Gene Expression in Arbitrating Colorectal Cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1866, Article 194933. https://doi.org/10.1016/j.bbagrm.2023.194933
|
[27]
|
Wang, R., Jiao, Z., Li, R., Yue, H. and Chen, L. (2012) P68 RNA Helicase Promotes Glioma Cell Proliferation in Vitro and in Vivo via Direct Regulation of NF-κB Transcription Factor P50. Neuro-Oncology, 14, 1116-1124. https://doi.org/10.1093/neuonc/nos131
|
[28]
|
Wang, R., Bao, H., Du, W., Chen, X., Liu, H., Han, D., et al. (2018) P68 RNA Helicase Promotes Invasion of Glioma Cells through Negatively Regulating DUSP5. Cancer Science, 110, 107-117. https://doi.org/10.1111/cas.13858
|
[29]
|
Gómez-González, B., Sessa, G., Carreira, A. and Aguilera, A. (2021) A New Interaction between BRCA2 and DDX5 Promotes the Repair of DNA Breaks at Transcribed Chromatin. Molecular & Cellular Oncology, 8, Article 1910474. https://doi.org/10.1080/23723556.2021.1910474
|
[30]
|
Taniguchi, T., Iizumi, Y., Watanabe, M., Masuda, M., Morita, M., Aono, Y., et al. (2016) Resveratrol Directly Targets DDX5 Resulting in Suppression of the MTORC1 Pathway in Prostate Cancer. Cell Death & Disease, 7, e2211. https://doi.org/10.1038/cddis.2016.114
|
[31]
|
Du, C., Li, D., Li, N., Chen, L., Li, S., Yang, Y., et al. (2017) DDX5 Promotes Gastric Cancer Cell Proliferation in Vitro and in Vivo through mTOR Signaling Pathway. Scientific Reports, 7, Article No. 42876. https://doi.org/10.1038/srep42876
|
[32]
|
Liu, C., Wang, L., Jiang, Q., Zhang, J., Zhu, L., Lin, L., et al. (2019) Hepatoma-Derived Growth Factor and DDX5 Promote Carcinogenesis and Progression of Endometrial Cancer by Activating β-Catenin. Frontiers in Oncology, 9, Article 211. https://doi.org/10.3389/fonc.2019.00211
|
[33]
|
Shao, Y., Li, H., Wu, Y., Wang, X., Meng, J., Hu, Z., et al. (2023) The Feedback Loop of AURKA/DDX5/TMEM147-AS1/let-7 Drives Lipophagy to Induce Cisplatin Resistance in Epithelial Ovarian Cancer. Cancer Letters, 565, Article 216241. https://doi.org/10.1016/j.canlet.2023.216241
|
[34]
|
Mao, Y., Yang, D., He, J. and Krasna, M.J. (2016) Epidemiology of Lung Cancer. Surgical Oncology Clinics of North America, 25, 439-445. https://doi.org/10.1016/j.soc.2016.02.001
|
[35]
|
Zulfiqar, B., Farooq, A., Kanwal, S. and Asghar, K. (2022) Immunotherapy and Targeted Therapy for Lung Cancer: Current Status and Future Perspectives. Frontiers in Pharmacology, 13, Article 1035171. https://doi.org/10.3389/fphar.2022.1035171
|
[36]
|
Zou, G. and Park, J. (2023) Wnt Signaling in Liver Regeneration, Disease, and Cancer. Clinical and Molecular Hepatology, 29, 33-50. https://doi.org/10.3350/cmh.2022.0058
|
[37]
|
Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238. https://doi.org/10.1038/s41575-020-00381-6
|
[38]
|
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. https://doi.org/10.1016/s0140-6736(20)32511-3
|
[39]
|
Zunica, E.R.M., Heintz, E.C., Axelrod, C.L. and Kirwan, J.P. (2022) Obesity Management in the Primary Prevention of Hepatocellular Carcinoma. Cancers, 14, Article 4051. https://doi.org/10.3390/cancers14164051
|
[40]
|
He, R., Huang, S., Lu, J., Su, L., Gao, X. and Chi, H. (2024) Unveiling the Immune Symphony: Decoding Colorectal Cancer Metastasis through Immune Interactions. Frontiers in Immunology, 15, Article 1362709. https://doi.org/10.3389/fimmu.2024.1362709
|
[41]
|
Li, N., Lu, B., Luo, C., Cai, J., Lu, M., Zhang, Y., et al. (2021) Incidence, Mortality, Survival, Risk Factor and Screening of Colorectal Cancer: A Comparison among China, Europe, and Northern America. Cancer Letters, 522, 255-268. https://doi.org/10.1016/j.canlet.2021.09.034
|
[42]
|
Wang, Z., Dan, W., Zhang, N., Fang, J. and Yang, Y. (2023) Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes, 15, Article 2236364. https://doi.org/10.1080/19490976.2023.2236364
|
[43]
|
Zou, S., Qin, B., Yang, Z., Wang, W., Zhang, J., Zhang, Y., et al. (2022) CSN6 Mediates Nucleotide Metabolism to Promote Tumor Development and Chemoresistance in Colorectal Cancer. Cancer Research, 83, 414-427. https://doi.org/10.1158/0008-5472.can-22-2145
|
[44]
|
Sun, Y., Wang, Z. and Zhou, D. (2013) Long Non-Coding RNAs as Potential Biomarkers and Therapeutic Targets for Gliomas. Medical Hypotheses, 81, 319-321. https://doi.org/10.1016/j.mehy.2013.04.010
|
[45]
|
Zottel, A., Šamec, N., Videtič Paska, A. and Jovčevska, I. (2020) Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers, 12, Article 1842. https://doi.org/10.3390/cancers12071842
|
[46]
|
Zubair, M., Wang, S. and Ali, N. (2021) Advanced Approaches to Breast Cancer Classification and Diagnosis. Frontiers in Pharmacology, 11, Article 632079. https://doi.org/10.3389/fphar.2020.632079
|
[47]
|
Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. https://doi.org/10.3322/caac.21754
|
[48]
|
Kost, G.C., Yang, M.Y., Li, L., Zhang, Y., Liu, C., Kim, D.J., et al. (2015) A Novel Anti-Cancer Agent, 1‐(3,5-Dimethoxyphenyl)-4-[(6-Fluoro-2-Methoxyquinoxalin-3-yl)Aminocarbonyl] Piperazine (RX‐5902), Interferes with β-Catenin Function through Y593 Phospho-p68 RNA Helicase. Journal of Cellular Biochemistry, 116, 1595-1601. https://doi.org/10.1002/jcb.25113
|
[49]
|
Ling, X., Wu, W., Yan, L., Curtin, L., Farrauto, M.M., Sexton, S., et al. (2024) Clinically and Orally Compatible Formulation-Manufactured DDX5 (p68)-Targeting Molecular Glue FL118 Products Exhibit Low Toxicity but High Efficacy against Human Cancer. Journal of Pharmaceutical Analysis, 14, Article 101001. https://doi.org/10.1016/j.jpha.2024.101001
|
[50]
|
Mao, X., Guo, S., Gao, L. and Li, G. (2021) Circ-XPR1 Promotes Osteosarcoma Proliferation through Regulating the miR-214-5p/DDX5 Axis. Human Cell, 34, 122-131. https://doi.org/10.1007/s13577-020-00412-z
|