RNA解旋酶DDX5在癌症中的研究进展
Advances in the Study of RNA Deconjugating Enzyme DDX5 in Cancer
DOI: 10.12677/wjcr.2025.153016, PDF, HTML, XML,   
作者: 宋 静*, 苏 磊, 范泽彦, 张浩平:温州大学生命与环境科学学院,浙江 温州
关键词: DDX5结构与功能癌症DDX5 Structure and Function Cancer
摘要: 恶性肿瘤是威胁人类健康的重大疾病之一,由于肿瘤的异质性和发病机理的复杂性,临床治疗面临巨大挑战。因此,寻找精准的治疗靶点和新型分子标志物已成为肿瘤学研究热点。DDX5 (DEAD-box RNA helicase 5)是DEAD-box蛋白家族的重要成员,在进化上高度保守,主要通过ATP依赖的RNA解旋活性参与多种基因表达调控。研究表明,DDX5在多种癌症中异常表达。因此,深入探究DDX5在癌症发生发展中的调控机制,成为当前癌症研究领域的热点。本论文综述了DDX5蛋白的结构特征及其在转录调节、细胞周期调控和DNA损伤修复等基础生物学过程中的关键作用,重点探讨DDX5通过调控细胞周期、转录因子活性及上皮–间质细胞转化等机制影响多种癌症的发生发展,为进一步研究DDX5作为潜在治疗靶点和预后标志物提供指导。
Abstract: Malignant tumors are one of the major diseases threatening human health, and clinical treatment faces great challenges due to the heterogeneity of tumors and the complexity of their pathogenesis. Therefore, the search for precise therapeutic targets and novel molecular markers has become a hot spot in oncology research. DDX5 (DEAD-box RNA helicase 5) is an important member of the DEAD-box protein family, which is highly conserved evolutionarily and is involved in the regulation of a wide range of gene expression mainly through ATP-dependent RNA unwinding activity. Studies have shown that DDX5 is aberrantly expressed in a variety of cancers. Therefore, in-depth investigation into the regulatory mechanisms of DDX5 in cancer development and progression has become a major focus in current cancer research. This review summarizes the structural characteristics of the DDX5 protein and its crucial roles in fundamental biological processes including transcriptional regulation, cell cycle control, and DNA damage repair. With a focus on oncogenesis mechanisms, the paper specifically examines how DDX5 influences cancer development and progression through regulating cell cycle dynamics, transcription factor activity, and epithelial-mesenchymal transition (EMT). These comprehensive analyses provide valuable insights for future investigations targeting DDX5 as a potential therapeutic target and prognostic biomarker in cancer research.
文章引用:宋静, 苏磊, 范泽彦, 张浩平. RNA解旋酶DDX5在癌症中的研究进展[J]. 世界肿瘤研究, 2025, 15(3): 124-131. https://doi.org/10.12677/wjcr.2025.153016

1. 引言

癌症是一种重大疾病,主要是由细胞周期异常调控导致的无限增殖以及免疫系统的异常识别所引起,因其具有较强的增殖和扩散能力,所以被称为“永不愈合的伤口”[1]。数据显示,2022年我国恶性肿瘤死亡病例高达257.4万例[2],且发病率和死亡率均呈现快速上升趋势[3]。当前临床治疗手段主要包括放疗、化疗和手术切除,并联合免疫检查点抑制剂等生物靶向疗法调控肿瘤微环境,从而杀死癌细胞或抑制癌细胞增殖[4]。尽管多手段联合治疗使患者生存期得到改善,但基于肿瘤干细胞存活及免疫逃逸机制,仍有很大一部分患者会出现局部性复发或转移,导致预后不良[5]。因此,深入探究癌症早期诊断分子标志物和靶向治疗机制是十分必要的。

