|
[1]
|
Szaleniec, J., Górski, A., Szaleniec, M., Międzybrodzki, R., Weber-Dąbrowska, B., Stręk, P., et al. (2017) Can Phage Therapy Solve the Problem of Recalcitrant Chronic Rhinosinusitis? Future Microbiology, 12, 1427-1442. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kim, J., Ko, I., Kim, M.S., Kim, D.W., Cho, B. and Kim, D. (2020) Relationship of Chronic Rhinosinusitis with Asthma, Myocardial Infarction, Stroke, Anxiety, and Depression. The Journal of Allergy and Clinical Immunology: In Practice, 8, 721-727.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Waters, E.M., Neill, D.R., Kaman, B., Sahota, J.S., Clokie, M.R.J., Winstanley, C., et al. (2017) Phage Therapy Is Highly Effective against Chronic Lung Infections Withpseudomonas Aeruginosa. Thorax, 72, 666-667. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Okano, M., Kariya, S., Ohta, N., et al. (2015) Association and Management of Eosinophilic Inflammation in Upper and Lower Airways. Allergology International, 64, 131-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Calus, L., Van Bruaene, N., Bosteels, C., Dejonckheere, S., Van Zele, T., Holtappels, G., et al. (2019) Twelve-Year Follow-up Study after Endoscopic Sinus Surgery in Patients with Chronic Rhinosinusitis with Nasal Polyposis. Clinical and Translational Allergy, 9, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
DeConde, A.S., Mace, J.C., Levy, J.M., Rudmik, L., Alt, J.A. and Smith, T.L. (2016) Prevalence of Polyp Recurrence after Endoscopic Sinus Surgery for Chronic Rhinosinusitis with Nasal Polyposis. The Laryngoscope, 127, 550-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bachert, C., Han, J.K., Wagenmann, M., Hosemann, W., Lee, S.E., Backer, V., et al. (2021) EUFOREA Expert Board Meeting on Uncontrolled Severe Chronic Rhinosinusitis with Nasal Polyps (CRSWNP) and Biologics: Definitions and Management. Journal of Allergy and Clinical Immunology, 147, 29-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hopkins, C. (2019) Chronic Rhinosinusitis with Nasal Polyps. New England Journal of Medicine, 381, 55-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Łusiak-Szelachowska, M., Żaczek, M., Weber-Dąbrowska, B., et al. (2014) Phage Neutralization by Sera of Patients Receiving Phage Therapy. Viral Immunology, 27, 295-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Stevens, W.W., Ocampo, C.J., Berdnikovs, S., Sakashita, M., Mahdavinia, M., Suh, L., et al. (2015) Cytokines in Chronic Rhinosinusitis. Role in Eosinophilia and Aspirin-Exacerbated Respiratory Disease. American Journal of Respiratory and Critical Care Medicine, 192, 682-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nakayama, T., Lee, I.T., Le, W., Tsunemi, Y., Borchard, N.A., Zarabanda, D., et al. (2022) Inflammatory Molecular Endotypes of Nasal Polyps Derived from White and Japanese Populations. Journal of Allergy and Clinical Immunology, 149, 1296-1308.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Peng, Y., Zi, X.X., Tian, T.F., et al. (2019) Whole-Transcriptome Sequencing Reveals Heightened Inflammation and Defective Host Defence Responses in Chronic Rhinosinusitis with Nasal Polyps. European Respiratory Journal, 54, Article 1900732. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
贾忆莲, 聂佳妮, 王洪敏, 等. NCF2在慢性鼻窦炎伴鼻息肉中的相关性研究[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(4): 303-309.
|
|
[14]
|
祝旭清, 王国祥, 王建文, 等. 幽门螺杆菌感染患者外周血细胞因子的改变及临床意义[J]. 中华医院感染学杂志, 2016, 26(17): 3878-3880.
|
|
[15]
|
Sugano, K., Tack, J., Kuipers, E.J., Graham, D.Y., El-Omar, E.M., Miura, S., et al. (2015) Kyoto Global Consensus Report on Helicobacter pylorigastritis. Gut, 64, 1353-1367. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Aydillo, T., Gonzalez-Reiche, A.S., Aslam, S., et al. (2020) Shedding of Viable SARS-CoV-2 after Immunosuppres-sive Therapy for Cancer. New England Journal of Medicine, 383, 2586-2588. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, P., Ridilla, M., Patel, P., Betts, L., Gallichotte, E., Shahidi, L., et al. (2017) Beyond Attachment: Roles of DC-SIGN in Dengue Virus Infection. Traffic, 18, 218-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Noll, A.J., Yu, Y., Lasanajak, Y., Duska-McEwen, G., Buck, R.H., Smith, D.F., et al. (2016) Human DC-SIGN Binds Specific Human Milk Glycans. Biochemical Journal, 473, 1343-1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hottz, E.D., Oliveira, M.F., Nunes, P.C.G., Nogueira, R.M.R., Valls-de-Souza, R., Da Poian, A.T., et al. (2013) Dengue Induces Platelet Activation, Mitochondrial Dysfunction and Cell Death through Mechanisms That Involve DC-SIGN and Caspases. Journal of Thrombosis and Haemostasis, 11, 951-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yu, X., Vasiljevic, S., Mitchell, D.A., Crispin, M. and Scanlan, C.N. (2013) Dissecting the Molecular Mechanism of IVIG Therapy: The Interaction between Serum Igg and DC-SIGN Is Independent of Antibody Glycoform or Fc Domain. Journal of Molecular Biology, 425, 1253-1258. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Schwartz, A.M., Demin, D.E., Vorontsov, I.E., et al. (2017) Multiple Single Nucleotide Polymorphisms in the First Intron of the IL2RA Gene affect Transcription Factor Binding and Enhancer Activity. Gene, 602, 50-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Redler, S., Albert, F., Brockschmidt, F.F., et al. (2012) Investigation of Selected Cytokine Genes Suggests that IL2RA and the TNF/LTA Locus Are Risk Factors for Severe Alopecia Areata. British Journal of Dermatology, 167, 1360-1365. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
江莉, 吴晓君, 黄俊彬, 等. IL2RA, IL-10基因单核苷酸多态性与儿童EBV-HLH相关性的研究[J]. 中国实验血液学杂志, 2020, 28(2): 646-651.
|
|
[24]
|
Dhawan, M., Rabaan, A.A., Alwarthan, S., Alhajri, M., Halwani, M.A., Alshengeti, A., et al. (2023) Regulatory T Cells (Tregs) and COVID-19: Unveiling the Mechanisms, and Therapeutic Potentialities with a Special Focus on Long Covid. Vaccines, 11, Article 699. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D.G. and Crocker, P.R. (2001) Characterization of Human Sialoadhesin, a Sialic Acid Binding Receptor Expressed by Resident and Inflammatory Macrophage Populations. Blood, 97, 288-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zheng, Q., Hou, J., Zhou, Y., et al. (2015) Siglec1 Suppresses Antiviral Innate Immune Response by Inducing TBK1 Degradation via the Ubiquitin Ligase TRIM27. Cell Research, 25, 1121-1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Qian, Y., Yang, T., Liang, H. and Deng, M. (2022) Myeloid Checkpoints for Cancer Immunotherapy. Chinese Journal of Cancer Research, 34, 460-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Singh, R. and Choi, B.K. (2019) Siglec1-Expressing Subcapsular Sinus Macrophages Provide Soil for Melanoma Lymph Node Metastasis. eLife, 8, e48916. [Google Scholar] [CrossRef]
|