抗体药物偶联物对膀胱肿瘤的作用机制及研究进展
The Mechanism and Research Progress of Antibody-Drug Conjugates in the Treatment of Bladder Tumors
DOI: 10.12677/acm.2025.1571979, PDF, HTML, XML,   
作者: 严聪聪:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;伍耿青*:赣南医科大学第一临床医学院,江西 赣州;赣南医科大学泌尿外科研究所,江西 赣州;赣南医科大学第一附属医院泌尿外科,江西 赣州
关键词: 膀胱癌抗体药物偶联物靶向药物Bladder Cancer Antibody-Drug Conjugate Targeted Drug
摘要: 膀胱癌(BC)好发于老年男性,是一种发病率高、死亡率高、且晚期或转移性膀胱癌治疗手段少的疾病。目前主流的辅助治疗还是以顺铂为核心的化疗方案,但患者仍易复发转移,且易耐药和副作用明显,依从性差。抗体药物偶联物(ADC)是一种将单克隆抗体与细胞毒性药物通过化学连接子结合的新型靶向药物,有着精准性高、高效低毒性等特点,可以有效发挥抗癌作用,提高患者的获益率。本文就ADC的作用机制进行阐述,回顾国内外ADC在BC治疗中的应用效果及问题。
Abstract: Bladder cancer (BC), which occurs predominantly in elderly men, is a disease with high morbidity and mortality, and few treatment options for advanced or metastatic bladder cancer. At present, the mainstream adjuvant therapy is still cisplatin as the core chemotherapy regimen, but patients are still prone to recurrence and metastasis, and are prone to drug resistance, obvious side effects, and poor compliance. Antibody-drug conjugate (ADC) is a new type of targeted drug that combines monoclonal antibody with cytotoxic drug through chemical linker. ADC has the characteristics of high precision, high efficiency and low toxicity, which can effectively play an anti-cancer effect and improve the benefit rate of patients. In this paper, the mechanism of ADC is described, and the application effect and problems of ADC in the treatment of BC at home and abroad are reviewed.
文章引用:严聪聪, 伍耿青. 抗体药物偶联物对膀胱肿瘤的作用机制及研究进展[J]. 临床医学进展, 2025, 15(7): 223-232. https://doi.org/10.12677/acm.2025.1571979

1. 引言

国际癌症研究机构(IARC-WHO)的最新报告指出,BC是全球第九大最常见的癌症类型。2022年全球新发BC超过60万例,超过22万人因BC离世。肌层浸润性膀胱癌(MIBC)目前常规治疗手段包括根治性膀胱全切术辅以放化疗[1]。根治性膀胱全切术后5年仍有40%左右的患者会出现局部复发或远处转移,总生存期(OS)仅为14~15个月[2]。晚期转移性尿路上皮癌的化疗方案是以顺铂为基础的化疗方案,但患者中位生存期仅8~14个月,疗效局限或毒副反应严重,且部分患者出现耐药[3]。研究新型、安全且有效的治疗方法对于肿瘤晚期患者延长生存期、改善预后具有重要意义。随着免疫靶向药物被逐渐重视,基因组和蛋白组学得到快速发展,以程序性死亡–受体1 (PD-1)/程序性死亡–配体1 (PD-L1)抑制剂和抗体偶联药物(Antibody-drug conjugate, ADC)药物为代表的癌症精准医疗研究取得突破,相关药物不断被开发并应用于临床试验研究中[4]。国内外研究发现ADC 药物可用于UC的治疗,主要包括维迪西妥单抗(Disitamab Vedotin, DV)、德曲妥珠单抗(Trastuzumab Deruxtecan, T-DXd)、维恩妥尤单抗(Enfortumab Vedotin, EV)以及戈沙妥珠单抗(Sacituzumab Govitecan, SG) [5]

ADC是一种新型靶向药物,通过特异性抗体靶向肿瘤抗原,传递细胞毒物,完成杀伤肿瘤的作用[6]。其优势包括:1) 靶向精准性:抗体特异性结合高表达抗原肿瘤细胞,降低全身副反应,减少损伤正常细胞。2) 高效低毒性:实现精准传递药物,高效作用于肿瘤细胞,正常组织的毒性反应小,减少传统化疗的副作用(如骨髓抑制、脱发),此外,ADC能够拓展治疗的窗口期,提升药物的药代动力学和药效学特性。3) 协同治疗潜力:ADC诱导的免疫原性细胞死亡(ICD)可激活抗肿瘤免疫反应,可与免疫治疗联用,增强抗肿瘤免疫反应[7]。ADC由人源化单克隆抗体、可切割/不可切割的连接子以及高效细胞毒性药物组成[8]。人源化单克隆抗体负责识别并结合肿瘤细胞,细胞毒性药物杀死肿瘤细胞,连接子作为“桥梁”将二者连接。三者结合赋予ADC靶向精准性和高效低毒性。ADC进入循环后,分布到肿瘤组织并与肿瘤表面抗原结合,然后诱导肿瘤细胞发挥内吞作用将ADC摄入胞内中,被转运到溶酶体,在酸性环境或蛋白酶作用下释放有效载荷[9]。释放的有毒载荷可通过DNA损伤或微管抑制诱导细胞凋亡,部分细胞毒物可穿透细胞膜作用于周围细胞,发挥“旁观者效应”作用。ADC可以发挥“旁观者效应”杀伤邻近抗原低表达的肿瘤细胞。膀胱癌作为高度异质性的疾病,某些ADC能够将有效载荷从抗原阳性(Ag+)肿瘤细胞扩散到邻近的抗原阴性(Ag−)肿瘤细胞,从而增强抗肿瘤活性[10]。这种效应使得ADC即使在靶抗原表达不均匀的肿瘤中也能发挥作用,因为有效载荷可以从结合了ADC的抗原阳性细胞扩散到邻近的抗原阴性细胞,进而杀死它们[11]。目前ADC治疗晚期膀胱癌的靶点主要是HER2靶点、Nectin-4靶点、TROP-2靶点等。现针对这几种ADC药物在膀胱癌治疗中的作用机制、现状和前景进行总结和展望。