DDX5是一种多功能蛋白质,主要通过依赖ATP水解产生的能量在多种生物学过程中发挥着关键作用[6]。研究表明,DDX5在大多数恶性肿瘤中过表达,通过参与肿瘤细胞增殖、侵袭、迁移以及调控多种信号通路,促进癌症的发生发展,例如肺癌、前列腺癌、卵巢癌、胃癌、结肠癌和乳腺癌等[7] [8]。DDX5作为一种多功能蛋白质,已被确定为治疗各种癌症类型的潜在生物标志物和治疗靶点[7]。本文系统总结RNA解旋酶DDX5的结构和生物学功能,讨论其在多种癌症中的表达及作用,以期为癌症的临床治疗和DDX5靶向新药物的研发提供一定的参考意义。

2. DDX5的结构

DDX5又叫p68,是RNA解旋酶SF2超家族中DEAD-box家族的重要成员[7]。与其他DEAD-box解旋酶一样,DDX5的核心区域是由两个灵活连接的N端RecA样结构域(NTD)和C端RecA样结构域(CTD)组成,包含9个保守基序(如图1),分别是Q、I、Ia、Ib、II、III、IV、V和VI,这些保守区域对RNA结合、ATP结合和水解及分子间相互作用至关重要[9]。NTD由基序Q、Ⅰ、Ⅱ和Ⅲ组成,用于ATP结合;CTD包括基序Ⅳ、Ⅴ和Ⅵ,主要表现出RNA双链识别结构域;Q基序存在于催化核心的N末端,通过调节蛋白质与RNA底物之间的亲和力来影响解旋酶活性[10]。基于DDX5蛋白的结构特点,其在整个生命周期中,从RNA合成起始到生物活性的表现,都发挥着重要作用。

Figure 1. Core sequence of DDX5

1. DDX5核心序列

3. DDX5的生物学功能

DDX5作为多功能RNA解旋酶,在多种生物学过程中发挥关键作用。在RNA代谢方面,它通过促进U1小核糖核蛋白和5'剪接位点解离调控pre-mRNA剪接、与DDX17协同调控rRNA加工以及参与核糖体生物发生[11]。在转录调控中,DDX5与雌激素受体、雄激素受体、肿瘤抑制因子p53和肌生成调节因子MyoD等多种转录因子相互作用,并充当其辅助激活因子,从而调控细胞的增殖、侵袭和转移[9] [12]。在细胞周期方面,DDX5不仅通过参与Wnt/β-catenin和NF-κB信号通路促进细胞增殖[13]-[15],同时还作为p53的转录共激活因子协同调控细胞周期停滞和凋亡[16]。在DNA损伤修复中,DDX5通过ATP依赖性方式识别并清除DNA:RNA杂交环,从而维持基因组稳定性和完整性,其缺失导致同源重组修复缺陷,造成了DNA损伤积累和基因组不稳定,细胞将进入凋亡状态[17] [18]。另外,DDX5还可诱导EMT产生(如DDX5 Y593磷酸化介导的PDGF信号) [14]和调控miRNA (如与细胞增殖相关的miR-431) [19],促进细胞增殖和迁移。

4. DDX5在癌症中的应用

DEAD-box蛋白家族在细胞维持过程中发挥关键作用,在此基础上,人们发现DDX5与细胞增殖和肿瘤转化密切相关[20]。研究表明,DDX5在多数癌症如结肠癌、肝癌、肺癌和乳腺癌发生发展中发挥关键作用[9],如表1

Table 1. Role of DDX5 in cancer

1. DDX5在癌症中的作用

癌症

作用

调控机制

参考文献

肺癌

+

激活β-catenin促进细胞增殖;细胞侵袭

[21] [22]

肝癌

-

调节Wnt/β-catenin和NF-κB信号通路

[15] [23]

结直肠癌

+

调控AKT/β-catenin/FOXM1

[24]

胶质母细胞瘤

+

NF-κB p50亚基激活;下调DUSP5激活ERK

[27] [28]

乳腺癌

+

促进EMT;DNA修复

[14] [29]

前列腺癌

+

DDX5/mTOCR1信号轴

[30]

