[1]
|
Dobruch, J. and Oszczudłowski, M. (2021) Bladder Cancer: Current Challenges and Future Directions. Medicina, 57, Article 749. https://doi.org/10.3390/medicina57080749
|
[2]
|
Lopez-Beltran, A., Cookson, M.S., Guercio, B.J., et al. (2024) Advances in Diagnosis and Treatment of Bladder Cancer. BMJ, 384, e076743. https://doi.org/10.1136/bmj-2023-076743
|
[3]
|
von der Maase, H., Sengelov, L., Roberts, J.T., Ricci, S., Dogliotti, L., Oliver, T., et al. (2005) Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, with Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients with Bladder Cancer. Journal of Clinical Oncology, 23, 4602-4608. https://doi.org/10.1200/jco.2005.07.757
|
[4]
|
Tran, L., Xiao, J., Agarwal, N., Duex, J.E. and Theodorescu, D. (2021) Advances in Bladder Cancer Biology and Therapy. Nature Reviews Cancer, 21, 104-121. https://doi.org/10.1038/s41568-020-00313-1
|
[5]
|
Thomas, J., Sun, M., Getz, T., Ho, B., Nauseef, J.T. and Tagawa, S.T. (2023) Antibody-Drug Conjugates for Urothelial Carcinoma. Urologic Oncology: Seminars and Original Investigations, 41, 420-428. https://doi.org/10.1016/j.urolonc.2023.06.006
|
[6]
|
Nguyen, T.D., Bordeau, B.M. and Balthasar, J.P. (2023) Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers, 15, Article 713. https://doi.org/10.3390/cancers15030713
|
[7]
|
Fu, Z., Li, S., Han, S., Shi, C. and Zhang, Y. (2022) Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 93. https://doi.org/10.1038/s41392-022-00947-7
|
[8]
|
Maecker, H., Jonnalagadda, V., Bhakta, S., Jammalamadaka, V. and Junutula, J.R. (2023) Exploration of the Antibody-Drug Conjugate Clinical Landscape. mAbs, 15, Article 2229101. https://doi.org/10.1080/19420862.2023.2229101
|
[9]
|
Hammood, M., Craig, A. and Leyton, J. (2021) Impact of Endocytosis Mechanisms for the Receptors Targeted by the Currently Approved Antibody-Drug Conjugates (ADCs)—A Necessity for Future ADC Research and Development. Pharmaceuticals, 14, Article 674. https://doi.org/10.3390/ph14070674
|
[10]
|
Samantasinghar, A., Sunildutt, N.P., Ahmed, F., Soomro, A.M., Salih, A.R.C., Parihar, P., et al. (2023) A Comprehensive Review of Key Factors Affecting the Efficacy of Antibody Drug Conjugate. Biomedicine & Pharmacotherapy, 161, Article 114408. https://doi.org/10.1016/j.biopha.2023.114408
|
[11]
|
Kang, H.W., Kim, W., Choi, W. and Yun, S.J. (2020) Tumor Heterogeneity in Muscle-Invasive Bladder Cancer. Translational Andrology and Urology, 9, 2866-2880. https://doi.org/10.21037/tau.2020.03.13
|
[12]
|
Cheng, X. (2024) A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes, 15, Article 903. https://doi.org/10.3390/genes15070903
|
[13]
|
Sanguedolce, F., Zanelli, M., Palicelli, A., Bisagni, A., Zizzo, M., Ascani, S., et al. (2023) HER2 Expression in Bladder Cancer: A Focused View on Its Diagnostic, Prognostic, and Predictive Role. International Journal of Molecular Sciences, 24, Article 3720. https://doi.org/10.3390/ijms24043720
|
[14]
|
Yan, M., Schwaederle, M., Arguello, D., Millis, S.Z., Gatalica, Z. and Kurzrock, R. (2015) HER2 Expression Status in Diverse Cancers: Review of Results from 37,992 Patients. Cancer and Metastasis Reviews, 34, 157-164. https://doi.org/10.1007/s10555-015-9552-6
|
[15]
|
Deeks, E.D. (2021) Disitamab Vedotin: First Approval. Drugs, 81, 1929-1935. https://doi.org/10.1007/s40265-021-01614-x
|
[16]
|
Yu, J., Fang, T., Yun, C., et al. (2022) Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Frontiers in Molecular Biosciences, 9, Article 847835. https://doi.org/10.3389/fmolb.2022.847835
|
[17]
|
Domb, C., Garcia, J.A., Barata, P.C., Mendiratta, P., Rao, S. and Brown, J.R. (2024) Systematic Review of Recent Advancements in Antibody-Drug and Bicycle Toxin Conjugates for the Treatment of Urothelial Cancer. Therapeutic Advances in Urology, 16, 1-23. https://doi.org/10.1177/17562872241249073
|
[18]
|
Sheng, X., Yan, X., Wang, L., Shi, Y., Yao, X., Luo, H., et al. (2021) Open-Label, Multicenter, Phase II Study of RC48-ADC, a HER2-Targeting Antibody-Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial Carcinoma. Clinical Cancer Research, 27, 43-51. https://doi.org/10.1158/1078-0432.ccr-20-2488