2. ADC靶点及药物

2.1. HER2靶点

人表皮生长因子受体2 (HER2)是一种酪氨酸激酶受体,其过度表达或扩增可激活下游促增殖信号通路(如PI3K/AKT和MAPK),导致细胞周期异常和血管生成,已被证明在许多肿瘤中过表达,包括BC、胃癌和乳腺癌[12]。BC在所有肿瘤中HER2过表达方面排名第三,HER2表达在正常尿路上皮组织中较低或检测不到[13]。一项涉及37992名不同癌症患者的大样本研究表明,BC中HER2过表达的占比为12.4%,约6%~17%的UC患者存在HER2异常,其扩增率在转移性尿路上皮癌中可达8.5%,是ADC治疗的理想靶标[14]。代表药物主要有DV和T-DXd。

2.1.1. DV

DV是一种针对HER2的ADC药物,也是中国首个自主研发的ADC药物,由人源化抗HER2抗体(Disitamab)、可裂解连接子(MC-VC-PABC)和微管抑制剂MMAE组成[15]。其通过靶向HER2阳性肿瘤细胞,精准递送细胞毒素,达到靶向性和细胞毒性双重作用[16]。DV能够选择性地将细胞毒性药物MMAE递送到HER2阳性肿瘤细胞,并通过诱导G2/M细胞周期阻滞和细胞凋亡发挥抗癌作用[17]

一项单臂、多中心的Ⅱ期临床试验(NCT03507166)中,入组了43例一线治疗后进展、HER2过表达[免疫组织化学(IHC) 2+或3+]的局部晚期或转移性尿路上皮癌(mUC)患者,每2周一次,以2.0 mg/kg的剂量静脉输注,直至疾病进展或不可耐受[18]。随访20.3个月后,客观缓解率(ORR)为51.2%,疾病控制率(DCR)为90.7%,中位无进展生存期(PFS)和总生存期(OS)分别为6.9个月和13.9个月。最常见的治疗相关不良事件(TRAE)是感觉减退(60.5%)、脱发(55.8%) 和白细胞减少(55.8%)。58%患者出现3级TRAE,包括感觉减退(23.3%)和中性粒细胞减少(14.0%),未发生4级或5级TRAE。

DV联合PD-1抑制剂治疗,可发挥协同治疗潜力,增强抗肿瘤免疫反应。在一项包含38例患者的多中心、回顾性临床研究中,8例接受了DV单药治疗,30例接受了联合治疗[19]。随访10.6个月后,ORR为63.2%,DCR为89.5%,PFS为8.2个月,6个月PFS率为63.2%,12个月PFS率为34.1%,12个月OS率为76.7%。发生率超过30%的TRAE包括贫血(71.1%)、厌食(57.9%)、虚弱(52.6%)、感觉减退(52.6%)、骨髓抑制(47.4%)、脱发(47.4%)、恶心(44.7%)、蛋白尿(36.8%)、呕吐(34.2%)和低蛋白血症(31.6%)。

一项开放的Ib/Ⅱ期临床研究中纳入41例HER2阳性的尿路上皮癌患者,包括初治和经治人群,每2周一次给药DV 2.0 mg/kg和特瑞普利单抗3.0 mg/kg [20]。其ORR达73.2%,其中完全缓解率(CR) 14.6%;中位PFS为9.3个月,中位OS为33.1个月。最常见的TRAE包括贫血(71.1%)、厌食(57.9%)、虚弱(52.6%)、感觉减退(52.6%)、骨髓抑制(47.4%)、脱发(47.4%)、恶心(44.7%)、蛋白尿(36.8%)、呕吐(34.2%)和低白蛋白血症(31.6%)。没有患者经历 ≥ 3级的TRAE。1例患者发生了与特瑞普利单抗相关的皮疹。

DV的膀胱给药显示出抗肿瘤功效,可以有效抑制肿瘤生长。国内团队通过免疫组织化学、细胞学实验、动物实验、类器官建模等实验,发现DV对BCa细胞系和类器官的疗效与肿瘤细胞的HER2表达水平正相关,证明了DV的膀胱给药在高HER2表达的人BCa细胞中显示出比目前的膀胱内化疗药物更好的抗肿瘤功效,膀胱内给药耐受性良好,在治疗剂量下未检测到局部或全身毒性[21]。针对卡介苗(BCG)治疗失败或无反应的NMIBC患者,DV膀胱给药有助于改善NMIBC特别是HER2高表达患者的临床治疗现状,这是一种保留膀胱的重要手段。

DV表现出良好的疗效和可控的安全性,通过FDA认证,可用于耐受铂类化疗且HER2过表达的转移性尿路上皮癌的二线治疗。

2.1.2. T-DXd

T-DXd同样是一种针对HER2的ADC药物。T-DXd由人源化抗HER2单克隆抗体、特异性四肽、DXd (拓扑异构酶I抑制剂)组成,目前主要应用于HER2阳性的转移性乳腺癌患者[22]。一项包含41例HER2阳性的晚期膀胱癌患者的II期临床试验(NCT04482309)中,T-DXd以每3周一次,5.4 mg/kg给药,随访时间为12.75个月,使用T-DXd的ORR达39.0%,其中HER2 IHC 3+表达的患者(n = 16)中ORR达56.3%。最常见的TRAE包括恶心(51.2%)、贫血(29.3%)、腹泻(31.7%)、乏力(26.8%)、呕吐(14.6%)、骨髓抑制(26.8%)、食欲下降(19.5%)、虚弱(7.3)、脱发(12.2%)、血小板减少(14.6%) [23]。需要注意的是其他研究表明约有16%病人出现间质性肺肺炎,且部分病例进展为致死性肺损伤[24] [25]

