胸腺基质淋巴细胞生成素在肿瘤微环境中的双重作用
The Dual Role of Thymic Stromal Lymphopoietin in the Tumor Microenvironment
DOI: 10.12677/acm.2025.1571995, PDF, HTML, XML,    科研立项经费支持
作者: 袁 艳, 潘 宇, 唐雪银, 罗冬立, 蒋 洋, 姜 毅:重庆医科大学附属第二医院老年医学科,重庆;董江川*:重庆医科大学附属第二医院老年医学科,重庆;重庆大学附属肿瘤医院中医肿瘤治疗中心,重庆
关键词: 胸腺基质淋巴细胞生成素肿瘤肿瘤微环境炎症免疫Thymic Stromal Lymphopoietin Tumor Tumor Microenvironment Inflammation Immunity
摘要: 胸腺基质淋巴细胞生成素(TSLP)是一种多效性细胞因子,TSLP通过与胸腺基质淋巴细胞生成素受体(TSLPR)结合发挥生物学效应。TSLP与多种自身免疫性疾病、过敏性疾病、慢性炎症以及各类肿瘤的病理进程有关。TSLP在肿瘤微环境中具有双重作用,既可通过诱导免疫抑制性微环境促进肿瘤生长、进展及转移,也可在某些特定条件下发挥抗肿瘤作用。本文详细阐述了TSLP在不同肿瘤中的作用及作用机制,旨在为深入理解TSLP在肿瘤中的作用及开发新的肿瘤治疗靶点提供理论依据。
Abstract: Thymic stromal lymphopoietin (TSLP) is a pleiotropic cytokine that exerts its biological effects by binding to the thymic stromal lymphopoietin receptor (TSLPR). TSLP is implicated in the pathological processes of various autoimmune diseases, allergic disorders, chronic inflammation, and different types of tumors. TSLP exhibits a dual role in the tumor microenvironment; it can promote tumor growth, progression, and metastasis by inducing an immunosuppressive microenvironment, while also demonstrating antitumor effects under certain specific conditions. This review elaborates on the roles and mechanisms of TSLP in different tumors, aiming to provide a theoretical basis for a deeper understanding of TSLP’s functions in tumors and the development of novel therapeutic targets for cancer treatment.
文章引用:袁艳, 潘宇, 唐雪银, 罗冬立, 蒋洋, 姜毅, 董江川. 胸腺基质淋巴细胞生成素在肿瘤微环境中的双重作用[J]. 临床医学进展, 2025, 15(7): 350-358. https://doi.org/10.12677/acm.2025.1571995

1. 引言

胸腺基质淋巴细胞生成素(TSLP)作为四螺旋束细胞因子家族的重要成员,自被发现以来,其功能逐渐从最初的胸腺淋巴细胞增殖因子扩展到在多种炎症、免疫反应及肿瘤病理过程中的关键调控因子[1]。TSLP通过与特异性受体TSLPR和IL-7Rα结合,激活JAK-STAT信号通路,进而调控一系列靶基因转录和免疫应答反[2]。TSLP在肿瘤微环境中具有双重作用,既可通过诱导免疫抑制性微环境促进肿瘤生长、进展及转移,也可在某些特定条件下发挥抗肿瘤作用。本文综述了TSLP与特异性受体的相互作用、TSLP信号通路在肿瘤中的调控机制、TSLP的促肿瘤作用及其在不同肿瘤类型中的具体表现,以及TSLP的抗肿瘤作用及其潜在机制,旨在为深入理解TSLP在肿瘤中的作用及开发新的肿瘤治疗靶点提供理论依据。

2. TSLP与特异性受体

胸腺基质淋巴细胞生成素(TSLP)作为四螺旋束细胞因子家族的成员,是一种与IL-7类似的多效性细胞因子[3]。自TSLP作为小鼠胸腺基质细胞系上清液中的一种活性因子首次被发现以来,学者对于其作用功能的认知从最初的胸腺淋巴细胞增殖因子,转变到现在的一种在多种炎症、免疫反应以及肿瘤的病理过程中发挥重要作用的多效性细胞因子[3] [4]。已知在人TSLP中具有两种亚型,分别是长型TSLP (lfTSLP)和短型TSLP (sfTSLP)。sfTSLP的转录起始于内含子2中的启动子,其氨基端被截短,与lfTSLP有相同的羧基端,总共由63个氨基酸组成,而lfTSLP由159个氨基酸构成[5]。sfTSLP mRNA在角质形成细胞、上皮细胞和肺成纤维细胞中组成型表达,并且不被炎症上调[6],而lfTSLP被TLR配体诱导。sfTSLP具有抗菌及抗炎功能,相反lfTSLP具有促炎功能[7]。sfTSLP和lfTSLP的不同调节作用可能是导致TSLP在肿瘤微环境中体现双重作用的原因之一。