|
[19]
|
Xu, J., Zhang, H., Zhang, L., et al. (2023) Real-World Effectiveness and Safety of RC48-ADC alone or in Combination with PD-1 Inhibitors for Patients with Locally Advanced or Metastatic Urothelial Carcinoma: A Multicenter, Retrospective Clinical Study. Cancer Medicine, 12, 21159-21171. https://doi.org/10.1002/cam4.6680
|
[20]
|
Zhou, L., Yang, K.W., Zhang, S., et al. (2025) Disitamab Vedotin Plus Toripalimab in Patients with Locally Advanced or Metastatic Urothelial Carcinoma (RC48-C014): A Phase Ib/II Dose-Escalation and Dose-Expansion Study. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 36, 331-339. https://doi.org/10.1016/j.annonc.2024.12.002
|
[21]
|
Hong, X., Chen, X., Wang, H., Xu, Q., Xiao, K., Zhang, Y., et al. (2023) A HER2-Targeted Antibody-Drug Conjugate, RC48-ADC, Exerted Promising Antitumor Efficacy and Safety with Intravesical Instillation in Preclinical Models of Bladder Cancer. Advanced Science, 10, Article 2302377. https://doi.org/10.1002/advs.202302377
|
[22]
|
National Institute of Diabetes and Digestive and Kidney Diseases (2012) Trastuzumab Deruxtecan, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
|
[23]
|
Meric-Bernstam, F., Makker, V., Oaknin, A., Oh, D., Banerjee, S., González-Martín, A., et al. (2024) Efficacy and Safety of Trastuzumab Deruxtecan in Patients with Her2-Expressing Solid Tumors: Primary Results from the DESTINY-Pantumor02 Phase II Trial. Journal of Clinical Oncology, 42, 47-58. https://doi.org/10.1200/jco.23.02005
|
[24]
|
Swain, S.M., Nishino, M., Lancaster, L.H., Li, B.T., Nicholson, A.G., Bartholmai, B.J., et al. (2022) Multidisciplinary Clinical Guidance on Trastuzumab Deruxtecan (T-DXd)-Related Interstitial Lung Disease/Pneumonitis—Focus on Proactive Monitoring, Diagnosis, and Management. Cancer Treatment Reviews, 106, Article 102378. https://doi.org/10.1016/j.ctrv.2022.102378
|
[25]
|
Tarantino, P., Modi, S., Tolaney, S.M., Cortés, J., Hamilton, E.P., Kim, S., et al. (2021) Interstitial Lung Disease Induced by Anti-ERBB2 Antibody-Drug Conjugates: A Review. JAMA Oncology, 7, 1873-1881. https://doi.org/10.1001/jamaoncol.2021.3595
|
[26]
|
Chatterjee, S., Sinha, S. and Kundu, C.N. (2021) Nectin Cell Adhesion Molecule-4 (NECTIN-4): A Potential Target for Cancer Therapy. European Journal of Pharmacology, 911, Article 174516. https://doi.org/10.1016/j.ejphar.2021.174516
|
[27]
|
Wong, J.L., Rosenberg, J.E. (2021) Targeting Nectin-4 by Antibody-Drug Conjugates for the Treatment of Urothelial Carcinoma. Expert Opinion on Biological Therapy, 21, 863-873. https://doi.org/10.1080/14712598.2021.1929168
|
[28]
|
Liu, Y., Han, X., Li, L., Zhang, Y., Huang, X., Li, G., et al. (2021) Role of Nectin-4 Protein in Cancer (Review). International Journal of Oncology, 59, Article No. 93. https://doi.org/10.3892/ijo.2021.5273
|
[29]
|
Bouleftour, W., Sargos, P., Magne, N. (2023) Nectin-4: A Tumor Cell Target and Status of Inhibitor Development. Current Oncology Reports, 25, 181-188. https://doi.org/10.1007/s11912-023-01360-1
|
[30]
|
National Institute of Diabetes and Digestive and Kidney Diseases (2012) Enfortumab Vedotin. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
|
[31]
|
Alt, M., Stecca, C., Tobin, S., et al. (2020) Enfortumab Vedotin in Urothelial Cancer. Therapeutic Advances in Urology, 12, 1-10. https://doi.org/10.1177/1756287220980192
|
[32]
|
Powles, T., Rosenberg, J.E., Sonpavde, G.P., et al. (2021) Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. The New England Journal of Medicine, 384, 1125-1135. https://doi.org/10.1056/NEJMoa2035807
|
[33]
|
Powles, T., Valderrama, B.P., Gupta, S., Bedke, J., Kikuchi, E., Hoffman-Censits, J., et al. (2024) Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. New England Journal of Medicine, 390, 875-888. https://doi.org/10.1056/nejmoa2312117
|
[34]
|
National Institute of Diabetes and Digestive and Kidney Diseases (2012) Sacituzumab Govitecan, LiverTox: Clinical and Research Information on Drug-Induced Liver Injury.
