一种新型咔唑基水相人工光捕获体系
A Novel Carbazolyl Aqueous Artificial Light-Harvesting System
摘要: 本文利用水溶性羧酸盐柱[5]芳烃(WH5)作为大环主体分子,与具有聚集诱导发光(AIE)活性的咔唑基衍生物(CPD)通过主–客体相互作用形成稳定的WH5-CPD复合物。该WH5-CPD复合物通过超分子自组装过程在水相中构筑了显著的WH5-CPD纳米颗粒聚集体,并展现出独特的双功能特性:一方面,基于CPD自身的AIE荧光特性,聚集后的WH5-CPD可充当初级能量供体;另一方面,凭借WH5与CPD组装形成的空腔结构实现了荧光桃红(PHB)染料分子的高效包载,最终构建出具有层级能量传递功能的WH5-CPD-PHB三元光捕获系统。实验数据表明,当体系中CPD与PHB的摩尔比优化至250:1时,实现了高达43%的荧光共振能量转移效率,同时获得23.2的天线效应值,这两个关键指标均显著优于传统光捕获体系,为开发高效水相人工光捕获系统提供了新的策略。
Abstract: In this paper, a water-soluble carboxylate-pillar [5] arene (WH5) was innovatively used as a macrocyclic host molecule, and a photoactive carbazole-based derivative (CPD) with aggregation-induced emission (AIE) ability was used as a guest molecule, which was interacted with the host to form a stable WH5-CPD complex. The complex constructs a regular nanoparticle aggregates structure in the aqueous phase through the self-assembly process, showing unique bifunctional properties: on the one hand, the aggregated WH5-CPD nanoparticles could act as a primary energy donor based on the AIE fluorescence characteristics of CPD, and on the other hand, the efficient encapsulation of fluorescent Phloxine (PHB) dye molecules was realized by the nano-cavity structure of WH5-CPD assembly, finally resulting in the successful construction of the ternary WH5-CPD-PHB light-harvesting system with hierarchical energy transfer function. The experimental data showed that when the molar ratio of CPD to PHB in the system was optimized to 250:1, the fluorescence resonance energy transfer efficiency was up to 43%, and the antenna effect value of 23.2 was obtained, which was significantly better than that of traditional light-harvesting system, providing an innovative strategy for the development of efficient aqueous artificial light-harvesting systems.
文章引用:闫振浩, 李梦行, 李家吉, 冯晋, 邵添琪, 孙广平. 一种新型咔唑基水相人工光捕获体系[J]. 材料化学前沿, 2025, 13(3): 273-280. https://doi.org/10.12677/amc.2025.133030

1. 引言

光合作用为地球上几乎所有生命提供了能量来源,它主要利用太阳提供的光能,催化二氧化碳和水制造有机物质并释放氧气,实现能量转换,对自然界生命系统具有重要意义[1] [2]。科研人员受此启发,通过荧光共振能量转移(FRET)机理开发出了多种多样的人工光捕获材料,用于模仿自然界光捕获这一过程[3] [4]。在发展之初,大部分人工光捕获体系是在共价键的基础上构筑的,为了克服疏水性荧光染料因分子堆积引发的聚集诱导荧光淬灭(ACQ),需要使组装过程在有机相中进行,这很大程度上限制了人工光捕获体系在仿生领域的应用[5]。近年来,研究人员发现通过利用非共价键组装和聚集诱导发光(AIE)供体来构筑人工光捕获体系可以很好地实现人工光捕获过程在水相中高效进行,显著促进了人工光捕获体系的发展与进步[6]-[8]。2020年,王乐勇教授课题组基于水溶性柱[5]芳烃(WP5)和Bola型二烷基铵盐衍生物(TPEDA)的主客体识别作用,构筑了两步能量传递的水相人工光捕获体系,成功实现将人工光捕获的能量应用于光催化领域,对深入理解自然界光合作用具有重要意义[9]。2024年,肖唐鑫教授课题组同样通过WP5与四苯乙烯衍生物(G)构筑了新的水相人工光捕获体系,实现了两步能量传递,其荧光变化被成功用于指纹成像[10]。2025年,我们组通过水溶性磷酸盐柱[5]芳烃(WPP5)与丙烯腈双萘基衍生物(BND)同样构筑了一种新的水相人工光捕获体系,成功将光能用于光催化硫酚–烯烃的点击反应,实现了光能向化学能的转化[11]。由此可见,开发新型水相人工光捕获体系对人工光捕获系统的研究发展兼具理论价值与实践应用意义。