人和小鼠TSLP通过与胸腺基质淋巴细胞生成素受体(TSLPR)和IL-7受体-α (IL-7Rα)组成的高亲和力异二聚体复合物结合来发挥其生物活性。TSLPR广泛表达于T细胞、B细胞、树突细胞、NK细胞、肥大细胞以及单核细胞等免疫细胞,以及心、肝、肾、肺和骨豁肌等组织中[8]。TSLP/TSLPR通过广泛的受体表达模式介导多种肿瘤的病理生理进程。

3. TSLP信号通路在肿瘤中的调控机制

TSLP主要通过与包含IL-7Rα和共同细胞因子受体γ链的异二聚体受体结合激活Janus激酶(JAK)的信号转导和转录激活因子(STAT)激活,JAK的底物为STAT,STAT被JAK磷酸化后发生二聚化,STAT形成二聚体后,STAT与受体分离,转位到核内,结合到DNA序列,从而调控一系列靶基因转录和随后紧密协调的免疫应答反应[9] [10]。其主要通过激活JAK 1和JAK 2影响STAT 5A和STAT 5B,进一步诱导Th2细胞介导的免疫反应而影响肿瘤相关炎症微环境的形成[2]

4. TSLP的促肿瘤作用

4.1. TSLP在肿瘤微环境中的促瘤作用

慢性炎症与肿瘤的发展和进展紧密相关,Th2反应相关性慢性炎症被认为在促进肿瘤生长、进展及转移过程中发挥重要作用。TSLP通过诱导免疫抑制性微环境发挥促瘤作用。TSLP活化的DCs (TSLP-DC)高表达OX40L,诱导产生调节性T细胞(Tregs)和产生IL-13的CD4+ T细胞,同时抑制Th1和细胞毒性T细胞(CTL)反应[11]。Tregs进一步抑制抗肿瘤免疫。TSLP可直接或间接招募髓系来源抑制细胞(MDSCs),增强其免疫抑制功能。TSLP可诱导巨噬细胞向具有促血管生成、促转移和组织重塑功能的M2型转化间接发挥促瘤作用,此外TSLP-DC还可抑制NK细胞的细胞毒性,促进肿瘤细胞发生上皮–间质转化(EMT),增强肿瘤转移能力及免疫逃逸能力[12]。TSLP刺激CAFs等产生重塑细胞外基质成分和蛋白酶,促进肿瘤侵袭转移[13]

4.2. TSLP与乳腺癌

乳腺癌是女性中最常见的恶性肿瘤之一,严重威胁女性的健康和生命。尽管近年来乳腺癌的诊断和治疗取得了显著进展,但对于晚期和转移性乳腺癌患者,预后仍然不理想[14]。因此,深入研究乳腺癌的发病机制,寻找新的治疗靶点具有重要的临床意义。研究表明[15],TSLP可通过促进2型炎症反应促进人乳腺癌肿瘤的生长。人乳腺癌细胞可直接产生TSLP,但TSLP从癌细胞中释放的具体机制尚不明确。乳腺癌肿瘤上清液能够以TSLP依赖的方式诱导树突状细胞(DCs)表达OX40L。在体外实验中,OX40L阳性的树突状细胞可产生白细胞介素-13 (IL-13)和肿瘤坏死因子(TNF),进而促进炎症性Th2细胞的发育。此外,在异种移植肿瘤模型中,通过使用TSLP或OX40L的中和抗体,可抑制乳腺癌肿瘤的生长以及IL-13的产生。乳腺癌细胞来源的TSLP通过诱导树突状细胞表达OX40L,参与构建有利于乳腺癌肿瘤发展的炎症性Th2微环境。TSLP在乳腺癌的免疫逃逸机制中同样发挥重要作用。Olkhanud等[16]在小鼠实验中发现,TSLP可通过诱导CD4⁺ T细胞向Th2细胞分化并促进Th2型免疫应答以及上调IL-10、IL-13等免疫抑制因子的表达促进肿瘤免疫逃逸。且单独阻断肿瘤细胞中的TSLP活性即可有效抑制乳腺癌的进展和肺转移。Kuan E L等[17]采用转移性乳腺癌的原位和本土小鼠模型来研究TSLP在肿瘤进展中的作用,TSLP通过诱导抗凋亡分子Bcl-2的表达,乳腺肿瘤细胞的重要生长和存活因子。乳腺肿瘤细胞中缺乏TSLP信号传导,导致原发肿瘤生长严重消退。肿瘤来源的IL-1α诱导的髓样细胞表达TSLP是肿瘤细胞存活所必需的。通过基因集富集分析(GSEA)和排序差异向后消除(SDBE)算法证实TSLP可作为乳腺癌的诊断及预后标准[18]。抗TSLP单克隆抗体的应用可能是乳腺癌治疗的新靶点。