胃癌

+

激活mTOR/S6K信号促进癌症发展

[31]

甲状腺癌

+

激活Wnt/β-catenin

[13]

子宫内膜癌

+

HDGF/DDX5相互作用诱导β-catenin

[32]

卵巢癌

+

AURKA/DDX5/TMEM147-AS1/let-7

[33]

4.1. 肺癌

肺癌是起源于肺部支气管粘膜或腺体的异质性恶性肿瘤,是全球范围内发病率和死亡率最高的恶性肿瘤之一[34]。根据形态不同,主要分为非小细胞肺癌(NSCLC)和小细胞肺癌(SCLC) [35]。王振东等发现,与正常组织内的细胞相比,DDX5在NSCLC细胞中显著表达,通过诱导β-catenin的核积累,激活其下游靶基因细胞周期蛋白D1和c-Myc的转录翻译水平,促进NSCLC细胞的增殖和肿瘤生长[21]。在SCLC细胞中,DDX5促进线粒体功能,部分表现为呼吸作用上调,支持癌细胞的能量需求,促进癌细胞侵袭[22]

4.2. 肝癌

肝癌是全球十大致命癌症之一[36]。研究表明,肝癌经常与慢性肝病一起发生,例如代谢相关脂肪肝病可以使肝细胞发生恶性转化或进展为脂肪型肝炎、肝纤维化,最终导致肝硬化,进而直接从脂肪变性引起肝癌[37] [38]。近年来,DDX5在肝癌发生发展中的作用逐渐显现。研究表明,慢性肝病患者肝癌的发病率因存在诱发因素而急剧增加,例如肝硬化和NASH等[39],在NASH患者体内,低表达的DDX5可激活mTOR信号通路,加重肝脏脂肪积累并抑制自噬,促进肝癌的发生[23]。在晚期肝细胞癌中,DDX5缺陷激活Wnt/β-catenin信号转导,促进非经典NF-κB信号激活和细胞保护性转录因子NRF2的表达,从而在索拉菲尼治疗后实现铁死亡逃逸,促进肝癌发展[15]

4.3. 结肠癌

结肠癌是全球范围内最常见的恶性癌症之一。近年来,尽管化疗、分子靶向治疗和免疫治疗取得了重大进展,但其由于易发生转移和耐药性增强,死亡率仍然很高[40]-[42]。研究发现,DDX5作为典型的原癌基因,在结肠癌的发生发展中发挥关键作用。在结肠癌中,DDX5充当CSN6的效应因子,通过稳定PHGDH mRNA增强核苷酸合成,从而促进结肠癌细胞存活和耐药[43]。另外,DDX5通过调控AKT和β-catenin通路,促进结肠癌细胞增殖、迁移和侵袭[24]-[26]

4.4. 神经胶质细胞瘤

神经胶质细胞瘤是最常见的原发性异质性脑恶性肿瘤,约占脑肿瘤的50%~60% [44],由于其高突变等特性,使得该疾病治疗复杂化,复发率高[45]。研究发现,与正常组织相比,DDX5在神经胶质瘤细胞和组织中过表达。王瑞等利用微阵列分析技术发现了p68的新靶点,双特异性磷酸酶5 (DUSP5),并且表达呈负相关,二者通过介导细胞外信号调节激酶ERK信号通路的激活,促进神经胶质瘤细胞的增殖、侵袭和迁移[28]。他们还发现,p68通过与NF-κB p50的N端结合,促进p50的核积累和转录活性,诱导胶质瘤细胞增殖和肿瘤生长[27]

4.5. 乳腺癌

乳腺癌是全球第二大癌症,仅次于肺癌[46],它是女性死亡的主要原因[47]。近些年,人们发现在乳腺中DDX5蛋白表达与乳腺肿瘤的致癌性密切相关。在乳腺癌中,DDX5通过Wnt/β-catenin信号增加EMT过程,促进乳腺癌发展[14]。DDX5与DNA修复相关蛋白(BRCA2)相互作用,促进转录染色质内DNA-RNA杂交体的解旋与修复,从而促进BRCA2缺陷型乳腺癌的发生[29]

