COPD与肌少–骨质疏松症的影像学研究进展
Imaging Research Progress on COPD and Osteosarcopenia
摘要: 慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease, COPD)是一种严重影响生活质量和生存率的呼吸系统疾病,近年来,研究表明COPD患者常伴有肌骨合并症,这种并发症会加重病情及死亡风险。因此,利用影像学早期诊断和评估COPD合并症对于改善COPD患者的预后及死亡率至关重要。探索临床应用影像筛查并诊断COPD患者并发肌骨合并症已成为重要的研究方向。
Abstract: Chronic obstructive pulmonary disease (COPD) is a respiratory disease that severely affects quality of life and survival rates. Recent studies have shown that COPD patients often have osteosarcopenia, which can exacerbate the condition and increase mortality risk. Therefore, the early diagnosis and assessment of COPD comorbidities using imaging techniques are crucial for improving the prognosis and mortality rates of COPD patients. Exploring the clinical application of imaging screening and diagnosis for musculoskeletal comorbidities in COPD patients has become an important research direction.
文章引用:郭瑞. COPD与肌少–骨质疏松症的影像学研究进展[J]. 临床医学进展, 2025, 15(7): 321-325. https://doi.org/10.12677/acm.2025.1571992

1. 引言

慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)是一种表现为持续存在的不完全可逆的气流受限并发肺功能呈进行性下降的常见的呼吸系统疾病[1]。2021年WHO的调查结果显示,COPD已成为全球范围内第三大死亡原因,在2019年造成323万人死亡[2]

COPD除肺部表现外,可导致多种肺外效应,包括心血管疾病、焦虑与抑郁、胃食管反流、其他呼吸系统疾病(肺动脉高压、肺栓塞、支气管扩张)及老年骨代谢性疾病,如肌肉减少症、骨质疏松症等[3] [4]。肌肉和骨骼在基因、分子和机械作用上[5]关联密切,形成双向的骨–肌肉串扰系统[6],即“肌少–骨质疏松症”,在老年人群中普遍存在,并可引起严重的并发症[7]。有研究表明,当骨质疏松症和肌少症共存时,肌肉与骨骼系统相互作用,导致肌少症患者骨密度下降的患病率增加[8],骨质疏松患者患肌少症的可能性也高于一般人群[9]

肌骨合并症通常导致COPD患者病情加重和生活质量降低。早期筛查肌少症和骨质疏松症,有助于提升患者身体功能状态,降低跌倒和骨折的风险,及时识别并治疗COPD合并肌少–骨质疏松症,成为提高患者预后和生活质量的关键所在。

本综述旨在探究COPD与肌少症和骨质疏松症之间的关系及影像学方法在COPD患者肌骨合并症筛查和诊断中的应用进展,从而探讨当前影像研究的成果与局限,以呼吁更多研究人员和临床医生关注COPD的肌骨合并症。及时识别并综合管理COPD与肌少症及骨质疏松症,成为提高患者预后和生活质量的关键所在。

2. COPD及其肌骨合并症的临床概述

流行病学调查显示,我国40岁以上人群中COPD的患病率为8.2%,且随着患者年龄增加伴有许多肺外表现,尤其是肌肉骨骼合并症严重影响COPD患者的预后[10]。由于全球老龄化程度不断增加,COPD患者引起全身合并症如:肌肉减少症、骨质疏松症等的患病率逐年升高[3] [4]。COPD及相关合并症对COPD的进展、预后影响显著。COPD的慢性病程所导致的经济负担和卫生保健成本加重,严重的影响了患者及其家庭的生活质量,最终导致其发病率和死亡率上升[11] [12]

肌少症(Sarcopenia)是一种以进行性的肌肉质量和功能丧失为特征的系统性全身性疾病[13]。肌少症多发生于老年人,且肌少症的患病率在男性中更为显著[14]。一项国外研究显示在COPD患者中,肌少症的患病率为63% [3],在COPD患者中高达80%的患者存在不同程度的肌肉减少症[4]