4.3. TSLP与肺癌

肺癌是世界上最常见的恶性肿瘤之一。TSLP亚型、TSLPR和IL-7Rα在肺癌瘤内和瘤周组织中均高表达[7],原代人肺巨噬细胞(HLM)与TSLP孵育可诱导促炎因子(TNF-α)、血管生成因子(VEGF-A和ANGPT2)和淋巴管生成因子(VEGF-C)的释放。来源于人和小鼠肿瘤的TSLP诱导的肺泡巨噬细胞释放VEGF因子以及侵袭性和血管生成相关基因的表达在肿瘤的形成和增强转移中发挥重要作用[11]。TSLP/TSLPR系统在包括肺癌在内的慢性炎症性疾病中发挥促炎、促瘤作用[7]。CD4+CD25+ Treg细胞不仅在控制自身免疫中起核心作用,而且还参与抑制抗肿瘤免疫反应,在肿瘤进展和转移过程中发挥重要作用[12]。据报道,CD4+CD25+ Treg细胞在外周血和肿瘤微环境中表达增加[19] [20]。TSLP刺激肺癌患者的DC分泌高水平的TGF-β,可诱导CD4+CD25+ Tregs参与抗原特异性免疫耐受[21]。TSLP蛋白的表达与肺癌微环境中Foxp3⁺ Tregs的数量相关,TSLP通过诱导CD4+CD25− T细胞分化为Treg细胞以及Treg以DC依赖的方式迁移,参与肿瘤微环境中调节性T细胞表达上调的过程[22]

4.4. TSLP与宫颈癌

宫颈癌是全球女性第四大常见癌症,具有高发病率和是死亡率[23]。多项研究[24] [25]报道TSLP在宫颈癌中发挥促肿瘤作用。研究[24]发现,宫颈癌细胞可生成TSLP,而宫颈癌组织中的内皮细胞则表达TSLPR。研究表明,重组人TSLP可显著增加人脐静脉内皮细胞(HUVECs)中Ki67和CD62E的表达,以及HeLa和CaSki细胞中IL-6的水平,宫颈癌细胞分泌的TSLP以旁分泌的方式参与宫颈癌的血管生成,而血管生成在宫颈癌的发生、发展和转移过程中起着重要作用。缺氧诱导的HeLa和SiHa细胞中TSLP分泌的增加,导致这些细胞产生高水平的趋化因子CCL17,并招募更多的嗜酸性粒细胞至癌变部位。这些受影响的嗜酸性粒细胞显著促进了宫颈癌细胞的增殖,并限制了其凋亡,这与HeLa和SiHa细胞中Ki-67、增殖细胞核抗原(PCNA)和Bcl-2的上调,以及Fas及其配体的下调有关[26]。Zhou, W J [25]等通过TSLP对宫颈癌细胞系中microRNA-132的表达以及体外增殖和侵袭能力的影响实验,发现宫颈癌细胞产生的TSLP下调了microRNA-132的表达,并刺激了宫颈癌细胞的增殖和侵袭,从而进一步促进了宫颈癌的发展。

4.5. TSLP与胃癌

胃癌是严重威胁人类健康的恶性肿瘤之一。幽门螺杆菌(Helicobacter pylori)感染是胃癌的主要致病因素之一。Kido M. [27]等研究表明,幽门螺杆菌可直接触发上皮细胞产生TSLP。与TSLP低表达的患者相比,TSLP高表达的胃癌患者淋巴转移、肝转移以及血管浸润都更严重,血清TSLP水平高的胃癌患者预后比血清TSLP水平低的患者更差,TSLP表达水平的高低对肿瘤细胞逃脱机体免疫系统的监视和杀伤以及肿瘤的进展具有重要意义[28]。TSLP可诱导髓系树突状细胞(mDC)中p50的核转位,而p50与RelB的结合可上调mDC表面OX40L的表达。在OX40和OX40L相互作用的刺激下,CD4+ T细胞可分化为Th2细胞,因此,TSLP通过TSLP-OX40通路促进Th2细胞分化[29]。肿瘤微环境中Th2细胞产生的促炎细胞因子IL-4和IL-13可诱导肿瘤微环境中Th2型慢性炎症的发生,并有助于肿瘤微环境中的免疫抑制[30]

4.6. TSLP与肝癌

在全球范围内,肝癌目前是癌症导致死亡的最常见原因之一,其高复发率和高转移率是导致患者高死亡率的根本原因。TSLP是一种促进Th2细胞分化的趋化因子,它参与CD4初始T细胞的活化,并促进Th2细胞数量的增加[31]。TSLP可通过Th2细胞激活由IL-4介导的STAT6-GATA3信号通路,这在一定程度上会增加肝细胞癌的复发率[32]。TSLP的高表达可抑制Th1型免疫应答,导致IL-12分泌减少,抑制JAK2-STAT4信号通路,同时激活STAT3通路,从而形成有利于肝细胞癌生长的免疫微环境[33]。Pacheco等[34]的相关研究也支持了上述观点,在人体内实验中肝癌患者Th1细胞的数量和功能均有所下降,而Th2细胞的数量和功能会呈现增加趋势,由于Th1/Th2比例失衡,Th2细胞的功能会进一步亢进,大量抑制性细胞因子的合成和分泌将直接导致肿瘤细胞的免疫逃逸,导致机体对降低对抗肿瘤和清除自身癌细胞的能力下降。

