[1]
|
Zhang, Y., Yang, Y., Wang, C., Chen, W., Chen, X., Wu, F., et al. (2023) Copper Metabolism-Related Genes in Entorhinal Cortex for Alzheimer’s Disease. Scientific Reports, 13, Article No. 17458. https://doi.org/10.1038/s41598-023-44656-9
|
[2]
|
Zhang, Y., Wang, M. and Chang, W. (2022) Iron Dyshomeostasis and Ferroptosis in Alzheimer’s Disease: Molecular Mechanisms of Cell Death and Novel Therapeutic Drugs and Targets for Ad. Frontiers in Pharmacology, 13, Article ID: 983623. https://doi.org/10.3389/fphar.2022.983623
|
[3]
|
Locatelli, M. and Farina, C. (2024) Role of Copper in Central Nervous System Physiology and Pathology. Neural Regeneration Research, 20, 1058-1068. https://doi.org/10.4103/nrr.nrr-d-24-00110
|
[4]
|
Zhong, G., Wang, X., Li, J., Xie, Z., Wu, Q., Chen, J., et al. (2024) Insights into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds. Current Neuropharmacology, 22, 1650-1671. https://doi.org/10.2174/1570159x22666231103085859
|
[5]
|
Wang, Y., Li, D., Xu, K., Wang, G. and Zhang, F. (2024) Copper Homeostasis and Neurodegenerative Diseases. Neural Regeneration Research, 20, 3124-3143. https://doi.org/10.4103/nrr.nrr-d-24-00642
|
[6]
|
Zhu, Z., Song, M., Ren, J., Liang, L., Mao, G. and Chen, M. (2024) Copper Homeostasis and Cuproptosis in Central Nervous System Diseases. Cell Death & Disease, 15, Article No. 850. https://doi.org/10.1038/s41419-024-07206-3
|
[7]
|
Li, Y., Han, Y., Shu, Q., Kan, Y. and Wang, Z. (2025) Cuproptosis and Copper as Potential Mechanisms and Intervention Targets in Alzheimer’s Disease. Biomedicine & Pharmacotherapy, 183, Article ID: 117814. https://doi.org/10.1016/j.biopha.2025.117814
|
[8]
|
Sasanian, N., Bernson, D., Horvath, I., Wittung-Stafshede, P. and Esbjörner, E.K. (2020) Redox-Dependent Copper Ion Modulation of Amyloid-β (1-42) Aggregation in Vitro. Biomolecules, 10, Article No. 924. https://doi.org/10.3390/biom10060924
|
[9]
|
Crnich, E., Lullo, R., Tabaka, A., Havens, M.A. and Kissel, D.S. (2021) Interactions of Copper and Copper Chelate Compounds with the Amyloid Beta Peptide: An Investigation into Electrochemistry, Reactive Oxygen Species and Peptide Aggregation. Journal of Inorganic Biochemistry, 222, Article ID: 111493. https://doi.org/10.1016/j.jinorgbio.2021.111493
|
[10]
|
Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. and Collin, F. (2018) Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biology, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014
|
[11]
|
Mezzanotte, M. and Stanga, S. (2024) Brain Iron Dyshomeostasis and Ferroptosis in Alzheimer’s Disease Pathophysiology: Two Faces of the Same Coin. Aging and Disease.
|
[12]
|
Peng, Y., Chang, X. and Lang, M. (2021) Iron Homeostasis Disorder and Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article No. 12442. https://doi.org/10.3390/ijms222212442
|
[13]
|
Wang, T., Xu, S., Fan, Y., Li, L. and Guo, C. (2019) Iron Pathophysiology in Alzheimer’s Diseases. In: Chang, Y.-Z., Ed., Brain Iron Metabolism and CNS Diseases, Springer, 67-104. https://doi.org/10.1007/978-981-13-9589-5_5
|
[14]
|
Peng, W., Chung, K.B., Lawrence, B.P., O’Banion, M.K., Dirksen, R.T., Wojtovich, A.P., et al. (2024) DMT1 Knockout Abolishes Ferroptosis Induced Mitochondrial Dysfunction in C. Elegans Amyloid Β Proteotoxicity. Free Radical Biology and Medicine, 224, 785-796. https://doi.org/10.1016/j.freeradbiomed.2024.09.034
|
[15]
|
Zhuang, X., Xia, Y., Liu, Y., Guo, T., Xia, Z., Wang, Z., et al. (2024) SCG5 and MITF May Be Novel Markers of Copper Metabolism Immunorelevance in Alzheimer’s Disease. Scientific Reports, 14, Article No. 13619. https://doi.org/10.1038/s41598-024-64599-z
|
[16]
|
Zhang, G., Zhang, Y., Shen, Y., Wang, Y., Zhao, M. and Sun, L. (2021) The Potential Role of Ferroptosis in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 80, 907-925. https://doi.org/10.3233/jad-201369
|
[17]
|