骨质疏松症(Osteoporosis)指随年龄增长逐渐发展的骨密度显著减少,导致骨组织微结构受损从而增加了骨骼脆性及骨折风险[15]。对于COPD患者,骨质疏松症及骨质疏松引发的骨折危害显著,由于COPD患者呼吸困难使其活动受限,导致胸腰椎交界处(T12~L1)和胸正中部位(T7~T8) [16]椎体压缩性骨折[17]。据报道大约60%~70%的椎体压缩性骨折症状隐匿,导致胸腔容积下降,使肺功能受损,同时使COPD患者生活质量下降、增加患者住院时间,甚至使其死亡率增加[18]

“肌少–骨质疏松症”作为老年患者常见的COPD并发症,目前发病机制尚不明确,Clynes [19]指出COPD患者发生肌肉–骨骼合并症可能与性别、年龄、吸烟、身体慢性炎症等因素相关。COPD患者由于患者年龄偏大、呼吸困难导致的活动量减少、长期卧床及其他的病理状况(如慢性炎症、氧化应激增加)可肌肉质量和力量的丧失及功能障碍,同时减少肌肉对骨骼的负荷从而减少骨形成,增加骨吸收。一项国外研究显示在COPD患者中,患有肌少症的男性更可能患骨质疏松症,肌肉减少症是COPD患者骨质疏松症的独立危险因素[17] [20],且COPD中的肌少症与其骨质疏松症的风险增加4.6倍相关[21]

3. 临床COPD患者的肌少症与骨质疏松症的影像学评估:优势与局限性分析

肌少–骨质疏松的诊断工具有多种,如双能射线吸收法(Dual Energy X-Ray Absorptiometry, DXA)、定量计算机断层扫描(Quantitative Computed Tomography, QCT)、超声(Ultrasound, US)、核磁共振成像(Magnetic Resonance Imaging, MRI)等方法[22];除了MRI较少用于临床诊断,其余方法中最普遍的是DXA及QCT [23]

DXA通过测量患者的腰椎及双髋关节骨密度,获得T值,从而诊断患者骨密度是否下降[24];或采用QCT [25]方式,通过扫描患者的腰椎(如L1、L2椎体),勾画感兴趣区域(ROI),与校准体模相比较,腰椎的衰减以HU测量并使用标准化软件转换成骨矿物质当量(mg/cm3) [26],从而获得腰椎的骨密度,以此诊断骨密度减低及骨质疏松。此外,QUS通常在前臂或跟骨等周围区域进行测量,通过被测量区域的骨骼对超声波的衰减反映骨质密度的变化,测量结果包含骨密度及骨骼力学的情况[27]

国内对于肌少症的研究尚且不多,目前临床诊断主要依据亚洲肌少症工作分析组的标准,采用临床测量6米日常歩速以及握力的综合结果[28]。2018年的欧洲肌少症共识显示,DXA及QCT也可对肌肉质量进行评估[15]。DXA主要通过测量包括肌肉质量及肌肉脂肪含量在内的全身组分,从而评估四肢瘦质量,对全身体成分分析,从而获得患者肌肉质量情况[29]。QCT可用于区分定量和定性的肌肉脂肪成分,识别肌肉中的脂肪浸润区域,是评估患者一般营养状态的常用方法,因此被广泛用于科研和专科临床工作进行肌少症的研究[30]

此外还有其他影像学诊断方法,如磁共振造影(MRI)可通过某些部位或层面的扫面结果来推测全身的骨骼肌和脂肪组织的体积,也可以用于测量局部如肩部肌肉的状况评估[29] [31] [32];超声(US)可测量肌群的肌肉厚度,肌肉的横截面积(CSA)从而诊断肌肉质量状况,并对营养风险进行评估[29] [32]

在临床诊断COPD及肌少–骨质疏松症中,影像方法提供了一种无创、直观的评估手段,能够精确测量肺部结构变化和肌肉质量,识别骨密度降低和骨折风险,从而为疾病的早期诊断、严重程度评估及治疗方案制定提供重要依据。