这表明HER2阳性的膀胱癌患者能从中受益。在2024年4月T-DXd被FDA加速批准用于不可切除或转移性HER2阳性(IHC3+)实体肿瘤且已接受过全身治疗、无其他令人满意的治疗选择的成年患者。

2.2. Nectin-4靶点

Nectin-4是一种跨膜细胞黏附分子,参与细胞间连接和信号传导,在90%的尿路上皮癌中高表达,与肿瘤侵袭性和不良预后相关[26]。Nectin-4高表达会促进肿瘤细胞增殖分化、血管生成、淋巴管生成及淋巴转移,提示不良预后[27]。在缺氧条件下,Nectin-4胞外结构域被解整合素样金属蛋白酶17和10 (ADAM17和ADAM10)裂解。Nectin-4胞外结构域与内皮整合素-β4相互作用并通过Src、PI3K、AKT和iNOS等信号通路激活肿瘤血管生成[28]。此外,Nectin-4胞外结构域诱导CXCR4表达。CXCR4会吸引淋巴管内皮上的CXCL12。CXCR4/CXC12轴刺激 VEGF-C和LYVE-1促进淋巴管内皮细胞生长和迁移[29]。因其广泛表达和高特异性,成为ADC药物的重要靶点。主要代表药物为Enfortumab Vedotin (恩诺单抗,EV)。

EV

EV是一种作用于Nectin-4靶点的抗体偶联药物,由抗Nectin-4单克隆抗体(人源化IgG1)、特异性四肽连接子、MMAE组成[30]。EV靶向肿瘤细胞表面的Nectin-4抗原,阻断抗原激活的PI3K/Akt信号通路,导致细胞周期阻滞和凋亡,延长患者的总生存期,降低了死亡风险[31]

一项III期EV-301临床研究(NCT03474107)将608例接受过铂类化疗和免疫治疗的晚期尿路上皮癌患者平均随机分配至EV组或化疗组,中位随访时间为11.1个月,相比化疗组,EV组中位OS较化疗组明显提高(12.9个月VS 9.0个月),死亡风险降低30% [32]。EV组的中位PFS也比化疗组长(5.55个月VS 3.71个月)。EV组的总体缓解率和CR高于化疗组(40.6% VS 17.9%,4.9% VS 2.7%)。两组相关不良事件的发生率和3级及以上事件的发生率相似。

EV联用PD-1抑制剂如Pembrolizumab可以显著延长患者无进展生存期和总生存期,降低死亡风险。一项包含886名既往未经治疗的局部晚期或转移性尿路上皮癌患者的III期临床研究(NCT04223856)中,研究者将患者平均随机分配为接受为期3周的EV-Pembrolizumab (EV-P组)和吉西他滨 + 顺铂或卡铂(化疗组),中位生存随访时间为17.2个月[33]。EV-P组较化疗组有着更长的PFS和OS (12.5个月VS 6.3个月,中位OS为31.5个月VS 16.1个月),EV-P组的死亡风险比化疗组低 53%。55.9% EV-P组患者和69.5%化疗组患者发生了≥3级TRAE。EV-P组最常见的TRAE是周围感觉神经病变(50.0%)、瘙痒(39.8%)和脱发(33.2%);化疗组最常见的此类事件是贫血(56.6%)、中性粒细胞减少(41.6%)和恶心(38.8%)。

EV-104是一项I期、开放的、多中心、剂量递增和剂量扩展研究(NCT05014139),旨在评估膀胱灌注EV治疗BCG无反应NMIBC的安全性、耐受性、药代动力学和抗肿瘤活性,目前该试验还处于研究当中。

2.3. TROP-2靶点

肿瘤相关钙信号传感器2 (TROP-2)是一种在尿路上皮癌细胞表面高表达的I型跨膜糖蛋白,通过调节钙信号和细胞周期促进肿瘤增殖、迁移和转移,被认为是癌症预后不良的标志物[26]。作用于TROP-2靶点的ADC如戈沙妥珠单抗(Sacituzumab Govitecan, SG)有着优秀的抗癌作用。

SG

SG是由抗TROP-2人源化单克隆抗体(hRS7)、CL2A、拓扑异构酶I抑制剂(SN-38)三部分组成[34]。CL2A和SN-38在肿瘤细胞中释放后,可通过胞质溶胶扩散到肿瘤周围细胞,释放有效载荷,发挥旁观者效应,增强药物的抗癌作用[35]

一项单臂、开放的、多中心Ⅰ/Ⅱ期试验(NCT01631552)中,45例至少一种既往标准治疗方案后复发或难治的转移性尿路上皮癌患者在每21天1周期的第1天和第8天接受静脉注射SG,直至疾病进展或不可耐受[36]。结果显示,ORR达28.9%,OS为16.8个月。CR率2%,主要不良事件为 ≥ 3级中性粒细胞减少症、贫血、腹泻和发热性中性粒细胞减少。