4.7. TSLP与胰腺癌

胰腺癌是一种高侵袭性及预后极差的疾病,其特征是肿瘤间质中的淋巴浸润以Th2 (GATA-3⁺)细胞为主[35]。血浆TSLP浓度升高与胰腺导管腺癌的总生存期缩短和不良结局风险增加相关[36]。有研究表明[37],胰腺癌中的癌相关成纤维细胞(CAFs)可通过产生TSLP促进Th2介导的胰腺癌进展,这一病理过程主要通过调节DC的功能实现。嗜碱性粒细胞被活化的M2型巨噬细胞招募至肿瘤引流的淋巴结(TDLNs)中,可稳定Th2细胞的极化状态,从而导致胰腺癌中以Th2炎症为主[38]。存在于肿瘤微环境中的M2型巨噬细胞和CD4+ Th2细胞可通过促进肿瘤的侵袭和转移介导胰腺癌的进展[39]

4.8. TSLP与结直肠肿瘤

结直肠癌是全球第三大常见恶性肿瘤,也是癌症相关死亡的第四大原因。一项在沙特人群中关于TSLP/TSLPR的基因多态性、表达水平与结直肠癌风险相关性的研究[40]中发现,与正常结肠组织相比,结肠癌组织中TSLP、TSLPR-α亚基以及白IL-7R-α的mRNA表达和蛋白质水平均升高了4倍,且TSLP基因rs10043985单核苷酸多态性(SNP)、IL-7R基因rs1053496 SNP,以及TSLP和TSLPR-α亚基的表达水平,可作为结直肠癌发生和治疗的标志物。Obata-Ninomiya, K.等[40]研究表明,利用针对TSLP的特异性单克隆抗体进行TSLP阻断治疗可有效抑制小鼠模型中结直肠肿瘤的进展。其作用机制与TSLP对肿瘤特异性Treg细胞功能的调控作用相关。

4.9. TSLP与急性淋巴细胞白血病

急性淋巴细胞白血病(Pediatric acute lymphocytic leukemia, ALL)是一种高度异质性的疾病,多与反复出现的染色体易位、缺失和扩增等遗传变异相关,其特征是未成熟B或T淋巴母细胞增殖增加[41]。在B细胞急性淋巴细胞白血病(B-ALL)患者中,发现编码TSLP信号通路成分的基因发生突变,其中约50%的费城染色体样急性淋巴细胞白血病(Ph-like ALL)患者存在涉及编码TSLPR基因的染色体易位,通过TSLPR的表达与其易位的启动子和或增强子相偶联,导致TSLPR的表达增加[42]。在T细胞急性淋巴细胞白血病(T-ALL)患者中,CRLF2基因的过表达导致JAK–STAT信号通路激活,这与其不良预后相关,而该基因编码TSLPR [42]。在唐氏综合征相关的急性淋巴细胞白血病中,CRLF2基因的重排率升高,此时TSLP会增加酪氨酸磷酸酶PTPN11与RAS的结合,导致RAS蛋白激活,进而促进急性淋巴细胞白血病细胞的生长[43]。TSLPR依赖性信号转导通路可能是导致急性白血病发生的原因之一,其过表达与治疗耐药、高复发率和不良预后有关,TSLPR阻断治疗可能是ALL患者的潜在治疗选择[44]

5. TSLP的抗肿瘤作用

5.1. TSLP在肿瘤微环境中的抑瘤作用

TSLP的抗肿瘤作用主要体现在皮肤癌、结肠癌及某些早期或特定类型肿瘤。在皮肤等部位,TSLP可能通过激活迁移性DCs,招募趋化CD4+ Th2细胞至肿瘤部位或直接促进癌细胞的凋亡发挥抗肿瘤作用。TSLP对肿瘤的调控作用机制复杂,与肿瘤的类型和病理发展阶段有关[45]