|
[35]
|
Veeraballi, S., Khawar, Z., Aslam, H.M. and Muzaffar, M. (2022) Role of Sacituzumab Govitecan in Solid Tumors. Journal of Oncology Pharmacy Practice, 28, 1617-1623. https://doi.org/10.1177/10781552221092359
|
[36]
|
Bardia, A., Messersmith, W.A., Kio, E.A., Berlin, J.D., Vahdat, L., Masters, G.A., et al. (2021) Sacituzumab Govitecan, a Trop-2-Directed Antibody-Drug Conjugate, for Patients with Epithelial Cancer: Final Safety and Efficacy Results from the Phase I/II IMMU-132-01 Basket Trial. Annals of Oncology, 32, 746-756. https://doi.org/10.1016/j.annonc.2021.03.005
|
[37]
|
Tagawa, S.T., Balar, A.V., Petrylak, D.P., Kalebasty, A.R., Loriot, Y., Fléchon, A., et al. (2021) TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing after Platinum-Based Chemotherapy and Checkpoint Inhibitors. Journal of Clinical Oncology, 39, 2474-2485. https://doi.org/10.1200/jco.20.03489
|
[38]
|
Kapoor, A., Niazi, T., Noonan, K., Rendon, R.A., Alimohamed, N., Kassouf, W., et al. (2022) 2022 American Society of Clinical Oncology (ASCO) Genitourinary Cancers Symposium: Meeting Highlights. Canadian Urological Association Journal, 16, 125-131. https://doi.org/10.5489/cuaj.7875
|
[39]
|
McGregor, B.A., Sonpavde, G.P., Kwak, L., et al. (2024) The Double Antibody Drug Conjugate (DAD) Phase I Trial: Sacituzumab Govitecan Plus Enfortumab Vedotin for Metastatic Urothelial Carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 35, 91-97. https://doi.org/10.1016/j.annonc.2023.09.3114
|
[40]
|
Schlam, I., Tarantino, P. and Tolaney, S.M. (2023) Managing Adverse Events of Sacituzumab Govitecan. Expert Opinion on Biological Therapy, 23, 1103-1111. https://doi.org/10.1080/14712598.2023.2267975
|
[41]
|
Tsuchikama, K., Anami, Y., Ha, S.Y.Y., et al. (2024) Exploring the Next Generation of Antibody-Drug Conjugates. Nature Reviews. Clinical Oncology, 21, 203-223. https://doi.org/10.1038/s41571-023-00850-2
|
[42]
|
Khoury, R., Saleh, K., Khalife, N., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. International Journal of Molecular Sciences, 24, Article 9674. https://doi.org/10.3390/ijms24119674
|
[43]
|
Chen, Y., Xu, Y., Shao, Z. and Yu, K. (2022) Resistance to Antibody-Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Communications, 43, 297-337. https://doi.org/10.1002/cac2.12387
|
[44]
|
Pupa, S.M., Ligorio, F., Cancila, V., Franceschini, A., Tripodo, C., Vernieri, C., et al. (2021) HER2 Signaling and Breast Cancer Stem Cells: The Bridge behind HER2-Positive Breast Cancer Aggressiveness and Therapy Refractoriness. Cancers, 13, Article 4778. https://doi.org/10.3390/cancers13194778
|
[45]
|
Phillips, G.D.L., Fields, C.T., Li, G., Dowbenko, D., Schaefer, G., Miller, K., et al. (2014) Dual Targeting of HER2-Positive Cancer with Trastuzumab Emtansine and Pertuzumab: Critical Role for Neuregulin Blockade in Antitumor Response to Combination Therapy. Clinical Cancer Research, 20, 456-468. https://doi.org/10.1158/1078-0432.ccr-13-0358
|
[46]
|
Filho, O.M., Viale, G., Stein, S., et al. (2021) Impact of HER2 Heterogeneity on Treatment Response of Early-Stage HER2-Positive Breast Cancer: Phase II Neoadjuvant Clinical Trial of T-DM1 Combined with Pertuzumab. Cancer Dis-covery, 11, 2474-2487. https://doi.org/10.1158/2159-8290.CD-20-1557
|
[47]
|