TROPHY-U-01是一项多队列、开放的II期研究(NCT03547973),旨在评估SG在不可切除的局部晚期或转移性UC (mUC)患者中的疗效和安全性[37]。队列1入组了113名接受过铂类和CPI治疗后发生疾病进展的mUC患者,在21天周期的第1天和第8天接受SG 10 mg/kg,直至疾病进展或不可耐受[37]。中位随访时间为9.1个月,结果显示,ORR为27%,CR为5.3%,77%的患者观察到肿瘤缩小且多数是持久性的;中位缓解持续时间为7.2个月,中位PFS、OS分别为5.4、10.9个月。应用SG治疗与该人群中单药化疗的效果相比具有显著优势,单药化疗的ORR约为10%,PFS为2~3个月,OS为7~8个月。最常见的≥3级TRAE为中性粒细胞减少(35%)、白细胞减少(18%)、贫血(14%)、腹泻(10%)和中性粒细胞减少性发热(10%)。对于经过多线治疗的mUC患者,包括内脏转移、既往EV治疗和既往铂类(新)辅助治疗的患者,SG治疗仍然有较高的缓解率且未观察到新的安全信号。队列2入组了38名铂类不耐受且既往接受过免疫检查点抑制剂(ICIs)治疗发生进展的mUC患者,在21天治疗周期中,第1天和第8天接受10 mg/kg的SG治疗[38]。中位随访时间为9.3个月,结果显示ORR为32%,中位DOR为5.6个月;中位PFS为5.6个月。中位缓解时间为1.4个月,中位OS为13.5个月。68%患者发生 ≥ 3级TRAE;最常见的是中性粒细胞减少症(34%)、贫血(21%)、白细胞减少症(18%)、疲劳(18%)和腹泻(16%)。TRAE导致的停药率为18%。未发生治疗相关的死亡事件。这提示了在铂类不耐受且既往接受过CPI治疗发生进展的患者中,SG单药治疗具有较高的缓解率,且总体安全可控。队列3入组了41名接受过铂类药物而发生进展的mUC患者[38]。患者在21天周期内,第1天和第8天接受10 mg/kg的SG治疗,且D1接受帕博利珠单抗200 mg,治疗持续时间 ≤ 2年。研究显示接受治疗的患者中,中位随访时间为12.5个月,ORR为41%,临床获益率(CBR)为46%。中位DOR为11.1个月;中位PFS为5.3个月。中位至缓解时间为1.4个月,中位OS为12.7个月。61%的患者发生≥3级TRAE;最常见是中性粒细胞减少症(37%)、白细胞减少症(20%)和腹泻(20%)。TRAEs导致的停药率为15%。未发生与治疗相关的死亡事件。该研究提示SG联合Pembro的二线治疗方案具有较高的ORR和CBR,并且安全性可控。

在一项双抗体药物偶联物(DAD) I期试验中,SG和EV被联合用于转移性尿路上皮癌[39]。该试验共入组23名接受铂类和/或免疫治疗后进展的mUC患者,SG + EV在21天周期的第1天和第8天给药,直至进展或不可接受的毒性。中位随访14个月,客观缓解率为70%,CR率13%。SG新的组合方式的临床试验正在进行中,SG将使不同耐药的局部晚期UC患者获益。

有研究指出SG输注反应的发生率为37%,其中1%为3~4级输注反应,故需提前给予苯海拉明以及抗组胺药物进行预处理,必要时可给予糖皮质激素[40]

3. ADC药物耐药机制及策略

ADC药物的作用机制大致可以分为这五步:1) ADC药物在循环中与靶细胞上的抗原结合;2) ADC-抗原复合物被内吞进入靶细胞内部形成一个包含ADC-抗原复合物的内体;3) ADC药物与溶酶体结合,复合物在酸性环境下被裂解;4) 细胞毒性载荷(药物)释放并发挥作用;5) 靶细胞凋亡[41]。与所有抗癌疗法一样,耐药性是ADC临床应用的一个重大难题。ADC的耐药机制很复杂,并且受各种因素的影响。ADC的耐药机制可能与抗原表达异常或异质性、药物内吞与溶酶体加工障碍、药物载荷相关耐药、旁路信号通路激活、肿瘤微环境的影响有关[42]

3.1. ADC药物耐药机制

抗原表达异常或异质性:肿瘤细胞表面靶抗原(如HER2、TROP2)下调、抗原表达缺失或抗原突变可能会影响单克隆抗体识别ADC与靶抗原的结合,是常见的耐药原因[43]。例如,HER2阳性乳腺癌患者接受T-DM1治疗后,HER2表达可能因p95HER2截短体或MUC4分子遮蔽而减少,导致药物结合能力下降[44]。其次,靶抗原与其他受体(如HER3)形成异二聚体(如NRG-1β诱导HER2/HER3二聚化),可阻断ADC内吞或激活下游信号通路,导致耐药,联合帕妥珠单抗可阻断此类二聚化,恢复ADC敏感性[45]。此外,HER2表达不均匀的肿瘤对ADC反应较差,新辅助治疗中异质性患者病理完全缓解率(pCR)显著降低[46]

药物内化与溶酶体加工障碍:ADC是通过溶酶体中的化学或酶裂解功能释放细胞毒性有效载荷,因此溶酶体的功能异常也会导致ADC药物的耐药性[47]。ADC依赖网格蛋白介导的内吞作用进入细胞,但某些肿瘤细胞(如HER2阳性乳腺癌)通过小窝蛋白(CAV1)包被的囊泡内吞,导致内吞效率降低[43]。CAV1高表达与T-DM1耐药相关。溶酶体pH异常或功能缺陷(如溶酶体酶活性下降)会阻碍载药释放。例如,溶酶体pH升高会抑制蛋白水解酶活性,使T-DM1代谢产物滞留于溶酶体中,影响药物载荷的释放[47]。溶酶体膜转运蛋白(如SLC46A3)异常会影响载药从溶酶体向细胞质转运。SLC46A3表达缺失可导致载药在溶酶体内蓄积,降低疗效[48]

