[1]
|
Miao, L., Targher, G., Byrne, C.D., Cao, Y. and Zheng, M. (2024) Current Status and Future Trends of the Global Burden of MASLD. Trends in Endocrinology & Metabolism, 35, 697-707. https://doi.org/10.1016/j.tem.2024.02.007
|
[2]
|
Zhang, G.Y. and Brandman, D. (2025) A Clinical Update on MASLD. JAMA Internal Medicine, 185, 105-107. https://doi.org/10.1001/jamainternmed.2024.6431
|
[3]
|
Younossi, Z.M., Paik, J.M., Stepanova, M., Ong, J., Alqahtani, S. and Henry, L. (2024) Clinical Profiles and Mortality Rates Are Similar for Metabolic Dysfunction-Associated Steatotic Liver Disease and Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 80, 694-701. https://doi.org/10.1016/j.jhep.2024.01.014
|
[4]
|
Wang, X., Zhang, L. and Dong, B. (2024) Molecular Mechanisms in MASLD/MASH-Related HCC. Hepatology. Online Ahead of Print. https://doi.org/10.1097/hep.0000000000000786
|
[5]
|
Ioannou, G.N. (2025) MASLD and Non-Liver-Related Mortality: Association, Independent Association and Causality. Journal of Hepatology. Ahead of Print. https://doi.org/10.1016/j.jhep.2025.04.020
|
[6]
|
Targher, G., Byrne, C.D. and Tilg, H. (2024) MASLD: A Systemic Metabolic Disorder with Cardiovascular and Malignant Complications. Gut, 73, 691-702. https://doi.org/10.1136/gutjnl-2023-330595
|
[7]
|
Fan, X., Song, Y. and Zhao, J. (2024) Evolving Liver Disease Insights from NAFLD to MASLD. Trends in Endocrinology & Metabolism, 35, 683-686. https://doi.org/10.1016/j.tem.2024.02.012
|
[8]
|
Powell, E.E. (2025) A New Treatment and Updated Clinical Practice Guidelines for MASLD. Nature Reviews Gastroenterology & Hepatology, 22, 88-89. https://doi.org/10.1038/s41575-024-01014-y
|
[9]
|
Steinberg, G.R., Valvano, C.M., De Nardo, W. and Watt, M.J. (2025) Integrative Metabolism in MASLD and MASH: Pathophysiology and Emerging Mechanisms. Journal of Hepatology. Ahead of Print. https://doi.org/10.1016/j.jhep.2025.02.033
|
[10]
|
Byrne, C.D., Targher, G. and Tilg, H. (2024) Thyroid Hormone Receptor-Beta Agonists: New MASLD Therapies on the Horizon. Gut, 73, 573-581. https://doi.org/10.1136/gutjnl-2023-330596
|
[11]
|
张杰, 魏颖, 苏丽娅, 等. 中药鞣质类成分治疗代谢性疾病研究进展[J]. 世界科学技术-中医药现代化, 2024, 26(6): 1546-1552.
|
[12]
|
Zhang, H., Tian, J., Lian, F., Li, M., Liu, W., Zhen, Z., et al. (2021) Therapeutic Mechanisms of Traditional Chinese Medicine to Improve Metabolic Diseases via the Gut Microbiota. Biomedicine & Pharmacotherapy, 133, Article 110857. https://doi.org/10.1016/j.biopha.2020.110857
|
[13]
|
Zhu, L., Li, S., Zheng, W., Ni, W., Cai, M. and Liu, H. (2023) Targeted Modulation of Gut Microbiota by Traditional Chinese Medicine and Natural Products for Liver Disease Therapy. Frontiers in Immunology, 14, Article 110857. https://doi.org/10.3389/fimmu.2023.1086078
|
[14]
|
Zhou, H., Ma, C., Wang, C., Gong, L., Zhang, Y. and Li, Y. (2021) Research Progress in Use of Traditional Chinese Medicine Monomer for Treatment of Non-Alcoholic Fatty Liver Disease. European Journal of Pharmacology, 898, Article 173976. https://doi.org/10.1016/j.ejphar.2021.173976
|
[15]
|
张月华, 蒋才武. 抗肿瘤中药药效物质筛选与辨识的研究方法进展[J]. 中南药学, 2020, 18(9): 1517-1522.
|
[16]
|
Lu, Q., La, M., Wang, Z., Huang, J., Zhu, J. and Zhang, D. (2025) Investigation of Active Components of Meconopsis integrifolia (Maxim.) Franch in Mitigating Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 26, Article 50. https://doi.org/10.3390/ijms26010050
|
[17]
|
Liu, Y., Lin, L., Tung, Y., Ho, S., Chen, Y., Lin, C., et al. (2017) Rhododendron oldhamii Leaf Extract Improves Fatty Liver Syndrome by Increasing Lipid Oxidation and Decreasing the Lipogenesis Pathway in Mice. International Journal of Medical Sciences, 14, 862-870. https://doi.org/10.7150/ijms.19553
|
[18]
|
Kim, S.Y., Lee, J.Y., Jhin, C., Shin, J.M., Kim, M., Ahn, H.R., et al. (2019) Reduction of Hepatic Lipogenesis by Loliolide and Pinoresinol from Lysimachia vulgaris via Degrading Liver X Receptors. Journal of Agricultural and Food Chemistry, 67, 12419-12427. https://doi.org/10.1021/acs.jafc.9b01488
|
[19]
|
廖威, 李文晴, 吕颖, 等. 基于多维谱效关系的中药质量控制与安全性评价的研究进展[J]. 中南药学, 2025, 23(1): 156-164.