因此,本文设计合成水溶性羧酸盐柱[5]芳烃(WH5)作为主体分子,具有聚集诱导发光(AIE)性质的咔唑基衍生物(CPD)作为客体分子,两种化合物在超纯水中通过主–客体相互作用形成兼具亲水性和疏水性的WH5-CPD复合物,该WH5-CPD复合物通过疏水–亲水平衡驱动自组装过程,形成具有稳定结构的超分子纳米颗粒,并展现出显著的荧光发射特性,可作为能量供体。进一步通过包载荧光染料荧光桃红(PHB),成功构筑了WH5-CPD-PHB水相超分子人工光捕获体系(图1)。因为WH5-CPD的荧光发射光谱与PHB的紫外吸收光谱呈现高度的重叠,因此在WH5-CPD-PHB体系中可以实现高效的能量转移过程,从而显著提升光能捕获与转换效率。

Figure 1. A novel aqueous artificial light harvesting system based on carbazolyl derivatives

1. 基于咔唑基衍生物的新型水相人工光捕获体系

2. 实验部分

2.1. 试剂与仪器

1,10-二溴癸烷(99%),碳酸钾(99%),碘化钾(99%),三溴化硼(98%),氯化钠(99%),氨水(25%~30%),氢氧化钠(98%),碳酸氢钠(98%),三氟化硼(99%),4-羟基苯乙腈(98%),1,4-二甲氧基苯(99%),4-(9H-咔唑-9-基)苯甲醛(98%),多聚甲醛(99%),溴乙酸乙酯(99%),荧光桃红(98%)从上海毕得医药购买;二甲亚砜(DMSO, AR),N,N-二甲基甲酰胺(DMF, AR),无水乙腈(AR),三甲胺(AR),石油醚(AR),无水甲醇(AR),无水乙醇(AR),1,2-二氯乙烷(AR),氯仿(AR),乙酸乙酯(AR)从上海泰坦科技股份有限公司购买;使用日本Hitachi F-7000型号荧光光谱仪采集荧光数据;使用日本岛津UV-3600型号紫外光谱仪采集紫外透射率与吸收光谱数据;使用美国Brookhaven公司BI-9000AT型号粒径分析仪采集纳米颗粒粒径数据;使用英国马尔文Zetasizer Nano Z型号电位分析仪采集Zeta电位数据;使用瑞士Bruker DPX 400 MHz核磁仪采集氢谱数据。

2.2. 化合物合成

2.2.1. 客体化合物CPD合成

CPD根据我们之前报道的工作进行合成[12]。将溴–咔唑衍生物(0.2 g, 0.33 mmol)加入50 mL单口瓶中,氯仿溶解,然后加入过量三甲胺,回流搅拌过夜,浓缩得产物CPD (0.21 g, 0.31 mmol, 95%)。使用氘代二甲亚砜测氢谱,数据为:8.29 (dd, J = 22, 8 Hz, 4H),8.08 (s, 1H),7.93~7.66 (m, 5H),7.52~7.32 (m, 5H),7.11~7.07 (m, 2H),4.04 (t, J = 6.4 Hz, 2H),3.30~3.26 (m, 2H),3.05 (s, 9H),1.76~1.65 (m, 4H),1.43~1.42 (m, 2H),1.31 (s, 10H)。

2.2.2. 主体化合物WH5合成

WH5根据我们之前报道的工作合成[13]。将羧酸柱[5]芳烃(0.2 g, 0.17 mmol)加入到50 mL圆底烧瓶,然后加入过量氨水,室温搅拌10 min,浓缩得产物WH5 (0.19 g, 0.14 mmol, 79%)。使用重水测氢谱,数据为:6.72 (s, 10H),4.28 (s, 20H),3.84 (s, 10H)。

3. 结果与讨论

3.1. WH5与CPD主–客体相互作用

在完成WH5CPD的合成制备后,我们通过丁达尔效应观测与荧光光谱分析相结合的方法系统研究了二者的主–客体相互作用机制(图2) [14]。如图2所示,当WH5CPD单独溶解于水时,其水溶液均呈现澄清透明状态且仅能观察到微弱的丁达尔效应。然而当两者共同存在于水溶液中时,体系丁达尔效应强度显著提升,并伴随出现明亮的绿色荧光发射现象。上述实验结果均表明WH5CPD之间通过显著的主–客体分子识别作用发生超分子自组装,最终形成具有强光散射特性的WH5-CPD纳米聚集体。经粒径分析可知,WH5-CPD的平均粒径为386 nm,Zeta电位为−19.3 mV,说明形成的WH5-CPD纳米颗粒非常稳定(图3图4)。

Figure 2. Tyndall effect: (a) WH5, (b) CPD and (c) WH5-CPD; Fluorescence photo of (d) WH5-CPD

