|
[1]
|
Tsilingiri, K., Fornasa, G. and Rescigno, M. (2017) Thymic Stromal Lymphopoietin: To Cut a Long Story Short. Cellular and Molecular Gastroenterology and Hepatology, 3, 174-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Marković, I. and Savvides, S.N. (2020) Modulation of Signaling Mediated by TSLP and IL-7 in Inflammation, Autoimmune Diseases, and Cancer. Frontiers in Immunology, 11, Article No. 1557. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Smolinska, S., Antolín-Amérigo, D., Popescu, F. and Jutel, M. (2023) Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. International Journal of Molecular Sciences, 24, Article No. 12725. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sims, J.E., Williams, D.E., Morrissey, P.J., Garka, K., Foxworthe, D., Price, V., et al. (2000) Molecular Cloning and Biological Characterization of a Novel Murine Lymphoid Growth Factor. The Journal of Experimental Medicine, 192, 671-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xie, Y., Takai, T., Chen, X., Okumura, K. and Ogawa, H. (2012) Long TSLP Transcript Expression and Release of TSLP Induced by TLR Ligands and Cytokines in Human Keratinocytes. Journal of Dermatological Science, 66, 233-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Martin Mena, A., Langlois, A., Speca, S., Schneider, L., Desreumaux, P., Dubuquoy, L., et al. (2017) The Expression of the Short Isoform of Thymic Stromal Lymphopoietin in the Colon Is Regulated by the Nuclear Receptor Peroxisome Proliferator Activated Receptor-Gamma and Is Impaired during Ulcerative Colitis. Frontiers in Immunology, 8, Article No. 1052. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Braile, M., Fiorelli, A., Sorriento, D., Di Crescenzo, R.M., Galdiero, M.R., Marone, G., et al. (2021) Human Lung-Resident Macrophages Express and Are Targets of Thymic Stromal Lymphopoietin in the Tumor Microenvironment. Cells, 10, Article No. 2012. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kitajima, M., Kubo, M., Ziegler, S.F. and Suzuki, H. (2020) Critical Role of TSLP Receptor on CD4 T Cells for Exacerbation of Skin Inflammation. The Journal of Immunology, 205, 27-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Han, F., Guo, H., Wang, L., Zhang, Y., Sun, L., Dai, C., et al. (2020) TSLP Produced by Aspergillus fumigatus-Stimulated Dcs Promotes a Th17 Response through the JAK/STAT Signaling Pathway in Fungal Keratitis. Investigative Opthalmology & Visual Science, 61, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Corren, J. and Ziegler, S.F. (2019) TSLP: From Allergy to Cancer. Nature Immunology, 20, 1603-1609. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Burkard-Mandel, L., O'Neill, R., Colligan, S., Seshadri, M. and Abrams, S.I. (2018) Tumor-Derived Thymic Stromal Lymphopoietin Enhances Lung Metastasis through an Alveolar Macrophage-Dependent Mechanism. OncoImmunology, 7, e1419115. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yang, J., Yan, J. and Liu, B. (2018) Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Frontiers in Immunology, 9, Article No. 978. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ebina-Shibuya, R. and Leonard, W.J. (2022) Role of Thymic Stromal Lymphopoietin in Allergy and Beyond. Nature Reviews Immunology, 23, 24-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Harbeck, N. and Gnant, M. (2017) Breast Cancer. The Lancet, 389, 1134-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Pedroza-Gonzalez, A., Xu, K., Wu, T., Aspord, C., Tindle, S., Marches, F., et al. (2011) Thymic Stromal Lymphopoietin Fosters Human Breast Tumor Growth by Promoting Type 2 Inflammation. Journal of Experimental Medicine, 208, 479-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Olkhanud, P.B., Rochman, Y., Bodogai, M., Malchinkhuu, E., Wejksza, K., Xu, M., et al. (2011) Thymic Stromal Lymphopoietin Is a Key Mediator of Breast Cancer Progression. The Journal of Immunology, 186, 5656-5662. