[1]
|
Tsilingiri, K., Fornasa, G. and Rescigno, M. (2017) Thymic Stromal Lymphopoietin: To Cut a Long Story Short. Cellular and Molecular Gastroenterology and Hepatology, 3, 174-182. https://doi.org/10.1016/j.jcmgh.2017.01.005
|
[2]
|
Marković, I. and Savvides, S.N. (2020) Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Frontiers in Immunology, 11, Article No. 1557. https://doi.org/10.3389/fimmu.2020.01557
|
[3]
|
Smolinska, S., Antolín-Amérigo, D., Popescu, F. and Jutel, M. (2023) Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. International Journal of Molecular Sciences, 24, Article No. 12725. https://doi.org/10.3390/ijms241612725
|
[4]
|
Sims, J.E., Williams, D.E., Morrissey, P.J., Garka, K., Foxworthe, D., Price, V., et al. (2000) Molecular Cloning and Biological Characterization of a Novel Murine Lymphoid Growth Factor. The Journal of Experimental Medicine, 192, 671-680. https://doi.org/10.1084/jem.192.5.671
|
[5]
|
Xie, Y., Takai, T., Chen, X., Okumura, K. and Ogawa, H. (2012) Long TSLP Transcript Expression and Release of TSLP Induced by TLR Ligands and Cytokines in Human Keratinocytes. Journal of Dermatological Science, 66, 233-237. https://doi.org/10.1016/j.jdermsci.2012.03.007
|
[6]
|
Martin Mena, A., Langlois, A., Speca, S., Schneider, L., Desreumaux, P., Dubuquoy, L., et al. (2017) The Expression of the Short Isoform of Thymic Stromal Lymphopoietin in the Colon Is Regulated by the Nuclear Receptor Peroxisome Proliferator Activated Receptor-Gamma and Is Impaired during Ulcerative Colitis. Frontiers in Immunology, 8, Article No. 1052. https://doi.org/10.3389/fimmu.2017.01052
|
[7]
|
Braile, M., Fiorelli, A., Sorriento, D., Di Crescenzo, R.M., Galdiero, M.R., Marone, G., et al. (2021) Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells, 10, Article No. 2012. https://doi.org/10.3390/cells10082012
|
[8]
|
Kitajima, M., Kubo, M., Ziegler, S.F. and Suzuki, H. (2020) Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. The Journal of Immunology, 205, 27-35. https://doi.org/10.4049/jimmunol.1900758
|
[9]
|
Han, F., Guo, H., Wang, L., Zhang, Y., Sun, L., Dai, C., et al. (2020) TSLP Produced by Aspergillus fumigatus-Stimulated Dcs Promotes a Th17 Response through the JAK/STAT Signaling Pathway in Fungal Keratitis. Investigative Opthalmology & Visual Science, 61, Article No. 24. https://doi.org/10.1167/iovs.61.14.24
|
[10]
|
Corren, J. and Ziegler, S.F. (2019) TSLP: From Allergy to Cancer. Nature Immunology, 20, 1603-1609. https://doi.org/10.1038/s41590-019-0524-9
|
[11]
|
Burkard-Mandel, L., O'Neill, R., Colligan, S., Seshadri, M. and Abrams, S.I. (2018) Tumor-Derived Thymic Stromal Lymphopoietin Enhances Lung Metastasis through an Alveolar Macrophage-Dependent Mechanism. OncoImmunology, 7, e1419115. https://doi.org/10.1080/2162402x.2017.1419115
|
[12]
|
Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article No. 978. https://doi.org/10.3389/fimmu.2018.00978
|
[13]
|
Ebina-Shibuya, R. and Leonard, W.J. (2022) Role of Thymic Stromal Lymphopoietin in Allergy and Beyond. Nature Reviews Immunology, 23, 24-37. https://doi.org/10.1038/s41577-022-00735-y
|
[14]
|
Harbeck, N. and Gnant, M. (2017) Breast Cancer. The Lancet, 389, 1134-1150. https://doi.org/10.1016/s0140-6736(16)31891-8
|
[15]
|
Pedroza-Gonzalez, A., Xu, K., Wu, T., Aspord, C., Tindle, S., Marches, F., et al. (2011) Thymic Stromal Lymphopoietin Fosters Human Breast Tumor Growth by Promoting Type 2 Inflammation. Journal of Experimental Medicine, 208, 479-490. https://doi.org/10.1084/jem.20102131