2. 丁达尔效应:(a) WH5,(b) CPD and (c) WH5-CPD;荧光照片:(d) WH5-CPD

Figure 3. Diameter result of WH5-CPD nanoparticles

3. WH5-CPD纳米颗粒的粒径分布图

3.2. WH5-CPD-PHB人工光捕获体系

图5所示,分别对主客体摩尔比为3:20的WH5-CPD溶液与单独的CPD溶液进行荧光光谱测试,相较于单独的CPD溶液,WH5-CPD溶液的荧光强度增强了约12.6倍。这是因为WH5CPD在水相中发生了主–客体相互作用,形成WH5-CPD后显著改变了CPD周围的亲疏水性质,并进一步诱导CPD快速聚集从而获得CPD荧光发射增强的现象。这一聚集诱导发光特性表明,WH5-CPD优异的光物理性质满足构建高效人工光捕获体系对能量供体的要求。

Figure 4. Zeta result of WH5-CPD nanoparticles

4. WH5-CPD纳米颗粒的Zeta电位图

Figure 5. Fluorescence spectra of CPD and WH5-CPD

5. CPDWH5-CPD的荧光光谱

基于荧光共振能量转移过程光谱匹配原理,我们选择紫外吸收带与WH5-CPD复合物荧光发射光谱大范围重叠的疏水性荧光染料荧光桃红PHB作为能量受体(图6(a)) [15]PHB分子可被有效负载于WH5-CPD疏水空腔中从而形成紧密复合结构,这一结构满足荧光共振能量转移的距离要求,为能量高效传递提供了结构基础。如图6(b)所示,在包载PHB以后,WH5-CPD在452 nm到545 nm之间的荧光光谱发生了显著变化。在WH5-CPD-PHB中,PHB含量越多,WH5-CPD在452 nm到545 nm之间的荧光光谱强度下降越明显,但是PHB在545 nm到650 nm之间的荧光强度却显著增强。与此同时,上述溶液对应的荧光颜色由浅绿色渐变成橙黄色(图7)。这种光谱特征与表观荧光颜色的协同变化同时证实了显著的荧光共振能量转移效应,由此成功构建了WH5-CPD-PHB高效人工光捕获体系。

3.3. WH5-CPD-PHB人工光捕获性能

为了评估WH5-CPD-PHB人工光捕获体系的光收集性能,使用荧光光谱仪分别采集WH5-CPDWH5-CPD-PHB的荧光发射光谱,并对体系的能量转移效率与天线效应计算分析[16]。如图8中荧光光谱所示,经过WH5-CPD-PHBWH5-CPD在514 nm处的荧光强度计算得到WH5-CPD-PHB的能量转移效率为43%。同时,根据WH5-CPD-PHB在567 nm处的荧光强度和WH5-CPD在567 nm处的归一化处理强度得WH5-CPD-PHB的天线效应为23.2 (图9)。

Figure 6. (a) Normalized absorption and emission spectra; (b) Fluorescence spectra of different molar ratios

6. (a) 归一化的紫外光谱图和荧光光谱图;(b) 不同供受体比例下的荧光光谱图

Figure 7. Fluorescence photos

7. 荧光照片

Figure 8. Energy transfer

8. 能量转移

Figure 9. Antenna effect

9. 天线效应

4. 结论

本文以羧酸盐柱芳烃WH5作为主体分子,咔唑衍生物CPD作为客体分子,二者在水相中通过主–客体相互作用自组装构建了WH5-CPD超分子纳米颗粒。该WH5-CPD纳米颗粒表现出显著的荧光增强效应,相比于游离CPD提升了12.6倍,所以WH5-CPD纳米颗粒可作为优异的能量供体。通过将疏水性受体荧光桃红PHB包载于纳米颗粒疏水空腔,不仅显著缩短能量供体与能量受体之间的距离,还显著促进荧光共振能量转移过程高效进行,成功构建了一种新型WH5-CPD-PHB水相人工光捕获体系。更为重要的是,当供受体摩尔比优化至250:1时,体系表现出43%的能量转移效率与23.2的天线效应值,在模拟自然光捕获领域具有潜在的应用前景。