|
[20]
|
Wang, S., Yang, L., Hou, A., Liu, S., Yang, L., Kuang, H., et al. (2023) Screening Hepatoprotective Effective Components of Lonicerae japonica Flos Based on the Spectrum-Effect Relationship and Its Mechanism Exploring. Food Science and Human Wellness, 12, 283-294. https://doi.org/10.1016/j.fshw.2022.07.018
|
[21]
|
Lv, Z., Ouyang, H., Zuo, F., Ge, M., Wu, M., Zhao, L., et al. (2024) Spectrum-Effect Relationship Study between Ultra‐High‐Performance Liquid Chromatography Fingerprints and Anti‐Hepatoma Effect in Vitro of Cnidii Fructus. Biomedical Chromatography, 38, e5847. https://doi.org/10.1002/bmc.5847
|
[22]
|
王恒, 李梦奇, 李燊星, 等. 决明子总蒽醌提取物抗氟尿嘧啶致小鼠肝损伤的谱效关系[J]. 南方医科大学学报, 2023, 43(5): 825-831.
|
[23]
|
Huang, M., Li, R., Yang, M., Zhou, A., Wu, H., Li, Z., et al. (2022) Discovering the Potential Active Ingredients of Qi-Yu-San-Long Decoction for Anti-Oxidation, Inhibition of Non-Small Cell Lung Cancer Based on the Spectrum-Effect Relationship Combined with Chemometric Methods. Frontiers in Pharmacology, 13, Article 989139. https://doi.org/10.3389/fphar.2022.989139
|
[24]
|
Zhang, H., Chen, G., Zhang, Y., Yang, M., Chen, J. and Guo, M. (2022) Potential Hypoglycemic, Hypolipidemic, and Anti-Inflammatory Bioactive Components in Nelumbo nucifera Leaves Explored by Bioaffinity Ultrafiltration with Multiple Targets. Food Chemistry, 375, Article 131856. https://doi.org/10.1016/j.foodchem.2021.131856
|
[25]
|
Liu, Y., Muema, F.W., Zhang, Y. and Guo, M. (2021) Acyl Quinic Acid Derivatives Screened Out from Carissa Spinarum by Sod-Affinity Ultrafiltration LC-MS and Their Antioxidative and Hepatoprotective Activities. Antioxidants, 10, Article 1302. https://doi.org/10.3390/antiox10081302
|
[26]
|
Zeng, X., Wang, S., Peng, Z., Wang, M., Zhao, K., Xu, B.B., et al. (2024) Rapid Screening and Sensing of Stearoyl-CoA Desaturase 1 (SCD1) Inhibitors from Ginger and Their Efficacy in Ameliorating Non-Alcoholic Fatty Liver Disease. Journal of Food Measurement and Characterization, 18, 6843-6857. https://doi.org/10.1007/s11694-024-02697-2
|
[27]
|
Li, Y., Chen, Y., Zhang, H., Lam, C.W.K., Li, Z., Wang, C., et al. (2020) Immobilization of Cell Membrane onto a Glucose-Zn-Based Porous Coordination Polymer and Its Application to Rapid Screening of Potentially Active Compounds from Vaccinium corymbosum L. Leaves. Microchimica Acta, 187, Article No. 630. https://doi.org/10.1007/s00604-020-04612-0
|
[28]
|
Liang, W., Zhou, K., Jian, P., Chang, Z., Zhang, Q., Liu, Y., et al. (2021) Ginsenosides Improve Nonalcoholic Fatty Liver Disease via Integrated Regulation of Gut Microbiota, Inflammation and Energy Homeostasis. Frontiers in Pharmacology, 12, Article 622841. https://doi.org/10.3389/fphar.2021.622841
|
[29]
|
Li, Z., Tian, S., Wu, Z., Xu, X., Lei, L., Li, Y., et al. (2021) Pharmacokinetic Herb-Disease-Drug Interactions: Effect of Ginkgo Biloba Extract on the Pharmacokinetics of Pitavastatin, a Substrate of Oatp1b2, in Rats with Non-Alcoholic Fatty Liver Disease. Journal of Ethnopharmacology, 280, Article 114469. https://doi.org/10.1016/j.jep.2021.114469
|
[30]
|
Tang, H., Guo, K.X., Huang, K.E., Li, Y.F., Chen, W., Wei, H.Y., et al. (2024) An Assessment of the Antihyperlipidemic Ingredients of Qi Ge Decoction Based on Metabolomics Combined with Serum Pharmacochemistry. Biomedical Chromatography, 38, e5922. https://doi.org/10.1002/bmc.5922
|
[31]
|
Xu, J., Jin, Y., Song, C., Chen, G., Li, Q., Yuan, H., et al. (2023) Comparative Analysis of the Synergetic Effects of Diwuyanggan Prescription on High Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Using Untargeted Metabolomics. Heliyon, 9, e22151. https://doi.org/10.1016/j.heliyon.2023.e22151
|
[32]
|