5.2. TSLP与皮肤癌

皮肤鳞状细胞癌(cSCC)的发病率和死亡率持续上升,消除光化性角化病(AK)前体病变是预防cSCC的主要策略[46]。Th2细胞分泌IL-4和IL-13,它们特异性作用于恶性或癌前角质形成细胞以诱导IL-24并通过自分泌或旁分泌机制发挥作用,与5-FU协同作用,以增强细胞凋亡、自噬并消除肿瘤细胞[47]。而在皮肤致癌的小鼠模型中,TSLP是募集Th2细胞并触发IL-24介导的角质形成细胞死亡中不可或缺的重要细胞因子,这表明TSLP/Th2/IL-24轴是预防cSCC的潜在治疗靶点[48]。NOTCH信号通路途径可以抑制多种不成熟细胞的分化,在胚胎发育中起重要作用。NOTCH途径的功能复杂多样,与肿瘤形成及造血以及部分神经系统疾病密切相关。Demehri等[49]通过使用皮肤Notch信号发生克隆性缺失的小鼠模型,证实TSLP在皮肤癌变过程中具有肿瘤抑制功能。该模型中,屏障功能缺陷的皮肤释放高水平TSLP引发严重炎症,逐步清除Notch缺陷的表皮克隆细胞,从而产生皮肤癌变抵抗能力,CD4+ Th2细胞是TSLP的肿瘤抑制效应中的主要效应细胞。

5.3. TSLP与结肠癌

研究[50]报道TSLP在结直肠癌中具有抗肿瘤作用,在该研究中,肿瘤组织中TSLP的表达显著低于周围组织,且与结直肠癌患者的临床分期呈负相关。在该动物模型中,TSLP通过激活caspase-3、-8和-9来增强体外肿瘤细胞的凋亡,并且在异种移植模型中,给予TSLP治疗可抑制肿瘤生长。

5.4. TSLP与其他肿瘤

在乳腺癌体外实验中,有研究[51]提出TSLP通过促进CD14+CD16+单核细胞扩增、增强其能量和代谢功能来充当抗肿瘤介质的可能。此外,TSLP表达的降低可能与乳腺癌的不良预后有关。TSLP有效地诱导针对乳腺癌发展早期阶段的免疫力,而不会在正常乳房组织中引起炎症,TSLP刺激的CD4+ Th2细胞是抗肿瘤免疫反应的关键介质[52]。类似的TSLP抗肿瘤作用在早期胰腺癌中也有报道,该研究强调了TSLP和Th2细胞在控制癌症早期发展的重要作用中[52]

6. 总结

TSLP在肿瘤微环境中呈现双重调控作用,其信号通路通过JAK-STAT激活Th2型免疫反应,对多种实体瘤和血液肿瘤的进展产生显著影响。在乳腺癌、肺癌、宫颈癌及胃癌等肿瘤中,TSLP通过构建免疫抑制性微环境,进而增强肿瘤细胞增殖、血管生成及免疫逃逸能力。TSLP在皮肤癌、结肠癌等及部分肿瘤早期中主要体现出抗肿瘤效应。这种双重作用可能与lfTSLP和sfTSLP的差异表达以及肿瘤的复杂调整机制相关。目前,Tezepelumab等抗TSLP单克隆抗体已应用于哮喘等疾病的临床治疗且取得了良好的疗效。抗TSLP单克隆抗体作为肿瘤治疗靶点的可能性仍待进一步研究,未来需进一步明确TSLP亚型在不同肿瘤中的功能差异及其抗体作为治疗靶点的可能性。