基金项目

国家自然科学基金青年项目(No. 22401160),江苏省自然科学基金青年项目(No. BK20220601)。

NOTES

*通讯作者。

参考文献

[1] El-Khouly, M.E., El-Mohsnawy, E. and Fukuzumi, S. (2017) Solar Energy Conversion: From Natural to Artificial Photosynthesis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 31, 36-83.
https://doi.org/10.1016/j.jphotochemrev.2017.02.001
[2] Zhang, C. and Kuang, T. (2018) A New Milestone for Photoynthesis. National Science Review, 5, 444-445.
https://doi.org/10.1093/nsr/nwx087
[3] Chen, X.M., Chen X., Hou, X.F., Zhang, S., Chen, D. and Li, Q. (2023) Self-Assembled Supramolecular Artificial Light-Harvesting Nanosystems: Construction, Modulation, and Applications. Nanoscale Advances, 5, 1830-1852.
https://doi.org/10.1039/D2NA00934J
[4] Ogoshi, T., Yamafuji, D., Yamagishi, T. and Brouwer, A.M. (2013) Förster Resonance Energy Transfer by Formation of a Mechanically Interlocked [2]Rotaxane. Chemical Communications, 49, 5468-5470.
https://doi.org/10.1039/c3cc42612b
[5] Wang, Y., Han, N., Li, X., Wang, R. and Xing, L. (2022) Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water. ACS Applied Materials & Interfaces, 14, 45734-45741.
https://doi.org/10.1021/acsami.2c14168
[6] Sun, G., Li, M., Cai, L., Wang, D., Cui Y., Hu, Y., Sun, T., Zhu, J. and Tang, Y. (2023) Water-Soluble Phosphate-pillar[5]Arene (WPP5)-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation. Journal of Colloid and Interface Science, 641, 803-811.
https://doi.org/10.1016/j.jcis.2023.03.109
[7] Zhang, D., Yu, W., Li, S., Xia, Y., Li, X., Li, Y. and Yi, T. (2021) Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis. Journal of the American Chemical Society, 143, 1313-1317.
https://doi.org/10.1021/jacs.0c12522
[8] Li, M. (2024) A Novel Naphthalenyl-Phenyl-Acrylonitrile-Based Aqueous Artificial Light-Harvesting System. Journal of Organic Chemistry Research, 12, 439-445.
https://doi.org/10.12677/jocr.2024.123041
[9] Hao, M., Sun, G., Zuo, M., Xu, Z., Chen, Y., Hu, X., et al. (2019) A Supramolecular Artificial Light‐Harvesting System with Two‐Step Sequential Energy Transfer for Photochemical Catalysis. Angewandte Chemie International Edition, 59, 10095-10100.
https://doi.org/10.1002/anie.201912654
[10] Zhang, Q., Cui, F., Dang, X., Wang, Q., Li, Z., Sun, X., et al. (2024) Supramolecular Sequential Light‐Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging. ChemistryA European Journal, 30, e202401426.
https://doi.org/10.1002/chem.202401426
[11] Sun, G., Li, M., Li, J., Feng, J., Yan, Z., Sun, Y., Pu, L., Zhu, J., Tang, Y. and Yao, Y. (2025) Enhanced Emission in a Supramolecular Artificial Light-Harvesting System for a Photocatalytic Thiol-Ene Reaction. Chemical Communications, 61, 6360-6363.
https://doi.org/10.1039/D5CC00339C
[12] Sun, G., Li, M., Cai, L., Zhu, J., Tang, Y. and Yao, Y. (2024) Carbazole-Based Artificial Light-Harvesting System for Photocatalytic Cross-Coupling Dehydrogenation Reaction. Chemical Communications, 60, 1412-1415.
https://doi.org/10.1039/d3cc05405e
[13] Li, M., Wang, R., Xia, Y., Fu, Y., Wu, L., Sun, G., et al. (2025) Bis‐Naphthylacrylonitrile‐Based Supramolecular Artificial Light‐Harvesting System for White Light Emission. Macromolecular Rapid Communications, 46, Article 2400929.
https://doi.org/10.1002/marc.202400929
[14] Teng, K., An, Z., Niu, L. and Yang, Q. (2023) A Supramolecular Artificial Light-Harvesting System with Excitation Energy and Electron Transfer. ACS Materials Letters, 6, 290-297.
https://doi.org/10.1021/acsmaterialslett.3c01315
[15] Ma, C., Han, N., Wang, Y., Liu, H., Wang, R., Yu, S., et al. (2023) Construction and Application of the Polyelectrolyte-Based Sequential Artificial Light-Harvesting System. Chinese Chemical Letters, 34, Article 108081.
https://doi.org/10.1016/j.cclet.2022.108081
[16] Xiao, T., Bao, C., Zhang, L., Diao, K., Ren, D., Wei, C., et al. (2022) An Artificial Light-Harvesting System Based on the ESIPT-AIE-FRET Triple Fluorescence Mechanism. Journal of Materials Chemistry A, 10, 8528-8534.
https://doi.org/10.1039/d2ta00277a