Wang, W., Qin, J., Bai, S., Tian, J., Zhou, Y., Qin, X., et al. (2025) Integrative Transcriptomics and Lipidomics Unravels the Amelioration Effects of Radix Bupleuri on Non-Alcoholic Fatty Liver Disease. Journal of Ethnopharmacology, 338, Article 119005. https://doi.org/10.1016/j.jep.2024.119005
|
[33]
|
Tong, X., Xu, S. and Zhai, D. (2022) Multiple Mechanisms of Shenqi Pill in Treating Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Molecular Docking. Evidence-Based Complementary and Alternative Medicine, 2022, Article 2384140. https://doi.org/10.1155/2022/2384140
|
[34]
|
Liu, G., Yang, L., Tang, Y., Lin, J., Wang, F., Shen, J., et al. (2024) Study on the Action Mechanism of the Polygonum perfoliatum L. on Non-Alcoholic Fatty Liver Disease, Based on Network Pharmacology and Experimental Validation. Journal of Ethnopharmacology, 319, Article 117330. https://doi.org/10.1016/j.jep.2023.117330
|
[35]
|
Li, J., Arest, S., Olszowy, B., Gordon, J., Barrero, C.A. and Perez-Leal, O. (2023) Crispr/Cas9-Based Screening of FDA-Approved Drugs for NRF2 Activation: A Novel Approach to Discover Therapeutics for Non-Alcoholic Fatty Liver Disease. Antioxidants, 12, Article 1363. https://doi.org/10.3390/antiox12071363
|
[36]
|
Wang, N., Lu, X., Wang, J., Wang, H., Zhang, B., Zhao, W., et al. (2023) Quasi-LD-Targeted and ONOO–-Responsive Fluorescent Probe for Investigating the Interaction of Nonalcoholic Fatty Liver with Drug-Induced Liver Injury. Analytical Chemistry, 95, 5967-5975. https://doi.org/10.1021/acs.analchem.2c05674
|
[37]
|
Li, W., Wang, L., Yin, S., Lai, H., Yuan, L. and Zhang, X. (2020) Engineering a Highly Selective Probe for Ratiometric Imaging of H2Sn and Revealing Its Signaling Pathway in Fatty Liver Disease. Chemical Science, 11, 7991-7999. https://doi.org/10.1039/d0sc03336g
|
[38]
|
Yan, M., Li, X., Liu, J., Li, X., Wu, S., Zhou, M., et al. (2024) A Membrane-Anchored Fluorescent Probe for the Detection of Ph in Living Cells and NAFLD. Journal of Materials Chemistry B, 12, 11455-11463. https://doi.org/10.1039/d4tb01767f
|
[39]
|
Zhang, J., Zhang, W., Yang, L., Zhao, W., Liu, Z., Wang, E., et al. (2023) Phytochemical Gallic Acid Alleviates Nonalcoholic Fatty Liver Disease via AMPK-ACC-PPARa Axis through Dual Regulation of Lipid Metabolism and Mitochondrial Function. Phytomedicine, 109, Article 154589. https://doi.org/10.1016/j.phymed.2022.154589
|
[40]
|
Huang, Y., Wang, L., Zhang, M., Nie, Y., Yang, J., Meng, W., et al. (2023) Caffeine Can Alleviate Non-Alcoholic Fatty Liver Disease by Augmenting LDLR Expression via Targeting EGFR. Food & Function, 14, 3269-3278. https://doi.org/10.1039/d2fo02701a
|
[41]
|
Zhang, N., He, H., Zhang, M., Lv, X., Li, W., Wang, R., et al. (2022) Investigation of the Interactions between Three Flavonoids and Human Serum Albumin by Isothermal Titration Calorimetry, Spectroscopy, and Molecular Docking. New Journal of Chemistry, 46, 12814-12824. https://doi.org/10.1039/d2nj00314g
|
[42]
|
Du, K., Li, S., Li, C., Li, P., Miao, C., Luo, T., et al. (2021) Modeling Nonalcoholic Fatty Liver Disease on a Liver Lobule Chip with Dual Blood Supply. Acta Biomaterialia, 134, 228-239. https://doi.org/10.1016/j.actbio.2021.07.013
|
[43]
|
Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D. and Romeo, S. (2019) Human Multilineage 3D Spheroids as a Model of Liver Steatosis and Fibrosis. International Journal of Molecular Sciences, 20, Article 1629. https://doi.org/10.3390/ijms20071629
|
[44]
|
Teng, Y., Zhao, Z., Tasnim, F., Huang, X. and Yu, H. (2021) A Scalable and Sensitive Steatosis Chip with Long-Term Perfusion of in Situ Differentiated HepaRG Organoids. Biomaterials, 275, Article 120904. https://doi.org/10.1016/j.biomaterials.2021.120904
|