4.6. 其他癌症

据报道,除了上述癌症外,DDX5还在其他多种癌症的发生发展中发挥重要作用。在胃癌中,DDX5通过激活mTOR-S6K1轴来增强癌细胞增殖[31]。在甲状腺癌细胞中,DDX5通过激活Wnt/β-catenin信号增强癌细胞增殖、迁移和侵袭[13]。DDX5和HDGF通过激活β-catenin促进子宫内膜癌的发生和发展[32]。DDX5通过激活mTOCR1通路,抑制细胞凋亡,促进前列腺癌细胞的增殖[30]。另外,DDX5直接与Aurora激酶A结合形成转录共激活因子复合物,诱导致癌基因的转录,通过一系列信号激活脂肪吞噬来增强卵巢癌细胞的耐药性,不利于癌症的治疗[33]

5. DDX5在癌症治疗中的应用

研究表明,刘志任团队已成功研发了一种名为RX-5902的新型抗癌药物,通过与Y593处磷酸化的DDX5直接结合,抑制DDX5与β-catenin相互作用,从而实现抗癌作用[48]。近年来,李凤芝团队研发的分子胶降解剂FL118已在临床前得到验证,FL118强烈结合去磷酸化并通过蛋白酶体降解途径降解DDX5蛋白,进而控制多种致癌蛋白的表达,包括存活素、c-Myc和突变体Kras,从而实现对人结直肠癌、小儿骨肉瘤、前列腺癌和胰腺癌的抑制作用[49]。另外,基于circRNA和miRNA的抗癌方法逐渐得到验证。毛小欢等发现在骨肉瘤中,异常表达的Circ-XPR1通过吸附具有抑癌作用的miR-214-5p,促进DDX5的表达,从而促进骨肉瘤增殖[50]。因此,Circ-XPR1/miR-214-5p/DDX5轴是一个新颖且潜在的治疗靶向轴。

6. 总结与展望

随着精准医学与分子诊断技术的快速发展,肿瘤治疗手段和水平也显著提升,但恶性肿瘤固有的高异质性和高转移性,致使临床治疗面临继发性耐药高发和患者生存改善有限等难题。因此深入解析恶性肿瘤发展的多维度调控机制,筛选核心调控靶点,是突破现有的早期诊断效率低下及治疗应答率低的关键手段。DDX5是一种重要的RNA解旋酶,通过调控NF-κB、PI3K/Akt和Wnt/β-catenin等信号通路,在癌症发生发展中发挥关键作用。基于以上研究,未来可从四个方面深入研究。第一,DDX5已被发现在癌细胞增殖、迁移和侵袭等过程发挥作用,因此设计和筛选能够特异性靶向DDX5的抑制剂或干扰其功能的小分子药物,可以直接或间接阻断细胞的生长和扩散。第二,DDX5在不同癌症类型中,其作用机制可能存在差异。在肝癌中,DDX5缺陷可以通过激活Wnt/β-catenin信号转导,从而在索拉菲尼治疗后实现铁死亡逃逸,促进肝癌发展;而在乳腺癌中,DDX5通过维持β-catenin/TCF4信号传导的正反馈回路,增加Wnt信号介导的EMT过程,促进乳腺癌的发展。因此,对这些特异性作用机制的深入剖析,有助于提高治疗的针对性和有效性,减少治疗过程中对正常细胞的损伤,降低副作用。第三,癌症的发生发展是一个涉及多个基因和信号通路相互交织的复杂过程,探究DDX5与其他致癌信号通路的相互作用,为开发多靶点联合治疗策略提供理论依据。第四,挖掘DDX5作为癌症早期诊断标志物及预后评估指标的潜力,为临床治疗决策提供重要参考。对DDX5调控癌症发展作用机制的深入探究,有助于揭示其对癌症的治疗和预防机制,为癌症的治疗和预防提供参考。