Wang, J., Fu, J., Zhao, Y., Liu, Q., Yan, X. and Su, J. (2023) Iron and Targeted Iron Therapy in Alzheimer’s Disease. International Journal of Molecular Sciences, 24, Article No. 16353. https://doi.org/10.3390/ijms242216353
|
[18]
|
Gromadzka, G., Wilkaniec, A., Tarnacka, B., Hadrian, K., Bendykowska, M., Przybyłkowski, A., et al. (2024) The Role of Glia in Wilson’s Disease: Clinical, Neuroimaging, Neuropathological and Molecular Perspectives. International Journal of Molecular Sciences, 25, Article No. 7545. https://doi.org/10.3390/ijms25147545
|
[19]
|
Soczewka, P., Tribouillard-Tanvier, D., di Rago, J., Zoladek, T. and Kaminska, J. (2021) Targeting Copper Homeostasis Improves Functioning of Vps13δ Yeast Mutant Cells, a Model of Vps13-Related Diseases. International Journal of Molecular Sciences, 22, Article No. 2248. https://doi.org/10.3390/ijms22052248
|
[20]
|
Singh, R., Panghal, A., Jadhav, K., Thakur, A., Verma, R.K., Singh, C., et al. (2024) Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer’s Disease. Molecular Neurobiology, 61, 10916-10940. https://doi.org/10.1007/s12035-024-04256-8
|
[21]
|
Gromadzka, G., Tarnacka, B., Flaga, A. and Adamczyk, A. (2020) Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications. International Journal of Molecular Sciences, 21, Article No. 9259. https://doi.org/10.3390/ijms21239259
|
[22]
|
Metsla, K., Kirss, S., Laks, K., Sildnik, G., Palgi, M., Palumaa, T., et al. (2022) Α-Lipoic Acid Has the Potential to Normalize Copper Metabolism, Which Is Dysregulated in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 85, 715-728. https://doi.org/10.3233/jad-215026
|
[23]
|
Cilliers, K. (2021) Trace Element Alterations in Alzheimer’s Disease: A Review. Clinical Anatomy, 34, 766-773. https://doi.org/10.1002/ca.23727
|
[24]
|
Simunkova, M., Alwasel, S.H., Alhazza, I.M., Jomova, K., Kollar, V., Rusko, M., et al. (2019) Management of Oxidative Stress and Other Pathologies in Alzheimer’s Disease. Archives of Toxicology, 93, 2491-2513. https://doi.org/10.1007/s00204-019-02538-y
|
[25]
|
Doroszkiewicz, J., Farhan, J.A., Mroczko, J., Winkel, I., Perkowski, M. and Mroczko, B. (2023) Common and Trace Metals in Alzheimer’s and Parkinson’s Diseases. International Journal of Molecular Sciences, 24, Article No. 15721. https://doi.org/10.3390/ijms242115721
|
[26]
|
Wang, H., Yu, P., Guo, X., Wang, W., Wang, L., Zhang, H., et al. (2025) Mechanistic Insights for Efficient Removal of Intracellular and Extracellular Antibiotic Resistance Genes by Iron-Based Nanocopper: Intracellular Oxidative Stress and Internalization of Nanocopper. Journal of Hazardous Materials, 484, Article ID: 136745. https://doi.org/10.1016/j.jhazmat.2024.136745
|
[27]
|
Du, Y., Chen, X., Zhang, B., Jin, X., Wan, Z., Zhan, M., et al. (2023) Identification of Copper Metabolism Related Biomarkers, Polygenic Prediction Model, and Potential Therapeutic Agents in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 95, 1481-1496. https://doi.org/10.3233/jad-230565
|
[28]
|
Cerasuolo, M., Di Meo, I., Auriemma, M.C., Trojsi, F., Maiorino, M.I., Cirillo, M., et al. (2023) Iron and Ferroptosis More than a Suspect: Beyond the Most Common Mechanisms of Neurodegeneration for New Therapeutic Approaches to Cognitive Decline and Dementia. International Journal of Molecular Sciences, 24, Article No. 9637. https://doi.org/10.3390/ijms24119637
|
[29]
|
Zhang, B. and Burke, R. (2023) Copper Homeostasis and the Ubiquitin Proteasome System. Metallomics, 15, mfad010. https://doi.org/10.1093/mtomcs/mfad010
|
[30]
|
Kowalczyk, J., Grapsi, E., Espargaró, A., Caballero, A.B., Juárez-Jiménez, J., Busquets, M.A., et al. (2021) Dual Effect of Prussian Blue Nanoparticles on Aβ40 Aggregation: Β-Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules, 22, 430-440. https://doi.org/10.1021/acs.biomac.0c01290
|
[31]
|
Kawahara, M., Kato-Negishi, M. and Tanaka, K. (2023) Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients, 15, Article No. 2067. https://doi.org/10.3390/nu15092067
|