药物载荷相关耐药:药物外排转运蛋白的过表达也会导致ADC药物出现耐药性。ATP结合盒(ABC)转运蛋白如PgP/MDR1 (97-99)过表达可将载药泵出细胞外,导致耐药[49]。例如,T-DM1耐药细胞中ABCC2/ABCG2表达升高,加速药物从细胞中的排出。抑制外排泵或更换载药类型(如拓扑异构酶抑制剂)可克服耐药[49]。靶向载药的基因突变(如TOP1突变对SG耐药、TROP2突变对TROP2靶向ADC耐药)会直接削弱载药作用[50]。有研究显示,T-DXd耐药患者中SLX4突变可能与载药释放障碍相关[51]

旁路信号通路激活:肿瘤细胞通过上调Bcl-2家族蛋白或激活PI3K/AKT/mTOR通路逃逸凋亡[52]。联合Bcl-2抑制剂(如ABT-263)或PI3K抑制剂可增强ADC疗效[52]。肿瘤微环境中其他受体(如MET、IGF-1R)的激活可绕过ADC靶点信号,导致耐药,联合MET抑制剂可能恢复ADC敏感性[53]

肿瘤微环境的影响:肿瘤相关成纤维细胞(CAFs)分泌的免疫抑制因子(如TGF-β)会抑制ADC的ADCC/ADCP效应。通过ICIs (如PD-1抗体)重塑免疫微环境可增强疗效[54]

3.2. 克服耐药策略

3.2.1. 优化特异性抗体、连接子及药物载荷

采取双特异性或双对位抗体设计方式来增加细胞对ADC 药物的内吞作用,双对位ADC与同一靶抗原上的两个不同的、不重叠的表位结合,从而使更多受体簇集并增强内吞作用,增强溶酶体运输和降解,减少抗原逃逸风险,如HER2双表位ADC (JSKN003)或EGFR × HER3双抗ADC (BL-B01D1) [55]

开发可裂解连接子(如DXd平台)或高旁观者效应载药,发挥“旁观者效应”,增强杀伤邻近抗原阴性细胞的能力[56]。此外,由于许多ADC使用溶酶体的内化降解途径来传递有效载荷,恢复溶酶体功能可能会克服耐药性,并提高其有效性。有研究结果表明,控制溶酶体的pH值有可能改善曲妥珠单抗和其他ADC 的抗肿瘤特性[47]

使用新有效载荷可以有效避免出现耐药现象:如吡咯并苯二氮䓬结构类(PBD)与癌细胞DNA的特定靶标结合并交联,可以抗肿瘤增殖而不会使其DNA螺旋变形,避免耐药[57]。Thailanstatin A和Spliceostatin C是一种新型的超强效的真核RNA剪接抑制剂,通过干扰pre-mRNA剪接过程发挥抗肿瘤活性,可以特异性杀死表达高和低抗原阳性的肿瘤细胞,但不靶向抗原阴性细胞,降低耐药性[58]

3.2.2. 联合用药

ADC与TKI类药物的联合:如T-DM1联合奈拉替尼,通过双重阻断HER2信号增强疗效,双重HER2阻断比单药治疗更有效,酪氨酸激酶抑制剂(TKIs)可结合HER2的胞内结构域[59]。TKI和ADC联合可改善受体内化,增加ADC有效载荷的摄取,克服与HER2表达减少相关的耐药性。在一项剂量递增研究中[59],T-DM1基础上联合奈拉替尼显示出初步临床疗效,19例可评价患者中有12例(63%)达到客观缓解。此外前文提到p95HER2高表达会导致对T-DM1产生耐药,该研究中2例p95HER2高表达患者使用联合方案获得完全缓解。

ADC与ICIs协同增效:ADC杀死肿瘤细胞过程中,可以促进树突状细胞(DCs)成熟,成熟树突状细胞迁移到淋巴结中,激活未成熟的T细胞,随后激活的T细胞识别杀伤肿瘤细胞。此外ADC能够通过ADCC、ADCP和CDC效应激活免疫系统[60]。再结合ICIs自身机制,联合方案可发挥协同作用在克服或预防耐药性中潜力巨大。

4. 小结与展望

ADC通过“魔法子弹”机制革新了肿瘤治疗,为经一线化疗方案失败或无法耐受的患者提供了非常有前景的治疗手段。已获批的EV、T-DXd等药物的各项临床试验表明,ADC在局部晚期或转移性尿路上皮癌的后线治疗中可以使患者受益,延长生存时间。国内DV和EV获得CSCO 2024指南推荐。EV被推荐作为转移性尿路上皮癌中II级推荐进入一线治疗策略中。DV被作为转移性尿路上皮癌中II级推荐进入二线治疗。ADC的临床研究和应用仍面对许多挑战。ADC在临床试验及应用中出现的药物不良反应如皮肤黏膜、神经系统、消化系统及肺部等常见不良反应,提示需重视药物不良事件的发现和管理。ADC耐药机制涉及抗原、内吞、载药、微环境等多环节,未来需结合多组学技术深入解析耐药动态,同时探索新型ADC设计及联合策略。临床实践中,耐药后应通过基因检测和生物标志物筛选,选择序贯ADC或联合治疗方案,以延长患者生存获益。相信更多的ADC被开发出来进入临床试验研究,未来这些问题都将得到妥善解决,更多病人能从中获益。