NOTES

*第一作者。

参考文献

[1] Luo, Q., Liu, P., Yu, P. and Qin, T. (2023) Cancer Stem Cells Are Actually Stem Cells with Disordered Differentiation: The Monophyletic Origin of Cancer. Stem Cell Reviews and Reports, 19, 827-838.
https://doi.org/10.1007/s12015-023-10508-2
[2] Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53.
https://doi.org/10.1016/j.jncc.2024.01.006
[3] Han, L., Meng, Y. and Jianguo, Z. (2024) Research Progress of PD 1/PD L1 Inhibitors in the Treatment of Urological Tumors. Current Cancer Drug Targets, 24, 1104-1115.
https://doi.org/10.2174/0115680096278251240108152600
[4] Zhao, M., Zhang, Y., Miao, J., Zhou, H., Jiang, Y., Zhang, Y., et al. (2023) An Activatable Phototheranostic Probe for Anti‐hypoxic Type I Photodynamic‐ and Immuno-Therapy of Cancer. Advanced Materials, 36, Article 2305243.
https://doi.org/10.1002/adma.202305243
[5] Yin, W., Wang, J., Jiang, L. and James Kang, Y. (2021) Cancer and Stem Cells. Experimental Biology and Medicine, 246, 1791-1801.
https://doi.org/10.1177/15353702211005390
[6] Nyamao, R.M., Wu, J., Yu, L., Xiao, X. and Zhang, F. (2019) Roles of DDX5 in the Tumorigenesis, Proliferation, Differentiation, Metastasis and Pathway Regulation of Human Malignancies. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1871, 85-98.
https://doi.org/10.1016/j.bbcan.2018.11.003
[7] Li, F., Fountzilas, C., Puzanov, I., et al. (2021) Multiple Functions of the DEAD-Box RNA Helicase, DDX5 (p68), Make DDX5 a Superior Oncogenic Biomarker and Target for Targeted Cancer Therapy. American Journal of Cancer Research, 11, 5190-5213.
[8] Li, F., Ling, X., Chakraborty, S., Fountzilas, C., Wang, J., Jamroze, A., et al. (2023) Role of the Dead-Box RNA Helicase DDX5 (p68) in Cancer DNA Repair, Immune Suppression, Cancer Metabolic Control, Virus Infection Promotion, and Human Microbiome (Microbiota) Negative Influence. Journal of Experimental & Clinical Cancer Research, 42, Article No. 213.
https://doi.org/10.1186/s13046-023-02787-x
[9] Tabassum, S. and Ghosh, M.K. (2023) Dead-Box RNA Helicases with Special Reference to P68: Unwinding Their Biology, Versatility, and Therapeutic Opportunity in Cancer. Genes & Diseases, 10, 1220-1241.
https://doi.org/10.1016/j.gendis.2022.02.008
[10] Dai, T., Cao, L., Yang, Z., Li, Y., Tan, L., Ran, X., et al. (2014) P68 RNA Helicase as a Molecular Target for Cancer Therapy. Journal of Experimental & Clinical Cancer Research, 33, Article No. 64.
https://doi.org/10.1186/s13046-014-0064-y
[11] Dardenne, E., Polay Espinoza, M., Fattet, L., Germann, S., Lambert, M., Neil, H., et al. (2014) RNA Helicases DDX5 and DDX17 Dynamically Orchestrate Transcription, Mirna, and Splicing Programs in Cell Differentiation. Cell Reports, 7, 1900-1913.
https://doi.org/10.1016/j.celrep.2014.05.010
[12] Zheng, G., Zhu, Y., Xu, L., Chen, S., Zhang, X., Li, W., et al. (2023) LncRNA MACC1-AS1 Associates with DDX5 to Modulate MACC1 Transcription in Breast Cancer Cells. iScience, 26, Article 107642.
https://doi.org/10.1016/j.isci.2023.107642
