[1]
|
Motzer, R.J., Rane, P.P., Saretsky, T.L., Pawar, D., Martin Nguyen, A., Sundaram, M., et al. (2023) Patient-Reported Outcome Measurement and Reporting for Patients with Advanced Renal Cell Carcinoma: A Systematic Literature Review. European Urology, 84, 406-417. https://doi.org/10.1016/j.eururo.2023.07.006
|
[2]
|
Sánchez-Gastaldo, A., Kempf, E., González del Alba, A. and Duran, I. (2017) Systemic Treatment of Renal Cell Cancer: A Comprehensive Review. Cancer Treatment Reviews, 60, 77-89. https://doi.org/10.1016/j.ctrv.2017.08.010
|
[3]
|
Keusekotten, K., Elliott, P.R., Glockner, L., Fiil, B.K., Damgaard, R.B., Kulathu, Y., et al. (2013) OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell, 153, 1312-1326. https://doi.org/10.1016/j.cell.2013.05.014
|
[4]
|
Zheng, N. and Shabek, N. (2017) Ubiquitin Ligases: Structure, Function, and Regulation. Annual Review of Biochemistry, 86, 129-157. https://doi.org/10.1146/annurev-biochem-060815-014922
|
[5]
|
Lacoursiere, R.E., Hadi, D. and Shaw, G.S. (2022) Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules, 12, Article 467. https://doi.org/10.3390/biom12030467
|
[6]
|
Ren, J., Yu, P., Liu, S., Li, R., Niu, X., Chen, Y., et al. (2023) Deubiquitylating Enzymes in Cancer and Immunity. Advanced Science, 10, Article ID: 2303807. https://doi.org/10.1002/advs.202303807
|
[7]
|
Klonisch, T., Logue, S.E., Hombach-Klonisch, S. and Vriend, J. (2023) Dubing Primary Tumors of the Central Nervous System: Regulatory Roles of Deubiquitinases. Biomolecules, 13, Article 1503. https://doi.org/10.3390/biom13101503
|
[8]
|
Dewson, G., Eichhorn, P.J.A. and Komander, D. (2023) Deubiquitinases in cancer. Nature Reviews Cancer, 23, 842-862. https://doi.org/10.1038/s41568-023-00633-y
|
[9]
|
Kitamura, H. (2023) Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. International Journal of Molecular Sciences, 24, Article 3219. https://doi.org/10.3390/ijms24043219
|
[10]
|
Kitamura, H. and Hashimoto, M. (2021) USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes. International Journal of Molecular Sciences, 22, Article 1209. https://doi.org/10.3390/ijms22031209
|
[11]
|
Wang, S., Young, M., Jeng, W., Liu, C. and Hung, J. (2020) USP24 Stabilizes Bromodomain Containing Proteins to Promote Lung Cancer Malignancy. Scientific Reports, 10, Article No. 20870. https://doi.org/10.1038/s41598-020-78000-2
|
[12]
|
Paolini, L., Hussain, S. and Galardy, P.J. (2022) Chromosome Instability in Neuroblastoma: A Pathway to Aggressive Disease. Frontiers in Oncology, 12, Article 988972. https://doi.org/10.3389/fonc.2022.988972
|
[13]
|
Hu, Z., Zhao, Y., Mang, Y., Zhu, J., Yu, L., Li, L., et al. (2023) MiR-21-5p Promotes Sorafenib Resistance and Hepatocellular Carcinoma Progression by Regulating SIRT7 Ubiquitination through USP24. Life Sciences, 325, Article ID: 121773. https://doi.org/10.1016/j.lfs.2023.121773
|
[14]
|
Zhi, X., Jiang, S., Zhang, J. and Qin, J. (2023) Ubiquitin‐Specific Peptidase 24 Accelerates Aerobic Glycolysis and Tumor Progression in Gastric Carcinoma through Stabilizing PLK1 to Activate NOTCH1. Cancer Science, 114, 3087-3100. https://doi.org/10.1111/cas.15847
|
[15]
|
Wang, C., Cao, Q., Zhang, S., Liu, H., Duan, H., Xia, W., et al. (2023) Anlotinib Enhances the Therapeutic Effect of Bladder Cancer with GSDMB Expression: Analyzed from TCGA Bladder Cancer Database & Mouse Bladder Cancer Cell Line. Pharmacogenomics and Personalized Medicine, 16, 219-228. https://doi.org/10.2147/pgpm.s398451
|
[16]
|
Wang, Y., Wu, Y., Hung, C., Wang, S., Young, M., Hsu, T., et al. (2018) USP24 Induces IL-6 in Tumor-Associated Microenvironment by Stabilizing P300 and β-TrCP and Promotes Cancer Malignancy. Nature Communications, 9, Article No. 3996. https://doi.org/10.1038/s41467-018-06178-1