NOTES

*通讯作者。

参考文献

[1] Dobruch, J. and Oszczudłowski, M. (2021) Bladder Cancer: Current Challenges and Future Directions. Medicina, 57, Article 749.
https://doi.org/10.3390/medicina57080749
[2] Lopez-Beltran, A., Cookson, M.S., Guercio, B.J., et al. (2024) Advances in Diagnosis and Treatment of Bladder Cancer. BMJ, 384, e076743.
https://doi.org/10.1136/bmj-2023-076743
[3] von der Maase, H., Sengelov, L., Roberts, J.T., Ricci, S., Dogliotti, L., Oliver, T., et al. (2005) Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, with Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. Journal of Clinical Oncology, 23, 4602-4608.
https://doi.org/10.1200/jco.2005.07.757
[4] Tran, L., Xiao, J., Agarwal, N., Duex, J.E. and Theodorescu, D. (2021) Advances in Bladder Cancer Biology and Therapy. Nature Reviews Cancer, 21, 104-121.
https://doi.org/10.1038/s41568-020-00313-1
[5] Thomas, J., Sun, M., Getz, T., Ho, B., Nauseef, J.T. and Tagawa, S.T. (2023) Antibody-Drug Conjugates for Urothelial Carcinoma. Urologic Oncology: Seminars and Original Investigations, 41, 420-428.
https://doi.org/10.1016/j.urolonc.2023.06.006
[6] Nguyen, T.D., Bordeau, B.M. and Balthasar, J.P. (2023) Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers, 15, Article 713.
https://doi.org/10.3390/cancers15030713
[7] Fu, Z., Li, S., Han, S., Shi, C. and Zhang, Y. (2022) Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 93.
https://doi.org/10.1038/s41392-022-00947-7
[8] Maecker, H., Jonnalagadda, V., Bhakta, S., Jammalamadaka, V. and Junutula, J.R. (2023) Exploration of the Antibody-Drug Conjugate Clinical Landscape. mAbs, 15, Article 2229101.
https://doi.org/10.1080/19420862.2023.2229101
[9] Hammood, M., Craig, A. and Leyton, J. (2021) Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)—A Necessity for Future ADC Research and Development. Pharmaceuticals, 14, Article 674.
https://doi.org/10.3390/ph14070674
[10] Samantasinghar, A., Sunildutt, N.P., Ahmed, F., Soomro, A.M., Salih, A.R.C., Parihar, P., et al. (2023) A Comprehensive Review of Key Factors Affecting the Efficacy of Antibody Drug Conjugate. Biomedicine & Pharmacotherapy, 161, Article 114408.
https://doi.org/10.1016/j.biopha.2023.114408
[11] Kang, H.W., Kim, W., Choi, W. and Yun, S.J. (2020) Tumor Heterogeneity in Muscle-Invasive Bladder Cancer. Translational Andrology and Urology, 9, 2866-2880.
https://doi.org/10.21037/tau.2020.03.13
[12] Cheng, X. (2024) A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes, 15, Article 903.
https://doi.org/10.3390/genes15070903
[13] Sanguedolce, F., Zanelli, M., Palicelli, A., Bisagni, A., Zizzo, M., Ascani, S., et al. (2023) HER2 Expression in Bladder Cancer: A Focused View on Its Diagnostic, Prognostic, and Predictive Role. International Journal of Molecular Sciences, 24, Article 3720.
https://doi.org/10.3390/ijms24043720
[14] Yan, M., Schwaederle, M., Arguello, D., Millis, S.Z., Gatalica, Z. and Kurzrock, R. (2015) HER2 Expression Status in Diverse Cancers: Review of Results from 37,992 Patients. Cancer and Metastasis Reviews, 34, 157-164.
https://doi.org/10.1007/s10555-015-9552-6
[15] Deeks, E.D. (2021) Disitamab Vedotin: First Approval. Drugs, 81, 1929-1935.
https://doi.org/10.1007/s40265-021-01614-x
[16] Yu, J., Fang, T., Yun, C., et al. (2022) Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Frontiers in Molecular Biosciences, 9, Article 847835.
https://doi.org/10.3389/fmolb.2022.847835
[17] Domb, C., Garcia, J.A., Barata, P.C., Mendiratta, P., Rao, S. and Brown, J.R. (2024) Systematic Review of Recent Advancements in Antibody-Drug and Bicycle Toxin Conjugates for the Treatment of Urothelial Cancer. Therapeutic Advances in Urology, 16, 1-23.
https://doi.org/10.1177/17562872241249073
[18] Sheng, X., Yan, X., Wang, L., Shi, Y., Yao, X., Luo, H., et al. (2021) Open-Label, Multicenter, Phase II Study of RC48-ADC, a HER2-Targeting Antibody-Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial Carcinoma. Clinical Cancer Research, 27, 43-51.
https://doi.org/10.1158/1078-0432.ccr-20-2488
[19] Xu, J., Zhang, H., Zhang, L., et al. (2023) Real-World Effectiveness and Safety of RC48-ADC alone or in Combination with PD-1 Inhibitors for Patients with Locally Advanced or Metastatic Urothelial Carcinoma: A Multicenter, Retrospective Clinical Study. Cancer Medicine, 12, 21159-21171.
https://doi.org/10.1002/cam4.6680
[20] Zhou, L., Yang, K.W., Zhang, S., et al. (2025) Disitamab Vedotin Plus Toripalimab in Patients with Locally Advanced or Metastatic Urothelial Carcinoma (RC48-C014): A Phase Ib/II Dose-Escalation and Dose-Expansion Study. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 36, 331-339.
https://doi.org/10.1016/j.annonc.2024.12.002
[21] Hong, X., Chen, X., Wang, H., Xu, Q., Xiao, K., Zhang, Y., et al. (2023) A HER2-Targeted Antibody-Drug Conjugate, RC48-ADC, Exerted Promising Antitumor Efficacy and Safety with Intravesical Instillation in Preclinical Models of Bladder Cancer. Advanced Science, 10, Article 2302377.