[13] Lan, H., Lin, C. and Yuan, H. (2022) Knockdown of KRAB Domain-Associated Protein 1 Suppresses the Proliferation, Migration and Invasion of Thyroid Cancer Cells by Regulating P68/DEAD Box Protein 5. Bioengineered, 13, 11945-11957.
https://doi.org/10.1080/21655979.2022.2067289
[14] Cao, J., Wang, J., Shi, B., et al. (2024) DDX5-Targeting Fragile X Mental Retardation Protein Regulates the WNT/β-Catenin Signaling Pathway to Promote Epithelial Mesenchymal Transition in Breast Cancer. Journal of Sichuan University Medical Science Edition, 55, 1138-1149.
[15] Li, Z., Kim, W., Utturkar, S., Yan, B., Lanman, N.A., Elzey, B.D., et al. (2024) DDX5 Deficiency Drives Non-Canonical NF-κB Activation and NRF2 Expression, Influencing Sorafenib Response and Hepatocellular Carcinoma Progression. Cell Death & Disease, 15, Article No. 583.
https://doi.org/10.1038/s41419-024-06977-z
[16] Nicol, S.M., Bray, S.E., Derek Black, H., Lorimore, S.A., Wright, E.G., Lane, D.P., et al. (2013) The RNA Helicase P68 (DDX5) Is Selectively Required for the Induction of p53-Dependent p21 Expression and Cell-Cycle Arrest after DNA Damage. Oncogene, 32, 3461-3469.
https://doi.org/10.1038/onc.2012.426
[17] Yu, Z., Mersaoui, S.Y., Guitton-Sert, L., Coulombe, Y., Song, J., Masson, J., et al. (2020) DDX5 Resolves R-Loops at DNA Double-Strand Breaks to Promote DNA Repair and Avoid Chromosomal Deletions. NAR Cancer, 2, zcaa028.
https://doi.org/10.1093/narcan/zcaa028
[18] Wen, C., Cao, L., Wang, S., Xu, W., Yu, Y., Zhao, S., et al. (2024) MCM8 Interacts with DDX5 to Promote R-Loop Resolution. The EMBO Journal, 43, 3044-3071.
https://doi.org/10.1038/s44318-024-00134-0
[19] Xu, C.M., Chen, L.X., Gao, F., et al. (2019) miR-431 Suppresses Proliferation and Metastasis of Lung Cancer via down-Regulating DDX5. European Review for Medical and Pharmacological Sciences, 23, 699-707.
[20] Fuller-Pace, F.V. (2013) DEAD Box RNA Helicase Functions in Cancer. RNA Biology, 10, 121-132.
https://doi.org/10.4161/rna.23312
[21] Wang, Z., Luo, Z., Zhou, L., Li, X., Jiang, T. and Fu, E. (2015) DDX5 Promotes Proliferation and Tumorigenesis of Non-Small-Cell Lung Cancer Cells by Activating β-Catenin Signaling Pathway. Cancer Science, 106, 1303-1312.
https://doi.org/10.1111/cas.12755
[22] Xing, Z., Russon, M.P., Utturkar, S.M. and Tran, E.J. (2020) The RNA Helicase DDX5 Supports Mitochondrial Function in Small Cell Lung Cancer. Journal of Biological Chemistry, 295, 8988-8998.
https://doi.org/10.1074/jbc.ra120.012600
[23] Zhang, Y., Ye, S., Lu, W., Zhong, J., Leng, Y., Yang, T., et al. (2023) RNA Helicase Dead-Box Protein 5 Alleviates Nonalcoholic Steatohepatitis Progression via Tethering TSC Complex and Suppressing mTORC1 Signaling. Hepatology, 77, 1670-1687.
https://doi.org/10.1002/hep.32651
[24] Fu, P., Lin, L., Zhou, H., Zhao, S. and Jie, Z. (2021) Circular RNA circEGFR Regulates Tumor Progression via the miR-106a-5p/DDX5 Axis in Colorectal Cancer. Brazilian Journal of Medical and Biological Research, 54, e10940.
https://doi.org/10.1590/1414-431x2020e10940