|
[17]
|
Luo, H., Jing, B., Xia, Y., Zhang, Y., Hu, M., Cai, H., et al. (2019) WP1130 Reveals USP24 as a Novel Target in T-Cell Acute Lymphoblastic Leukemia. Cancer Cell International, 19, Article No. 56. https://doi.org/10.1186/s12935-019-0773-6
|
[18]
|
Thayer, J.A., Awad, O., Hegdekar, N., Sarkar, C., Tesfay, H., Burt, C., et al. (2019) The PARK10 Gene USP24 Is a Negative Regulator of Autophagy and ULK1 Protein Stability. Autophagy, 16, 140-153. https://doi.org/10.1080/15548627.2019.1598754
|
[19]
|
Chen, D., Chen, C., Tan, J., Yang, J. and Chen, B. (2023) ERK Inhibition Aids IFN-β Promoter Activation during EV71 Infection by Blocking CRYAB Degradation in SH-SY5Y Cells. Pathogens and Disease, 81, ftad011. https://doi.org/10.1093/femspd/ftad011
|
[20]
|
Chouri, E., Wang, M., Hillen, M.R., Angiolilli, C., Silva-Cardoso, S.C., Wichers, C.G.K., et al. (2021) Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis. Journal of Clinical Medicine, 10, Article 491. https://doi.org/10.3390/jcm10030491
|
[21]
|
Song, X., Xia, B., Gao, X., Liu, X., Lv, H., Wang, S., et al. (2024) Related Cellular Signaling and Consequent Pathophysiological Outcomes of Ubiquitin Specific Protease 24. Life Sciences, 342, Article ID: 122512. https://doi.org/10.1016/j.lfs.2024.122512
|
[22]
|
Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A., Lequin, D., et al. (2009) Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma. Journal of Clinical Oncology, 27, 1026-1033. https://doi.org/10.1200/jco.2008.16.0630
|
[23]
|
Bedekovics, T., Hussain, S., Zhang, Y., Ali, A., Jeon, Y.J. and Galardy, P.J. (2021) USP24 Is a Cancer-Associated Ubiquitin Hydrolase, Novel Tumor Suppressor, and Chromosome Instability Gene Deleted in Neuroblastoma. Cancer Research, 81, 1321-1331. https://doi.org/10.1158/0008-5472.can-20-1777
|
[24]
|
Sheltzer, J.M., Ko, J.H., Replogle, J.M., Habibe Burgos, N.C., Chung, E.S., Meehl, C.M., et al. (2017) Single-Chromosome Gains Commonly Function as Tumor Suppressors. Cancer Cell, 31, 240-255. https://doi.org/10.1016/j.ccell.2016.12.004
|
[25]
|
Williams, B.R., Prabhu, V.R., Hunter, K.E., Glazier, C.M., Whittaker, C.A., Housman, D.E., et al. (2008) Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells. Science, 322, 703-709. https://doi.org/10.1126/science.1160058
|
[26]
|
Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dunham, M.J., et al. (2007) Effects of Aneuploidy on Cellular Physiology and Cell Division in Haploid Yeast. Science, 317, 916-924. https://doi.org/10.1126/science.1142210
|
[27]
|
Robey, R.W., Pluchino, K.M., Hall, M.D., Fojo, A.T., Bates, S.E. and Gottesman, M.M. (2018) Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nature Reviews Cancer, 18, 452-464. https://doi.org/10.1038/s41568-018-0005-8
|
[28]
|
Shibue, T. and Weinberg, R.A. (2017) EMT, CSCs, and Drug Resistance: The Mechanistic Link and Clinical Implications. Nature Reviews Clinical Oncology, 14, 611-629. https://doi.org/10.1038/nrclinonc.2017.44
|
[29]
|
Aziz, K., Nowsheen, S., Pantelias, G., Iliakis, G., Gorgoulis, V.G. and Georgakilas, A.G. (2012) Targeting DNA Damage and Repair: Embracing the Pharmacological Era for Successful Cancer Therapy. Pharmacology & Therapeutics, 133, 334-350. https://doi.org/10.1016/j.pharmthera.2011.11.010
|
[30]
|
Dagogo-Jack, I. and Shaw, A.T. (2017) Tumour Heterogeneity and Resistance to Cancer Therapies. Nature Reviews Clinical Oncology, 15, 81-94. https://doi.org/10.1038/nrclinonc.2017.166
|
[31]
|
Wang, S., Young, M., Wang, Y., Chen, S., Liu, C., Lo, Y., et al. (2021) USP24 Promotes Drug Resistance during Cancer Therapy. Cell Death & Differentiation, 28, 2690-2707. https://doi.org/10.1038/s41418-021-00778-z