https://doi.org/10.1002/advs.202302377
[22] National Institute of Diabetes and Digestive and Kidney Diseases (2012) Trastuzumab Deruxtecan, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
[23] Meric-Bernstam, F., Makker, V., Oaknin, A., Oh, D., Banerjee, S., González-Martín, A., et al. (2024) Efficacy and Safety of Trastuzumab Deruxtecan in Patients with Her2-Expressing Solid Tumors: Primary Results from the DESTINY-Pantumor02 Phase II Trial. Journal of Clinical Oncology, 42, 47-58.
https://doi.org/10.1200/jco.23.02005
[24] Swain, S.M., Nishino, M., Lancaster, L.H., Li, B.T., Nicholson, A.G., Bartholmai, B.J., et al. (2022) Multidisciplinary Clinical Guidance on Trastuzumab Deruxtecan (T-DXd)-Related Interstitial Lung Disease/Pneumonitis—Focus on Proactive Monitoring, Diagnosis, and Management. Cancer Treatment Reviews, 106, Article 102378.
https://doi.org/10.1016/j.ctrv.2022.102378
[25] Tarantino, P., Modi, S., Tolaney, S.M., Cortés, J., Hamilton, E.P., Kim, S., et al. (2021) Interstitial Lung Disease Induced by Anti-ERBB2 Antibody-Drug Conjugates: A Review. JAMA Oncology, 7, 1873-1881.
https://doi.org/10.1001/jamaoncol.2021.3595
[26] Chatterjee, S., Sinha, S. and Kundu, C.N. (2021) Nectin Cell Adhesion Molecule-4 (NECTIN-4): A Potential Target for Cancer Therapy. European Journal of Pharmacology, 911, Article 174516.
https://doi.org/10.1016/j.ejphar.2021.174516
[27] Wong, J.L., Rosenberg, J.E. (2021) Targeting Nectin-4 by Antibody-Drug Conjugates for the Treatment of Urothelial Carcinoma. Expert Opinion on Biological Therapy, 21, 863-873.
https://doi.org/10.1080/14712598.2021.1929168
[28] Liu, Y., Han, X., Li, L., Zhang, Y., Huang, X., Li, G., et al. (2021) Role of Nectin-4 Protein in Cancer (Review). International Journal of Oncology, 59, Article No. 93.
https://doi.org/10.3892/ijo.2021.5273
[29] Bouleftour, W., Sargos, P., Magne, N. (2023) Nectin-4: A Tumor Cell Target and Status of Inhibitor Development. Current Oncology Reports, 25, 181-188.
https://doi.org/10.1007/s11912-023-01360-1
[30] National Institute of Diabetes and Digestive and Kidney Diseases (2012) Enfortumab Vedotin. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
[31] Alt, M., Stecca, C., Tobin, S., et al. (2020) Enfortumab Vedotin in Urothelial Cancer. Therapeutic Advances in Urology, 12, 1-10.
https://doi.org/10.1177/1756287220980192
[32] Powles, T., Rosenberg, J.E., Sonpavde, G.P., et al. (2021) Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. The New England Journal of Medicine, 384, 1125-1135.
https://doi.org/10.1056/NEJMoa2035807
[33] Powles, T., Valderrama, B.P., Gupta, S., Bedke, J., Kikuchi, E., Hoffman-Censits, J., et al. (2024) Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. New England Journal of Medicine, 390, 875-888.
https://doi.org/10.1056/nejmoa2312117
[34] National Institute of Diabetes and Digestive and Kidney Diseases (2012) Sacituzumab Govitecan, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
[35] Veeraballi, S., Khawar, Z., Aslam, H.M. and Muzaffar, M. (2022) Role of Sacituzumab Govitecan in Solid Tumors. Journal of Oncology Pharmacy Practice, 28, 1617-1623.
https://doi.org/10.1177/10781552221092359
[36] Bardia, A., Messersmith, W.A., Kio, E.A., Berlin, J.D., Vahdat, L., Masters, G.A., et al. (2021) Sacituzumab Govitecan, a Trop-2-Directed Antibody-Drug Conjugate, for Patients with Epithelial Cancer: Final Safety and Efficacy Results from the Phase I/II IMMU-132-01 Basket Trial. Annals of Oncology, 32, 746-756.
https://doi.org/10.1016/j.annonc.2021.03.005
[37] Tagawa, S.T., Balar, A.V., Petrylak, D.P., Kalebasty, A.R., Loriot, Y., Fléchon, A., et al. (2021) TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing after Platinum-Based Chemotherapy and Checkpoint Inhibitors. Journal of Clinical Oncology, 39, 2474-2485.
https://doi.org/10.1200/jco.20.03489
[38] Kapoor, A., Niazi, T., Noonan, K., Rendon, R.A., Alimohamed, N., Kassouf, W., et al. (2022) 2022 American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium: Meeting Highlights. Canadian Urological Association Journal, 16, 125-131.
https://doi.org/10.5489/cuaj.7875
[39] McGregor, B.A., Sonpavde, G.P., Kwak, L., et al. (2024) The Double Antibody Drug Conjugate (DAD) Phase I Trial: Sacituzumab Govitecan Plus Enfortumab Vedotin for Metastatic Urothelial Carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 35, 91-97.
https://doi.org/10.1016/j.annonc.2023.09.3114
[40] Schlam, I., Tarantino, P. and Tolaney, S.M. (2023) Managing Adverse Events of Sacituzumab Govitecan. Expert Opinion on Biological Therapy, 23, 1103-1111.
https://doi.org/10.1080/14712598.2023.2267975
[41] Tsuchikama, K., Anami, Y., Ha, S.Y.Y., et al. (2024) Exploring the Next Generation of Antibody-Drug Conjugates. Nature Reviews. Clinical Oncology, 21, 203-223.