[25] Wang, X., Yang, P., Zhang, D., Lu, M., Zhang, C. and Sun, Y. (2021) LncRNA SNHG14 Promotes Cell Proliferation and Invasion in Colorectal Cancer through Modulating miR-519b-3p/DDX5 Axis. Journal of Cancer, 12, 4958-4970.
https://doi.org/10.7150/jca.55495
[26] Tabassum, S., Basu, M. and Ghosh, M.K. (2023) The Dead-Box RNA Helicase DDX5 (p68) and β-Catenin: The Crucial Regulators of FOXM1 Gene Expression in Arbitrating Colorectal Cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1866, Article 194933.
https://doi.org/10.1016/j.bbagrm.2023.194933
[27] Wang, R., Jiao, Z., Li, R., Yue, H. and Chen, L. (2012) P68 RNA Helicase Promotes Glioma Cell Proliferation in Vitro and in Vivo via Direct Regulation of NF-κB Transcription Factor P50. Neuro-Oncology, 14, 1116-1124.
https://doi.org/10.1093/neuonc/nos131
[28] Wang, R., Bao, H., Du, W., Chen, X., Liu, H., Han, D., et al. (2018) P68 RNA Helicase Promotes Invasion of Glioma Cells through Negatively Regulating DUSP5. Cancer Science, 110, 107-117.
https://doi.org/10.1111/cas.13858
[29] Gómez-González, B., Sessa, G., Carreira, A. and Aguilera, A. (2021) A New Interaction between BRCA2 and DDX5 Promotes the Repair of DNA Breaks at Transcribed Chromatin. Molecular & Cellular Oncology, 8, Article 1910474.
https://doi.org/10.1080/23723556.2021.1910474
[30] Taniguchi, T., Iizumi, Y., Watanabe, M., Masuda, M., Morita, M., Aono, Y., et al. (2016) Resveratrol Directly Targets DDX5 Resulting in Suppression of the MTORC1 Pathway in Prostate Cancer. Cell Death & Disease, 7, e2211.
https://doi.org/10.1038/cddis.2016.114
[31] Du, C., Li, D., Li, N., Chen, L., Li, S., Yang, Y., et al. (2017) DDX5 Promotes Gastric Cancer Cell Proliferation in Vitro and in Vivo through mTOR Signaling Pathway. Scientific Reports, 7, Article No. 42876.
https://doi.org/10.1038/srep42876
[32] Liu, C., Wang, L., Jiang, Q., Zhang, J., Zhu, L., Lin, L., et al. (2019) Hepatoma-Derived Growth Factor and DDX5 Promote Carcinogenesis and Progression of Endometrial Cancer by Activating β-Catenin. Frontiers in Oncology, 9, Article 211.
https://doi.org/10.3389/fonc.2019.00211
[33] Shao, Y., Li, H., Wu, Y., Wang, X., Meng, J., Hu, Z., et al. (2023) The Feedback Loop of AURKA/DDX5/TMEM147-AS1/let-7 Drives Lipophagy to Induce Cisplatin Resistance in Epithelial Ovarian Cancer. Cancer Letters, 565, Article 216241.
https://doi.org/10.1016/j.canlet.2023.216241
[34] Mao, Y., Yang, D., He, J. and Krasna, M.J. (2016) Epidemiology of Lung Cancer. Surgical Oncology Clinics of North America, 25, 439-445.
https://doi.org/10.1016/j.soc.2016.02.001
[35] Zulfiqar, B., Farooq, A., Kanwal, S. and Asghar, K. (2022) Immunotherapy and Targeted Therapy for Lung Cancer: Current Status and Future Perspectives. Frontiers in Pharmacology, 13, Article 1035171.
https://doi.org/10.3389/fphar.2022.1035171
[36] Zou, G. and Park, J. (2023) Wnt Signaling in Liver Regeneration, Disease, and Cancer. Clinical and Molecular Hepatology, 29, 33-50.
https://doi.org/10.3350/cmh.2022.0058