|
[16]
|
Olkhanud, P.B., Rochman, Y., Bodogai, M., Malchinkhuu, E., Wejksza, K., Xu, M., et al. (2011) Thymic Stromal Lymphopoietin Is a Key Mediator of Breast Cancer Progression. The Journal of Immunology, 186, 5656-5662. https://doi.org/10.4049/jimmunol.1100463
|
[17]
|
Kuan, E.L. and Ziegler, S.F. (2018) A Tumor-Myeloid Cell Axis, Mediated via the Cytokines Il-1α and TSLP, Promotes the Progression of Breast Cancer. Nature Immunology, 19, 366-374. https://doi.org/10.1038/s41590-018-0066-6
|
[18]
|
Ai, H. (2022) GSEA-SDBE: A Gene Selection Method for Breast Cancer Classification Based on GSEA and Analyzing Differences in Performance Metrics. PLOS ONE, 17, e0263171. https://doi.org/10.1371/journal.pone.0263171
|
[19]
|
Ohara, M., Yamaguchi, Y., Matsuura, K., Murakami, S., Arihiro, K. and Okada, M. (2008) Possible Involvement of Regulatory T Cells in Tumor Onset and Progression in Primary Breast Cancer. Cancer Immunology, Immunotherapy, 58, 441-447. https://doi.org/10.1007/s00262-008-0570-x
|
[20]
|
Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T. and Whiteside, T.L. (2007) A Unique Subset of CD4+CD25highFoxp3+ T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates Suppression in the Tumor Microenvironment. Clinical Cancer Research, 13, 4345-4354. https://doi.org/10.1158/1078-0432.ccr-07-0472
|
[21]
|
Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., et al. (2007) Tumor Evasion of the Immune System by Converting CD4+CD25− T Cells into CD4+CD25+ T Regulatory Cells: Role of Tumor-Derived TGF-β. The Journal of Immunology, 178, 2883-2892. https://doi.org/10.4049/jimmunol.178.5.2883
|
[22]
|
Li, H., Zhao, H., Yu, J., Su, Y., Cao, S., An, X., et al. (2011) Increased Prevalence of Regulatory T Cells in the Lung Cancer Microenvironment: A Role of Thymic Stromal Lymphopoietin. Cancer Immunology, Immunotherapy, 60, 1587-1596. https://doi.org/10.1007/s00262-011-1059-6
|
[23]
|
Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232. https://doi.org/10.1016/j.jnma.2020.03.002
|
[24]
|
Xie, F., Meng, Y., Liu, L., Chang, K., Li, H., Li, M., et al. (2013) Cervical Carcinoma Cells Stimulate the Angiogenesis through TSLP Promoting Growth and Activation of Vascular Endothelial Cells. American Journal of Reproductive Immunology, 70, 69-79. https://doi.org/10.1111/aji.12104
|
[25]
|
Zhou, W., Yang, H., Chang, K., Meng, Y., Wang, M., Yuan, M., et al. (2017) Human Thymic Stromal Lymphopoietin Promotes the Proliferation and Invasion of Cervical Cancer Cells by Downregulating MicroRNA-132 Expression. Oncology Letters, 14, 7910-7916. https://doi.org/10.3892/ol.2017.7260
|
[26]
|
Xie, F., Liu, L., Shang, W., Chang, K., Meng, Y., Mei, J., et al. (2015) The Infiltration and Functional Regulation of Eosinophils Induced by TSLP Promote the Proliferation of Cervical Cancer Cell. Cancer Letters, 364, 106-117. https://doi.org/10.1016/j.canlet.2015.04.029
|
[27]
|
Kido, M., Tanaka, J., Aoki, N., Iwamoto, S., Nishiura, H., Chiba, T., et al. (2010) Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses. Infection and Immunity, 78, 108-114. https://doi.org/10.1128/iai.00762-09
|
[28]
|
Watanabe, J., Saito, H., Miyatani, K., et al. (2015) TSLP Expression and High Serum TSLP Level Indicate a Poor Prognosis in Gastric Cancer Patients. Yonago Acta Medica, 58, 137-143.