https://doi.org/10.1038/s41571-023-00850-2
[42] Khoury, R., Saleh, K., Khalife, N., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. International Journal of Molecular Sciences, 24, Article 9674.
https://doi.org/10.3390/ijms24119674
[43] Chen, Y., Xu, Y., Shao, Z. and Yu, K. (2022) Resistance to Antibody-Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Communications, 43, 297-337.
https://doi.org/10.1002/cac2.12387
[44] Pupa, S.M., Ligorio, F., Cancila, V., Franceschini, A., Tripodo, C., Vernieri, C., et al. (2021) HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers, 13, Article 4778.
https://doi.org/10.3390/cancers13194778
[45] Phillips, G.D.L., Fields, C.T., Li, G., Dowbenko, D., Schaefer, G., Miller, K., et al. (2014) Dual Targeting of HER2-Positive Cancer with Trastuzumab Emtansine and Pertuzumab: Critical Role for Neuregulin Blockade in Antitumor Response to Combination Therapy. Clinical Cancer Research, 20, 456-468.
https://doi.org/10.1158/1078-0432.ccr-13-0358
[46] Filho, O.M., Viale, G., Stein, S., et al. (2021) Impact of HER2 Heterogeneity on Treatment Response of Early-Stage HER2-Positive Breast Cancer: Phase II Neoadjuvant Clinical Trial of T-DM1 Combined with Pertuzumab. Cancer Dis-covery, 11, 2474-2487.
https://doi.org/10.1158/2159-8290.CD-20-1557
[47] Ríos-Luci, C., García-Alonso, S., Díaz-Rodríguez, E., Nadal-Serrano, M., Arribas, J., Ocaña, A., et al. (2017) Resistance to the Antibody-Drug Conjugate T-DM1 Is Based in a Reduction in Lysosomal Proteolytic Activity. Cancer Research, 77, 4639-4651.
https://doi.org/10.1158/0008-5472.can-16-3127
[48] Hamblett, K.J., Jacob, A.P., Gurgel, J.L., Tometsko, M.E., Rock, B.M., Patel, S.K., et al. (2015) SLC46A3 Is Required to Transport Catabolites of Noncleavable Antibody Maytansine Conjugates from the Lysosome to the Cytoplasm. Cancer Research, 75, 5329-5340.
https://doi.org/10.1158/0008-5472.can-15-1610
[49] Abelman, R.O., Wu, B., Spring, L.M., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. Cancers, 15, Article 1278.
https://doi.org/10.3390/cancers15041278
[50] Coates, J.T., Sun, S., Leshchiner, I., et al. (2021) Parallel Genomic Alterations of Antigen and Payload Targets Mediate Polyclonal Acquired Clinical Resistance to Sacituzumab Govitecan in Triple-Negative Breast Cancer. Cancer Discovery, 11, 2436-2445.
https://doi.org/10.1158/2159-8290.CD-21-0702
[51] Guidi, L., Pellizzari, G., Tarantino, P., et al. (2023) Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers, 15, Article 1130.
https://doi.org/10.3390/cancers15041130
[52] Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/Akt/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138.
https://doi.org/10.1186/s12943-023-01827-6
[53] Wang, P., Mak, V.C. and Cheung, L.W. (2023) Drugging IGF-1R in Cancer: New Insights and Emerging Opportunities. Genes & Diseases, 10, 199-211.
https://doi.org/10.1016/j.gendis.2022.03.002
[54] Katoh, M. (2017) Antibody-Drug Conjugate Targeting Protein Tyrosine Kinase 7, a Receptor Tyrosine Kinase-Like Molecule Involved in WNT and Vascular Endothelial Growth Factor Signaling: Effects on Cancer Stem Cells, Tumor Microenvironment and Whole-Body Homeostasis. Annals of Translational Medicine, 5, 462-462.
https://doi.org/10.21037/atm.2017.09.11
[55] Li, J.Y., Perry, S.R., Muniz-Medina, V., Wang, X., Wetzel, L.K., Rebelatto, M.C., et al. (2019) A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell, 35, 948-949.
https://doi.org/10.1016/j.ccell.2019.05.010
[56] Giugliano, F., Corti, C., Tarantino, P., Michelini, F. and Curigliano, G. (2022) Bystander Effect of Antibody-Drug Conjugates: Fact or Fiction? Current Oncology Reports, 24, 809-817.
https://doi.org/10.1007/s11912-022-01266-4
[57] Hartley, J.A. (2020) Antibody-Drug Conjugates (ADCs) Delivering Pyrrolobenzodiazepine (PBD) Dimers for Cancer Therapy. Expert Opinion on Biological Therapy, 21, 931-943.
https://doi.org/10.1080/14712598.2020.1776255
[58] Li, C., Shi, K., Zhao, S., Liu, J., Zhai, Q., Hou, X., et al. (2024) Natural-Source Payloads Used in the Conjugated Drugs Architecture for Cancer Therapy: Recent Advances and Future Directions. Pharmacological Research, 207, Article 107341.
https://doi.org/10.1016/j.phrs.2024.107341
[59] Abraham, J., Montero, A.J., Jankowitz, R.C., et al. (2019) Safety and Efficacy of T-DM1 Plus Neratinib in Patients with Metastatic HER2-Positive Breast Cancer: NSABP Foundation Trial FB-10. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37, 2601-2609.
https://doi.org/10.1200/JCO.19.00858
[60] Zhang, L., Yan, Y., Gao, Y., Chen, Y., Yu, J., Ren, N., et al. (2024) Antibody-Drug Conjugates and Immune Checkpoint Inhibitors in Cancer Treatment: A Systematic Review and Meta-Analysis. Scientific Reports, 14, Article No. 22357.
https://doi.org/10.1038/s41598-024-68311-z