基金项目

重庆市自然科学基金资助项目(CSTB2022NSCQ-MSX0125);重庆医科大学未来医学青年创新团队支持计划项目(W0070)。

NOTES

*通讯作者。

参考文献

[1] Tsilingiri, K., Fornasa, G. and Rescigno, M. (2017) Thymic Stromal Lymphopoietin: To Cut a Long Story Short. Cellular and Molecular Gastroenterology and Hepatology, 3, 174-182.
https://doi.org/10.1016/j.jcmgh.2017.01.005
[2] Marković, I. and Savvides, S.N. (2020) Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Frontiers in Immunology, 11, Article No. 1557.
https://doi.org/10.3389/fimmu.2020.01557
[3] Smolinska, S., Antolín-Amérigo, D., Popescu, F. and Jutel, M. (2023) Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. International Journal of Molecular Sciences, 24, Article No. 12725.
https://doi.org/10.3390/ijms241612725
[4] Sims, J.E., Williams, D.E., Morrissey, P.J., Garka, K., Foxworthe, D., Price, V., et al. (2000) Molecular Cloning and Biological Characterization of a Novel Murine Lymphoid Growth Factor. The Journal of Experimental Medicine, 192, 671-680.
https://doi.org/10.1084/jem.192.5.671
[5] Xie, Y., Takai, T., Chen, X., Okumura, K. and Ogawa, H. (2012) Long TSLP Transcript Expression and Release of TSLP Induced by TLR Ligands and Cytokines in Human Keratinocytes. Journal of Dermatological Science, 66, 233-237.
https://doi.org/10.1016/j.jdermsci.2012.03.007
[6] Martin Mena, A., Langlois, A., Speca, S., Schneider, L., Desreumaux, P., Dubuquoy, L., et al. (2017) The Expression of the Short Isoform of Thymic Stromal Lymphopoietin in the Colon Is Regulated by the Nuclear Receptor Peroxisome Proliferator Activated Receptor-Gamma and Is Impaired during Ulcerative Colitis. Frontiers in Immunology, 8, Article No. 1052.
https://doi.org/10.3389/fimmu.2017.01052
[7] Braile, M., Fiorelli, A., Sorriento, D., Di Crescenzo, R.M., Galdiero, M.R., Marone, G., et al. (2021) Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells, 10, Article No. 2012.
https://doi.org/10.3390/cells10082012
[8] Kitajima, M., Kubo, M., Ziegler, S.F. and Suzuki, H. (2020) Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. The Journal of Immunology, 205, 27-35.
https://doi.org/10.4049/jimmunol.1900758
[9] Han, F., Guo, H., Wang, L., Zhang, Y., Sun, L., Dai, C., et al. (2020) TSLP Produced by Aspergillus fumigatus-Stimulated Dcs Promotes a Th17 Response through the JAK/STAT Signaling Pathway in Fungal Keratitis. Investigative Opthalmology & Visual Science, 61, Article No. 24.
https://doi.org/10.1167/iovs.61.14.24
[10] Corren, J. and Ziegler, S.F. (2019) TSLP: From Allergy to Cancer. Nature Immunology, 20, 1603-1609.
https://doi.org/10.1038/s41590-019-0524-9
[11] Burkard-Mandel, L., O'Neill, R., Colligan, S., Seshadri, M. and Abrams, S.I. (2018) Tumor-Derived Thymic Stromal Lymphopoietin Enhances Lung Metastasis through an Alveolar Macrophage-Dependent Mechanism. OncoImmunology, 7, e1419115.
https://doi.org/10.1080/2162402x.2017.1419115
[12] Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article No. 978.
https://doi.org/10.3389/fimmu.2018.00978
[13] Ebina-Shibuya, R. and Leonard, W.J. (2022) Role of Thymic Stromal Lymphopoietin in Allergy and Beyond. Nature Reviews Immunology, 23, 24-37.
https://doi.org/10.1038/s41577-022-00735-y
[14] Harbeck, N. and Gnant, M. (2017) Breast Cancer. The Lancet, 389, 1134-1150.
https://doi.org/10.1016/s0140-6736(16)31891-8
[15] Pedroza-Gonzalez, A., Xu, K., Wu, T., Aspord, C., Tindle, S., Marches, F., et al. (2011) Thymic Stromal Lymphopoietin Fosters Human Breast Tumor Growth by Promoting Type 2 Inflammation. Journal of Experimental Medicine, 208, 479-490.
https://doi.org/10.1084/jem.20102131
[16] Olkhanud, P.B., Rochman, Y., Bodogai, M., Malchinkhuu, E., Wejksza, K., Xu, M., et al. (2011) Thymic Stromal Lymphopoietin Is a Key Mediator of Breast Cancer Progression. The Journal of Immunology, 186, 5656-5662.
https://doi.org/10.4049/jimmunol.1100463
[17] Kuan, E.L. and Ziegler, S.F. (2018) A Tumor-Myeloid Cell Axis, Mediated via the Cytokines Il-1α and TSLP, Promotes the Progression of Breast Cancer. Nature Immunology, 19, 366-374.
https://doi.org/10.1038/s41590-018-0066-6
[18] Ai, H. (2022) GSEA-SDBE: A Gene Selection Method for Breast Cancer Classification Based on GSEA and Analyzing Differences in Performance Metrics. PLOS ONE, 17, e0263171.
https://doi.org/10.1371/journal.pone.0263171