|
[29]
|
Huang, L., Zhang, X., Wang, M., Chen, Z., Yan, Y., Gu, W., et al. (2018) Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand. Pathobiology, 86, 111-117. https://doi.org/10.1159/000493013
|
[30]
|
Refolo, M.G., Messa, C., Guerra, V., Carr, B.I. and D’Alessandro, R. (2020) Inflammatory Mechanisms of HCC Development. Cancers, 12, Article No. 641. https://doi.org/10.3390/cancers12030641
|
[31]
|
Hirata, H., Yukawa, T., Tanaka, A., Miyao, T., Fukuda, T., Fukushima, Y., et al. (2018) Th2 Cell Differentiation from Naive CD4+ T Cells Is Enhanced by Autocrine CC Chemokines in Atopic Diseases. Clinical & Experimental Allergy, 49, 474-483. https://doi.org/10.1111/cea.13313
|
[32]
|
Rochman, Y., Dienger-Stambaugh, K., Richgels, P.K., Lewkowich, I.P., Kartashov, A.V., Barski, A., et al. (2018) TSLP Signaling in CD4+ T Cells Programs a Pathogenic T Helper 2 Cell State. Science Signaling, 11, eaam8858. https://doi.org/10.1126/scisignal.aam8858
|
[33]
|
Jiang, D., Ma, X., Wu, X., Peng, L., Yin, J., Dan, Y., et al. (2015) Genetic Variations in STAT4, C2, HLA-DRB1 and HLA-DQ Associated with Risk of Hepatitis B Virus-Related Liver Cirrhosis. Scientific Reports, 5, Article No. 16278. https://doi.org/10.1038/srep16278
|
[34]
|
Pacheco, I.L., Abril, N., Morales-Prieto, N., Bautista, M.J., Zafra, R., Escamilla, A., et al. (2017) Th1/Th2 Balance in the Liver and Hepatic Lymph Nodes of Vaccinated and Unvaccinated Sheep during Acute Stages of Infection with Fasciola Hepatica. Veterinary Parasitology, 238, 61-65. https://doi.org/10.1016/j.vetpar.2017.03.022
|
[35]
|
Morrison, A.H., Byrne, K.T. and Vonderheide, R.H. (2018) Immunotherapy and Prevention of Pancreatic Cancer. Trends in Cancer, 4, 418-428. https://doi.org/10.1016/j.trecan.2018.04.001
|
[36]
|
Vizio, B., Boita, M., Cristiano, C., Mazibrada, J., Bosco, O., Novarino, A., et al. (2018) Thymic Stromal Lymphopoietin in Human Pancreatic Ductal Adenocarcinoma: Expression and Prognostic Significance. Oncotarget, 9, 32795-32809. https://doi.org/10.18632/oncotarget.25997
|
[37]
|
De Monte, L., Reni, M., Tassi, E., Clavenna, D., Papa, I., Recalde, H., et al. (2011) Intratumor T Helper Type 2 Cell Infiltrate Correlates with Cancer-Associated Fibroblast Thymic Stromal Lymphopoietin Production and Reduced Survival in Pancreatic Cancer. Journal of Experimental Medicine, 208, 469-478. https://doi.org/10.1084/jem.20101876
|
[38]
|
Protti, M.P. and De Monte, L. (2012) Cross-Talk within the Tumor Microenvironment Mediates Th2-Type Inflammation in Pancreatic Cancer. OncoImmunology, 1, 89-91. https://doi.org/10.4161/onci.1.1.17939
|
[39]
|
DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009) CD4+ T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell, 16, 91-102. https://doi.org/10.1016/j.ccr.2009.06.018
|
[40]
|
Semlali, A., Almutairi, M.H., Alamri, A., Reddy Parine, N., Arafah, M., Almadi, M.A., et al. (2021) Expression and Polymorphism of TSLP/TSLP Receptors as Potential Diagnostic Markers of Colorectal Cancer Progression. Genes, 12, Article No. 1386. https://doi.org/10.3390/genes12091386
|
[41]
|