|
[32]
|
Yang, A., Herter-Sprie, G., Zhang, H., Lin, E.Y., Biancur, D., Wang, X., et al. (2018) Autophagy Sustains Pancreatic Cancer Growth through Both Cell-Autonomous and Nonautonomous Mechanisms. Cancer Discovery, 8, 276-287. https://doi.org/10.1158/2159-8290.cd-17-0952
|
[33]
|
Cao, J., Wu, S., Zhao, S., Wang, L., Wu, Y., Song, L., et al. (2024) USP24 Promotes Autophagy-Dependent Ferroptosis in Hepatocellular Carcinoma by Reducing the K48-Linked Ubiquitination of Beclin1. Communications Biology, 7, Article No. 1279. https://doi.org/10.1038/s42003-024-06999-5
|
[34]
|
Antoni, S., Ferlay, J., Soerjomataram, I., Znaor, A., Jemal, A. and Bray, F. (2017) Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. European Urology, 71, 96-108. https://doi.org/10.1016/j.eururo.2016.06.010
|
[35]
|
Goulet, C.R., Champagne, A., Bernard, G., Vandal, D., Chabaud, S., Pouliot, F., et al. (2019) Cancer-Associated Fibroblasts Induce Epithelial-Mesenchymal Transition of Bladder Cancer Cells through Paracrine IL-6 Signalling. BMC Cancer, 19, Article No. 137. https://doi.org/10.1186/s12885-019-5353-6
|
[36]
|
Chen, Z., Chen, X., Xie, R., Huang, M., Dong, W., Han, J., et al. (2019) DANCR Promotes Metastasis and Proliferation in Bladder Cancer Cells by Enhancing IL-11-STAT3 Signaling and CCND1 Expression. Molecular Therapy, 27, 326-341. https://doi.org/10.1016/j.ymthe.2018.12.015
|
[37]
|
Santoni, M., Conti, A., Piva, F., Massari, F., Ciccarese, C., Burattini, L., et al. (2015) Role of STAT3 Pathway in Genitourinary Tumors. Future Science OA, 1, Article ID: FSO15. https://doi.org/10.4155/fso.15.13
|
[38]
|
Li, L., Li, Y. and Bai, Y. (2020) Role of GSDMB in Pyroptosis and Cancer. Cancer Management and Research, 12, 3033-3043. https://doi.org/10.2147/cmar.s246948
|
[39]
|
He, H., Yi, L., Zhang, B., Yan, B., Xiao, M., Ren, J., et al. (2021) USP24-GSDMB Complex Promotes Bladder Cancer Proliferation via Activation of the STAT3 Pathway. International Journal of Biological Sciences, 17, 2417-2429. https://doi.org/10.7150/ijbs.54442
|
[40]
|
Zeng, L. and Zhou, M. (2002) Bromodomain: An Acetyl‐Lysine Binding Domain. FEBS Letters, 513, 124-128. https://doi.org/10.1016/s0014-5793(01)03309-9
|
[41]
|
Kim, J.J., Lee, S.Y., Gong, F., Battenhouse, A.M., Boutz, D.R., Bashyal, A., et al. (2019) Systematic Bromodomain Protein Screens Identify Homologous Recombination and R-Loop Suppression Pathways Involved in Genome Integrity. Genes & Development, 33, 1751-1774. https://doi.org/10.1101/gad.331231.119
|
[42]
|
Rawla, P. and Barsouk, A. (2019) Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Gastroenterology Review, 14, 26-38. https://doi.org/10.5114/pg.2018.80001
|
[43]
|
Tan, Z. (2019) Recent Advances in the Surgical Treatment of Advanced Gastric Cancer: A Review. Medical Science Monitor, 25, 3537-3541. https://doi.org/10.12659/msm.916475
|
[44]
|
Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. https://doi.org/10.1016/j.cgh.2019.07.045
|
[45]
|
Su, S., Chhabra, G., Ndiaye, M.A., Singh, C.K., Ye, T., Huang, W., et al. (2021) PLK1 and NOTCH Positively Correlate in Melanoma and Their Combined Inhibition Results in Synergistic Modulations of Key Melanoma Pathways. Molecular Cancer Therapeutics, 20, 161-172. https://doi.org/10.1158/1535-7163.mct-20-0654
|
[46]
|
Li, X., Tao, Z., Wang, H., Deng, Z., Zhou, Y. and Du, Z. (2020) Dual Inhibition of SRC and PLK1 Regulate Stemness and Induce Apoptosis through Notch1-SOX2 Signaling in EGFRvIII Positive Glioma Stem Cells (GSCs). Experimental Cell Research, 396, Article ID: 112261. https://doi.org/10.1016/j.yexcr.2020.112261
|