[19] Ohara, M., Yamaguchi, Y., Matsuura, K., Murakami, S., Arihiro, K. and Okada, M. (2008) Possible Involvement of Regulatory T Cells in Tumor Onset and Progression in Primary Breast Cancer. Cancer Immunology, Immunotherapy, 58, 441-447.
https://doi.org/10.1007/s00262-008-0570-x
[20] Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T. and Whiteside, T.L. (2007) A Unique Subset of CD4+CD25highFoxp3+ T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates Suppression in the Tumor Microenvironment. Clinical Cancer Research, 13, 4345-4354.
https://doi.org/10.1158/1078-0432.ccr-07-0472
[21] Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., et al. (2007) Tumor Evasion of the Immune System by Converting CD4+CD25 T Cells into CD4+CD25+ T Regulatory Cells: Role of Tumor-Derived TGF-β. The Journal of Immunology, 178, 2883-2892.
https://doi.org/10.4049/jimmunol.178.5.2883
[22] Li, H., Zhao, H., Yu, J., Su, Y., Cao, S., An, X., et al. (2011) Increased Prevalence of Regulatory T Cells in the Lung Cancer Microenvironment: A Role of Thymic Stromal Lymphopoietin. Cancer Immunology, Immunotherapy, 60, 1587-1596.
https://doi.org/10.1007/s00262-011-1059-6
[23] Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232.
https://doi.org/10.1016/j.jnma.2020.03.002
[24] Xie, F., Meng, Y., Liu, L., Chang, K., Li, H., Li, M., et al. (2013) Cervical Carcinoma Cells Stimulate the Angiogenesis through TSLP Promoting Growth and Activation of Vascular Endothelial Cells. American Journal of Reproductive Immunology, 70, 69-79.
https://doi.org/10.1111/aji.12104
[25] Zhou, W., Yang, H., Chang, K., Meng, Y., Wang, M., Yuan, M., et al. (2017) Human Thymic Stromal Lymphopoietin Promotes the Proliferation and Invasion of Cervical Cancer Cells by Downregulating MicroRNA-132 Expression. Oncology Letters, 14, 7910-7916.
https://doi.org/10.3892/ol.2017.7260
[26] Xie, F., Liu, L., Shang, W., Chang, K., Meng, Y., Mei, J., et al. (2015) The Infiltration and Functional Regulation of Eosinophils Induced by TSLP Promote the Proliferation of Cervical Cancer Cell. Cancer Letters, 364, 106-117.
https://doi.org/10.1016/j.canlet.2015.04.029
[27] Kido, M., Tanaka, J., Aoki, N., Iwamoto, S., Nishiura, H., Chiba, T., et al. (2010) Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses. Infection and Immunity, 78, 108-114.
https://doi.org/10.1128/iai.00762-09
[28] Watanabe, J., Saito, H., Miyatani, K., et al. (2015) TSLP Expression and High Serum TSLP Level Indicate a Poor Prognosis in Gastric Cancer Patients. Yonago Acta Medica, 58, 137-143.
[29] Huang, L., Zhang, X., Wang, M., Chen, Z., Yan, Y., Gu, W., et al. (2018) Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand. Pathobiology, 86, 111-117.
https://doi.org/10.1159/000493013
[30] Refolo, M.G., Messa, C., Guerra, V., Carr, B.I. and D’Alessandro, R. (2020) Inflammatory Mechanisms of HCC Development. Cancers, 12, Article No. 641.
https://doi.org/10.3390/cancers12030641
[31] Hirata, H., Yukawa, T., Tanaka, A., Miyao, T., Fukuda, T., Fukushima, Y., et al. (2018) Th2 Cell Differentiation from Naive CD4+ T Cells Is Enhanced by Autocrine CC Chemokines in Atopic Diseases. Clinical & Experimental Allergy, 49, 474-483.
https://doi.org/10.1111/cea.13313
[32] Rochman, Y., Dienger-Stambaugh, K., Richgels, P.K., Lewkowich, I.P., Kartashov, A.V., Barski, A., et al. (2018) TSLP Signaling in CD4+ T Cells Programs a Pathogenic T Helper 2 Cell State. Science Signaling, 11, eaam8858.
https://doi.org/10.1126/scisignal.aam8858
[33] Jiang, D., Ma, X., Wu, X., Peng, L., Yin, J., Dan, Y., et al. (2015) Genetic Variations in STAT4, C2, HLA-DRB1 and HLA-DQ Associated with Risk of Hepatitis B Virus-Related Liver Cirrhosis. Scientific Reports, 5, Article No. 16278.
https://doi.org/10.1038/srep16278
[34] Pacheco, I.L., Abril, N., Morales-Prieto, N., Bautista, M.J., Zafra, R., Escamilla, A., et al. (2017) Th1/Th2 Balance in the Liver and Hepatic Lymph Nodes of Vaccinated and Unvaccinated Sheep during Acute Stages of Infection with Fasciola Hepatica. Veterinary Parasitology, 238, 61-65.
https://doi.org/10.1016/j.vetpar.2017.03.022
[35] Morrison, A.H., Byrne, K.T. and Vonderheide, R.H. (2018) Immunotherapy and Prevention of Pancreatic Cancer. Trends in Cancer, 4, 418-428.
https://doi.org/10.1016/j.trecan.2018.04.001