目前,COPD患者的临床诊断多依赖于肺功能检查及胸部CT扫描。肺功能检查在COPD诊断中具有无创、重复性高、可行性好的特点,但该检查无法反映患者内部解剖结构的改变,对早期/轻微并发症诊断的敏感度极低,无法正确评估疾病进程[33],因此需要更明确的诊断方法用于临床COPD肌骨合并症的早期诊断。

4. 影像筛查的不足与挑战

然而,在COPD患者中,肌少症和骨质疏松症的影像筛查面临诸多不足与挑战。首先,现有的影像学方法如QCT及DXA,虽然能够有效评估肺功能和骨密度,但这些技术往往局限于特定的解剖部位,可能未能全面反映全身肌肉和骨骼的状况。其次,肌少症和骨质疏松症的诊断标准不一,导致影像结果的解读存在主观性和变异性。此外,目前COPD患者的临床诊断方法,如肺功能、胸部CT等无法同时对COPD患者的骨密度及肌肉质量进行测量,从而缺乏临床筛查骨质疏松及肌少症的影像学方法。

因此,未来关于COPD患者肌骨合并症的影像研究应在胸部CT的基础上结合QCT等技术,从而及时对COPD患者进行诊断及筛查。同时,应探索人工智能技术、影像组学结合传统影像学方法在COPD患者并发症诊断中的潜力,从而提高诊断的准确性。

5. 结论

COPD与肌少症和骨质疏松症之间存在复杂而密切的关系。COPD的慢性炎症和活动限制不仅影响肺功能,还可能导致全身性肌肉萎缩和骨质流失。这三者之间可形成恶性循环:COPD加重会导致身体机能下降,从而增加肌少症和骨质疏松的风险,而肌少症和骨质疏松的发生又会进一步限制患者的活动能力,降低生活质量。因此,早期临床筛查COPD患者的肌少症及骨质疏松症,对制定综合性治疗方案至关重要,有助于改善患者的预后和整体健康状态。

影像诊断在临床诊断COPD患者的肌肉和骨骼合并症提供了关键的诊断工具,通过早期影像诊断,发现肌少症和骨质疏松,进而评估其对COPD病程的影响。然而,目前影像学评估在敏感性和特异性方面仍存在不足,尤其是在早期诊断和疾病分级方面。因此,改进影像诊断方法使其更全面地评估肺部与骨骼、肌肉之间的相互作用,变得尤为必要。同时,建立标准化的影像评估协议和结合多模态成像的方法,将有助于临床医生提供更为精准的个体化治疗方案,从而有效改善COPD患者的预后。