Gupta, N., Pawar, R., Banerjee, S., Brahma, S., Rath, A., Shewale, S., et al. (2019) Spectrum and Immunophenotypic Profile of Acute Leukemia: A Tertiary Center Flow Cytometry Experience. Mediterranean Journal of Hematology and Infectious Diseases, 11, e2019017. https://doi.org/10.4084/mjhid.2019.017
|
[42]
|
Rasekh, E., Atef, A., Khalil, M., Ebeid, E., Madney, Y. and Hamdy, N. (2021) Characterization of CRLF2 Expression in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Clinical Laboratory, 67. https://doi.org/10.7754/clin.lab.2020.200414
|
[43]
|
Koschut, D., Ray, D., Li, Z., Giarin, E., Groet, J., Alić, I., et al. (2020) RAS-Protein Activation but Not Mutation Status Is an Outcome Predictor and Unifying Therapeutic Target for High-Risk Acute Lymphoblastic Leukemia. Oncogene, 40, 746-762. https://doi.org/10.1038/s41388-020-01567-7
|
[44]
|
Vetter, T., Borowski, A., Wohlmann, A., Ranjan, N., Kuepper, M., Badura, S., et al. (2016) Blockade of Thymic Stromal Lymphopoietin (TSLP) Receptor Inhibits TSLP-Driven Proliferation and Signalling in Lymphoblasts from a Subset of B-Precursor ALL Patients. Leukemia Research, 40, 38-43. https://doi.org/10.1016/j.leukres.2015.10.003
|
[45]
|
Protti, M.P. and De Monte, L. (2020) Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and-Independent Mechanisms. Frontiers in Immunology, 11, Article No. 2088. https://doi.org/10.3389/fimmu.2020.02088
|
[46]
|
Wysong, A. (2023) Squamous-Cell Carcinoma of the Skin. New England Journal of Medicine, 388, 2262-2273. https://doi.org/10.1056/nejmra2206348
|
[47]
|
Oka, T., Smith, S.S., Son, H.G., Lee, T., Oliver-Garcia, V.S., Mortaja, M., et al. (2025) T Helper 2 Cell-Directed Immunotherapy Eliminates Precancerous Skin Lesions. Journal of Clinical Investigation, 135, e183274. https://doi.org/10.1172/jci183274
|
[48]
|
Vesely, M.D. and Christensen, S.R. (2025) Type 2 Immunity to the Rescue: Enhancing Antitumor Immunity for Skin Cancer Prevention. Journal of Clinical Investigation, 135, e188018. https://doi.org/10.1172/jci188018
|
[49]
|
Demehri, S., Turkoz, A., Manivasagam, S., Yockey, L.J., Turkoz, M. and Kopan, R. (2012) Elevated Epidermal Thymic Stromal Lymphopoietin Levels Establish an Antitumor Environment in the Skin. Cancer Cell, 22, 494-505. https://doi.org/10.1016/j.ccr.2012.08.017
|
[50]
|
Yue, W., Lin, Y., Yang, X., Li, B., Liu, J. and He, R. (2016) Thymic Stromal Lymphopoietin (TSLP) Inhibits Human Colon Tumor Growth by Promoting Apoptosis of Tumor Cells. Oncotarget, 7, 16840-16854. https://doi.org/10.18632/oncotarget.7614
|
[51]
|
Marcella, S., Braile, M., Grimaldi, A.M., Soricelli, A. and Smaldone, G. (2025) Exploring Thymic Stromal Lymphopoietin in the Breast Cancer Microenvironment: A Preliminary Study. Oncology Letters, 29, Article No. 182. https://doi.org/10.3892/ol.2025.14928
|
[52]
|
Demehri, S., Cunningham, T.J., Manivasagam, S., Ngo, K.H., Moradi Tuchayi, S., Reddy, R., et al. (2016) Thymic Stromal Lymphopoietin Blocks Early Stages of Breast Carcinogenesis. Journal of Clinical Investigation, 126, 1458-1470. https://doi.org/10.1172/jci83724
|