[36] Vizio, B., Boita, M., Cristiano, C., Mazibrada, J., Bosco, O., Novarino, A., et al. (2018) Thymic Stromal Lymphopoietin in Human Pancreatic Ductal Adenocarcinoma: Expression and Prognostic Significance. Oncotarget, 9, 32795-32809.
https://doi.org/10.18632/oncotarget.25997
[37] De Monte, L., Reni, M., Tassi, E., Clavenna, D., Papa, I., Recalde, H., et al. (2011) Intratumor T Helper Type 2 Cell Infiltrate Correlates with Cancer-Associated Fibroblast Thymic Stromal Lymphopoietin Production and Reduced Survival in Pancreatic Cancer. Journal of Experimental Medicine, 208, 469-478.
https://doi.org/10.1084/jem.20101876
[38] Protti, M.P. and De Monte, L. (2012) Cross-Talk within the Tumor Microenvironment Mediates Th2-Type Inflammation in Pancreatic Cancer. OncoImmunology, 1, 89-91.
https://doi.org/10.4161/onci.1.1.17939
[39] DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009) CD4+ T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell, 16, 91-102.
https://doi.org/10.1016/j.ccr.2009.06.018
[40] Semlali, A., Almutairi, M.H., Alamri, A., Reddy Parine, N., Arafah, M., Almadi, M.A., et al. (2021) Expression and Polymorphism of TSLP/TSLP Receptors as Potential Diagnostic Markers of Colorectal Cancer Progression. Genes, 12, Article No. 1386.
https://doi.org/10.3390/genes12091386
[41] Gupta, N., Pawar, R., Banerjee, S., Brahma, S., Rath, A., Shewale, S., et al. (2019) Spectrum and Immunophenotypic Profile of Acute Leukemia: A Tertiary Center Flow Cytometry Experience. Mediterranean Journal of Hematology and Infectious Diseases, 11, e2019017.
https://doi.org/10.4084/mjhid.2019.017
[42] Rasekh, E., Atef, A., Khalil, M., Ebeid, E., Madney, Y. and Hamdy, N. (2021) Characterization of CRLF2 Expression in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Clinical Laboratory, 67.
https://doi.org/10.7754/clin.lab.2020.200414
[43] Koschut, D., Ray, D., Li, Z., Giarin, E., Groet, J., Alić, I., et al. (2020) RAS-Protein Activation but Not Mutation Status Is an Outcome Predictor and Unifying Therapeutic Target for High-Risk Acute Lymphoblastic Leukemia. Oncogene, 40, 746-762.
https://doi.org/10.1038/s41388-020-01567-7
[44] Vetter, T., Borowski, A., Wohlmann, A., Ranjan, N., Kuepper, M., Badura, S., et al. (2016) Blockade of Thymic Stromal Lymphopoietin (TSLP) Receptor Inhibits TSLP-Driven Proliferation and Signalling in Lymphoblasts from a Subset of B-Precursor ALL Patients. Leukemia Research, 40, 38-43.
https://doi.org/10.1016/j.leukres.2015.10.003
[45] Protti, M.P. and De Monte, L. (2020) Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and-Independent Mechanisms. Frontiers in Immunology, 11, Article No. 2088.
https://doi.org/10.3389/fimmu.2020.02088
[46] Wysong, A. (2023) Squamous-Cell Carcinoma of the Skin. New England Journal of Medicine, 388, 2262-2273.
https://doi.org/10.1056/nejmra2206348
[47] Oka, T., Smith, S.S., Son, H.G., Lee, T., Oliver-Garcia, V.S., Mortaja, M., et al. (2025) T Helper 2 Cell-Directed Immunotherapy Eliminates Precancerous Skin Lesions. Journal of Clinical Investigation, 135, e183274.
https://doi.org/10.1172/jci183274
[48] Vesely, M.D. and Christensen, S.R. (2025) Type 2 Immunity to the Rescue: Enhancing Antitumor Immunity for Skin Cancer Prevention. Journal of Clinical Investigation, 135, e188018.
https://doi.org/10.1172/jci188018
[49] Demehri, S., Turkoz, A., Manivasagam, S., Yockey, L.J., Turkoz, M. and Kopan, R. (2012) Elevated Epidermal Thymic Stromal Lymphopoietin Levels Establish an Antitumor Environment in the Skin. Cancer Cell, 22, 494-505.
https://doi.org/10.1016/j.ccr.2012.08.017
[50] Yue, W., Lin, Y., Yang, X., Li, B., Liu, J. and He, R. (2016) Thymic Stromal Lymphopoietin (TSLP) Inhibits Human Colon Tumor Growth by Promoting Apoptosis of Tumor Cells. Oncotarget, 7, 16840-16854.
https://doi.org/10.18632/oncotarget.7614
[51] Marcella, S., Braile, M., Grimaldi, A.M., Soricelli, A. and Smaldone, G. (2025) Exploring Thymic Stromal Lymphopoietin in the Breast Cancer Microenvironment: A Preliminary Study. Oncology Letters, 29, Article No. 182.
https://doi.org/10.3892/ol.2025.14928
[52] Demehri, S., Cunningham, T.J., Manivasagam, S., Ngo, K.H., Moradi Tuchayi, S., Reddy, R., et al. (2016) Thymic Stromal Lymphopoietin Blocks Early Stages of Breast Carcinogenesis. Journal of Clinical Investigation, 126, 1458-1470.
https://doi.org/10.1172/jci83724