参考文献

[1] Pauwels, R.A., Buist, A.S., Ma, P., Jenkins, C.R., Hurd, S.S., GOLD Scientific Committee (2001) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): Executive Summary. Respiratory Care, 46, 798-825.
[2] Wang, C., et al. (2018) Prevalence and Risk Factors of chronic Obstructive Pulmonary Disease in China (the China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717.
[3] Habraken, J.M., van der Wal, W.M., ter Riet, G., Weersink, E.J.M., Toben, F. and Bindels, P.J.E. (2010) Health-Related Quality of Life and Functional Status in End-Stage COPD: A Longitudinal Study. European Respiratory Journal, 37, 280-288.
https://doi.org/10.1183/09031936.00149309
[4] Janssen, D.J.A., Franssen, F.M.E., Wouters, E.F.M., Schols, J.M.G.A. and Spruit, M.A. (2011) Impaired Health Status and Care Dependency in Patients with Advanced COPD or Chronic Heart Failure. Quality of Life Research, 20, 1679-1688.
https://doi.org/10.1007/s11136-011-9892-9
[5] Majumdar, S.R., Villa-Roel, C., Lyons, K.J. and Rowe, B.H. (2010) Prevalence and Predictors of Vertebral Fracture in Patients with Chronic Obstructive Pulmonary Disease. Respiratory Medicine, 104, 260-266.
https://doi.org/10.1016/j.rmed.2009.09.013
[6] Yu, X., Sun, S., Zhang, S., Hao, Q., Zhu, B., Teng, Y., et al. (2022) A Pooled Analysis of the Association between Sarcopenia and Osteoporosis. Medicine, 101, e31692.
https://doi.org/10.1097/md.0000000000031692
[7] 王青青, 苏晓雨, 彭玉晓, 等. 基于CT的骨骼肌参数诊断肿瘤病人肌少症[J]. 国际医学放射学杂志, 2021, 44(3): 324-329.
[8] 黄宏兴, 史晓林, 李盛华, 等. 肌少-骨质疏松症专家共识[J]. 中国骨质疏松杂志, 2022, 28(11): 1561-1570.
[9] Huo, Y.R., Suriyaarachchi, P., Gomez, F., Curcio, C.L., Boersma, D., Muir, S.W., et al. (2015) Phenotype of Osteosarcopenia in Older Individuals with a History of Falling. Journal of the American Medical Directors Association, 16, 290-295.
https://doi.org/10.1016/j.jamda.2014.10.018
[10] Wilson, A.C., Bon, J.M., Mason, S., Diaz, A.A., Lutz, S.M., Estepar, R.S.J., et al. (2022) Increased Chest CT Derived Bone and Muscle Measures Capture Markers of Improved Morbidity and Mortality in COPD. Respiratory Research, 23, Article No. 311.
https://doi.org/10.1186/s12931-022-02237-w
[11] Lee, J.S.W., Auyeung, T., Kwok, T., Lau, E.M.C., Leung, P. and Woo, J. (2007) Associated Factors and Health Impact of Sarcopenia in Older Chinese Men and Women: A Cross-Sectional Study. Gerontology, 53, 404-410.
https://doi.org/10.1159/000107355
[12] Dey, D.K., Bosaeus, I., Lissner, L. and Steen, B. (2009) Changes in Body Composition and Its Relation to Muscle Strength in 75-Year-Old Men and Women: A 5-Year Prospective Follow-Up Study of the NORA Cohort in Göteborg, Sweden. Nutrition, 25, 613-619.
https://doi.org/10.1016/j.nut.2008.11.023
[13] Smith, M. and Wrobel, J. (2014) Epidemiology and Clinical Impact of Major Comorbidities in Patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 9, 871-888.
https://doi.org/10.2147/copd.s49621
[14] Bordoni, B., Marelli, F., Morabito, B., Sacconi, B., Caiazzo, P. and Castagna, R. (2018) Low Back Pain and Gastroesophageal Reflux in Patients with COPD: The Disease in the Breath. International Journal of Chronic Obstructive Pulmonary Disease, 13, 325-334.
https://doi.org/10.2147/copd.s150401
[15] Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., et al. (2018) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31.
https://doi.org/10.1093/ageing/afy169
[16] Papaioannou, A., Watts, N.B., Kendler, D.L., Yuen, C.K., Adachi, J.D. and Ferko, N. (2002) Diagnosis and Management of Vertebral Fractures in Elderly Adults. The American Journal of Medicine, 113, 220-228.
https://doi.org/10.1016/s0002-9343(02)01190-7
[17] Chen, Y., Ramsook, A.H., Coxson, H.O., Bon, J. and Reid, W.D. (2019) Prevalence and Risk Factors for Osteoporosis in Individuals with COPD: A Systematic Review and Meta-Analysis. Chest, 156, 1092-1110.