Ríos-Luci, C., García-Alonso, S., Díaz-Rodríguez, E., Nadal-Serrano, M., Arribas, J., Ocaña, A., et al. (2017) Resistance to the Antibody-Drug Conjugate T-DM1 Is Based in a Reduction in Lysosomal Proteolytic Activity. Cancer Research, 77, 4639-4651. https://doi.org/10.1158/0008-5472.can-16-3127
|
[48]
|
Hamblett, K.J., Jacob, A.P., Gurgel, J.L., Tometsko, M.E., Rock, B.M., Patel, S.K., et al. (2015) SLC46A3 Is Required to Transport Catabolites of Noncleavable Antibody Maytansine Conjugates from the Lysosome to the Cytoplasm. Cancer Research, 75, 5329-5340. https://doi.org/10.1158/0008-5472.can-15-1610
|
[49]
|
Abelman, R.O., Wu, B., Spring, L.M., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. Cancers, 15, Article 1278. https://doi.org/10.3390/cancers15041278
|
[50]
|
Coates, J.T., Sun, S., Leshchiner, I., et al. (2021) Parallel Genomic Alterations of Antigen and Payload Targets Mediate Polyclonal Acquired Clinical Resistance to Sacituzumab Govitecan in Triple-Negative Breast Cancer. Cancer Discovery, 11, 2436-2445. https://doi.org/10.1158/2159-8290.CD-21-0702
|
[51]
|
Guidi, L., Pellizzari, G., Tarantino, P., et al. (2023) Resistance to Antibody-Drug Conjugates Targeting HER2 in Breast Cancer: Molecular Landscape and Future Challenges. Cancers, 15, Article 1130. https://doi.org/10.3390/cancers15041130
|
[52]
|
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/Akt/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6
|
[53]
|
Wang, P., Mak, V.C. and Cheung, L.W. (2023) Drugging IGF-1R in Cancer: New Insights and Emerging Opportunities. Genes & Diseases, 10, 199-211. https://doi.org/10.1016/j.gendis.2022.03.002
|
[54]
|
Katoh, M. (2017) Antibody-Drug Conjugate Targeting Protein Tyrosine Kinase 7, a Receptor Tyrosine Kinase-Like Molecule Involved in WNT and Vascular Endothelial Growth Factor Signaling: Effects on Cancer Stem Cells, Tumor Microenvironment and Whole-Body Homeostasis. Annals of Translational Medicine, 5, 462-462. https://doi.org/10.21037/atm.2017.09.11
|
[55]
|
Li, J.Y., Perry, S.R., Muniz-Medina, V., Wang, X., Wetzel, L.K., Rebelatto, M.C., et al. (2019) A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell, 35, 948-949. https://doi.org/10.1016/j.ccell.2019.05.010
|
[56]
|
Giugliano, F., Corti, C., Tarantino, P., Michelini, F. and Curigliano, G. (2022) Bystander Effect of Antibody-Drug Conjugates: Fact or Fiction? Current Oncology Reports, 24, 809-817. https://doi.org/10.1007/s11912-022-01266-4
|
[57]
|
Hartley, J.A. (2020) Antibody-Drug Conjugates (ADCs) Delivering Pyrrolobenzodiazepine (PBD) Dimers for Cancer Therapy. Expert Opinion on Biological Therapy, 21, 931-943. https://doi.org/10.1080/14712598.2020.1776255
|
[58]
|
Li, C., Shi, K., Zhao, S., Liu, J., Zhai, Q., Hou, X., et al. (2024) Natural-Source Payloads Used in the Conjugated Drugs Architecture for Cancer Therapy: Recent Advances and Future Directions. Pharmacological Research, 207, Article 107341. https://doi.org/10.1016/j.phrs.2024.107341
|
[59]
|
Abraham, J., Montero, A.J., Jankowitz, R.C., et al. (2019) Safety and Efficacy of T-DM1 Plus Neratinib in Patients with Metastatic HER2-Positive Breast Cancer: NSABP Foundation Trial FB-10. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37, 2601-2609. https://doi.org/10.1200/JCO.19.00858
|
[60]
|
Zhang, L., Yan, Y., Gao, Y., Chen, Y., Yu, J., Ren, N., et al. (2024) Antibody-Drug Conjugates and Immune Checkpoint Inhibitors in Cancer Treatment: A Systematic Review and Meta-Analysis. Scientific Reports, 14, Article No. 22357. https://doi.org/10.1038/s41598-024-68311-z
|