[37] Huang, D.Q., El-Serag, H.B. and Loomba, R. (2020) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 18, 223-238.
https://doi.org/10.1038/s41575-020-00381-6
[38] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/s0140-6736(20)32511-3
[39] Zunica, E.R.M., Heintz, E.C., Axelrod, C.L. and Kirwan, J.P. (2022) Obesity Management in the Primary Prevention of Hepatocellular Carcinoma. Cancers, 14, Article 4051.
https://doi.org/10.3390/cancers14164051
[40] He, R., Huang, S., Lu, J., Su, L., Gao, X. and Chi, H. (2024) Unveiling the Immune Symphony: Decoding Colorectal Cancer Metastasis through Immune Interactions. Frontiers in Immunology, 15, Article 1362709.
https://doi.org/10.3389/fimmu.2024.1362709
[41] Li, N., Lu, B., Luo, C., Cai, J., Lu, M., Zhang, Y., et al. (2021) Incidence, Mortality, Survival, Risk Factor and Screening of Colorectal Cancer: A Comparison among China, Europe, and Northern America. Cancer Letters, 522, 255-268.
https://doi.org/10.1016/j.canlet.2021.09.034
[42] Wang, Z., Dan, W., Zhang, N., Fang, J. and Yang, Y. (2023) Colorectal Cancer and Gut Microbiota Studies in China. Gut Microbes, 15, Article 2236364.
https://doi.org/10.1080/19490976.2023.2236364
[43] Zou, S., Qin, B., Yang, Z., Wang, W., Zhang, J., Zhang, Y., et al. (2022) CSN6 Mediates Nucleotide Metabolism to Promote Tumor Development and Chemoresistance in Colorectal Cancer. Cancer Research, 83, 414-427.
https://doi.org/10.1158/0008-5472.can-22-2145
[44] Sun, Y., Wang, Z. and Zhou, D. (2013) Long Non-Coding RNAs as Potential Biomarkers and Therapeutic Targets for Gliomas. Medical Hypotheses, 81, 319-321.
https://doi.org/10.1016/j.mehy.2013.04.010
[45] Zottel, A., Šamec, N., Videtič Paska, A. and Jovčevska, I. (2020) Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers, 12, Article 1842.
https://doi.org/10.3390/cancers12071842
[46] Zubair, M., Wang, S. and Ali, N. (2021) Advanced Approaches to Breast Cancer Classification and Diagnosis. Frontiers in Pharmacology, 11, Article 632079.
https://doi.org/10.3389/fphar.2020.632079
[47] Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541.
https://doi.org/10.3322/caac.21754
[48] Kost, G.C., Yang, M.Y., Li, L., Zhang, Y., Liu, C., Kim, D.J., et al. (2015) A Novel Anti-Cancer Agent, 1‐(3,5-Dimethoxyphenyl)-4-[(6-Fluoro-2-Methoxyquinoxalin-3-yl)Aminocarbonyl] Piperazine (RX‐5902), Interferes with β-Catenin Function through Y593 Phospho-p68 RNA Helicase. Journal of Cellular Biochemistry, 116, 1595-1601.
https://doi.org/10.1002/jcb.25113
[49] Ling, X., Wu, W., Yan, L., Curtin, L., Farrauto, M.M., Sexton, S., et al. (2024) Clinically and Orally Compatible Formulation-Manufactured DDX5 (p68)-Targeting Molecular Glue FL118 Products Exhibit Low Toxicity but High Efficacy against Human Cancer. Journal of Pharmaceutical Analysis, 14, Article 101001.
https://doi.org/10.1016/j.jpha.2024.101001
[50] Mao, X., Guo, S., Gao, L. and Li, G. (2021) Circ-XPR1 Promotes Osteosarcoma Proliferation through Regulating the miR-214-5p/DDX5 Axis. Human Cell, 34, 122-131.
https://doi.org/10.1007/s13577-020-00412-z