https://doi.org/10.1016/j.chest.2019.06.036
[18] Cooper, C., Atkinson, E.J., MichaelO’Fallon, W. and Dr. Melton, J.L. (1992) Incidence of Clinically Diagnosed Vertebral Fractures: A Population-Based Study in Rochester, Minnesota, 1985-1989. Journal of Bone and Mineral Research, 7, 221-227.
https://doi.org/10.1002/jbmr.5650070214
[19] Wang, Y., Wang, Y., Zhan, J., Tang, Z., He, J., Tan, P., et al. (2015) Sarco-Osteoporosis: Prevalence and Association with Frailty in Chinese Community-Dwelling Older Adults. International Journal of Endocrinology, 2015, Article ID: 482940.
https://doi.org/10.1155/2015/482940
[20] Clynes, M.A., Gregson, C.L., Bruyère, O., Cooper, C. and Dennison, E.M. (2020) Osteosarcopenia: Where Osteoporosis and Sarcopenia Collide. Rheumatology, 60, 529-537.
https://doi.org/10.1093/rheumatology/keaa755
[21] Hwang, J.A., Kim, Y.S., Leem, A.Y., Park, M.S., Kim, S.K., Chang, J., et al. (2017) Clinical Implications of Sarcopenia on Decreased Bone Density in Men with COPD. Chest, 151, 1018-1027.
https://doi.org/10.1016/j.chest.2016.12.006
[22] Kirk, B., Miller, S., Zanker, J. and Duque, G. (2020) A Clinical Guide to the Pathophysiology, Diagnosis and Treatment of Osteosarcopenia. Maturitas, 140, 27-33.
https://doi.org/10.1016/j.maturitas.2020.05.012
[23] Bodduluri, S., Reinhardt, J.M., Hoffman, E.A., Newell, J.D., Nath, H., Dransfield, M.T., et al. (2017) Signs of Gas Trapping in Normal Lung Density Regions in Smokers. American Journal of Respiratory and Critical Care Medicine, 196, 1404-1410.
https://doi.org/10.1164/rccm.201705-0855oc
[24] Arceo-Mendoza, R.M. and Camacho, P.M. (2021) Postmenopausal Osteoporosis. Endocrinology and Metabolism Clinics of North America, 50, 167-178.
https://doi.org/10.1016/j.ecl.2021.03.009
[25] Lupsa, B.C. and Insogna, K. (2015) Bone Health and Osteoporosis. Endocrinology and Metabolism Clinics of North America, 44, 517-530.
https://doi.org/10.1016/j.ecl.2015.05.002
[26] Adams, J.E. (2009) Quantitative Computed Tomography. European Journal of Radiology, 71, 415-424.
https://doi.org/10.1016/j.ejrad.2009.04.074
[27] Moayyeri, A., Adams, J.E., Adler, R.A., Krieg, M., Hans, D., Compston, J., et al. (2011) Quantitative Ultrasound of the Heel and Fracture Risk Assessment: An Updated Meta-Analysis. Osteoporosis International, 23, 143-153.
https://doi.org/10.1007/s00198-011-1817-5
[28] Chen, L.-K., Woo, J., Assantachai, P., et al. (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21, 300-307.e2.
[29] Boutin, R.D., Yao, L., Canter, R.J. and Lenchik, L. (2015) Sarcopenia: Current Concepts and Imaging Implications. American Journal of Roentgenology, 205, W255-W266.
https://doi.org/10.2214/ajr.15.14635
[30] Beaudart, C., McCloskey, E., Bruyère, O., Cesari, M., Rolland, Y., Rizzoli, R., et al. (2016) Sarcopenia in Daily Practice: Assessment and Management. BMC Geriatrics, 16, Article No. 170.
https://doi.org/10.1186/s12877-016-0349-4
[31] Schweitzer, L., Geisler, C., Pourhassan, M., Braun, W., Glüer, C., Bosy-Westphal, A., et al. (2015) What Is the Best Reference Site for a Single MRI Slice to Assess Whole-Body Skeletal Muscle and Adipose Tissue Volumes in Healthy Adults? The American Journal of Clinical Nutrition, 102, 58-65.
https://doi.org/10.3945/ajcn.115.111203
[32] Amini, B., Boyle, S.P., Boutin, R.D. and Lenchik, L. (2019) Approaches to Assessment of Muscle Mass and Myosteatosis on Computed Tomography: A Systematic Review. The Journals of Gerontology: Series A, 74, 1671-1678.
https://doi.org/10.1093/gerona/glz034
[33] Vestbo, J. and Rennard, S. (2010) Chronic Obstructive Pulmonary Disease Biomarker(s) for Disease Activity Needed—Urgently. American Journal of Respiratory and Critical Care Medicine, 182, 863-864.
https://doi.org/10.1164/rccm.201004-0602ed