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kuan, E.L. and Ziegler, S.F. (2018) A Tumor-Myeloid Cell Axis, Mediated via the Cytokines Il-1α and TSLP, Promotes the Progression of Breast Cancer. Nature Immunology, 19, 366-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ai, H. (2022) GSEA-SDBE: A Gene Selection Method for Breast Cancer Classification Based on GSEA and Analyzing Differences in Performance Metrics. PLOS ONE, 17, e0263171. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ohara, M., Yamaguchi, Y., Matsuura, K., Murakami, S., Arihiro, K. and Okada, M. (2008) Possible Involvement of Regulatory T Cells in Tumor Onset and Progression in Primary Breast Cancer. Cancer Immunology, Immunotherapy, 58, 441-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J.T. and Whiteside, T.L. (2007) A Unique Subset of CD4+CD25highFoxp3+ T Cells Secreting Interleukin-10 and Transforming Growth Factor-β1 Mediates Suppression in the Tumor Microenvironment. Clinical Cancer Research, 13, 4345-4354. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., et al. (2007) Tumor Evasion of the Immune System by Converting CD4+CD25− T Cells into CD4+CD25+ T Regulatory Cells: Role of Tumor-Derived TGF-β. The Journal of Immunology, 178, 2883-2892. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, H., Zhao, H., Yu, J., Su, Y., Cao, S., An, X., et al. (2011) Increased Prevalence of Regulatory T Cells in the Lung Cancer Microenvironment: A Role of Thymic Stromal Lymphopoietin. Cancer Immunology, Immunotherapy, 60, 1587-1596. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Buskwofie, A., David-West, G. and Clare, C.A. (2020) A Review of Cervical Cancer: Incidence and Disparities. Journal of the National Medical Association, 112, 229-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xie, F., Meng, Y., Liu, L., Chang, K., Li, H., Li, M., et al. (2013) Cervical Carcinoma Cells Stimulate the Angiogenesis through TSLP Promoting Growth and Activation of Vascular Endothelial Cells. American Journal of Reproductive Immunology, 70, 69-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhou, W., Yang, H., Chang, K., Meng, Y., Wang, M., Yuan, M., et al. (2017) Human Thymic Stromal Lymphopoietin Promotes the Proliferation and Invasion of Cervical Cancer Cells by Downregulating MicroRNA-132 Expression. Oncology Letters, 14, 7910-7916. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xie, F., Liu, L., Shang, W., Chang, K., Meng, Y., Mei, J., et al. (2015) The Infiltration and Functional Regulation of Eosinophils Induced by TSLP Promote the Proliferation of Cervical Cancer Cell. Cancer Letters, 364, 106-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kido, M., Tanaka, J., Aoki, N., Iwamoto, S., Nishiura, H., Chiba, T., et al. (2010) Helicobacter pylori Promotes the Production of Thymic Stromal Lymphopoietin by Gastric Epithelial Cells and Induces Dendritic Cell-Mediated Inflammatory Th2 Responses. Infection and Immunity, 78, 108-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Watanabe, J., Saito, H., Miyatani, K., et al. (2015) TSLP Expression and High Serum TSLP Level Indicate a Poor Prognosis in Gastric Cancer Patients. Yonago Acta Medica, 58, 137-143.
|
|
[29]
|
Huang, L., Zhang, X., Wang, M., Chen, Z., Yan, Y., Gu, W., et al. (2018) Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand. Pathobiology, 86, 111-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Refolo, M.G., Messa, C., Guerra, V., Carr, B.I. and D’Alessandro, R. (2020) Inflammatory Mechanisms of HCC Development. Cancers, 12, Article No. 641. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hirata, H., Yukawa, T., Tanaka, A., Miyao, T., Fukuda, T., Fukushima, Y., et al. (2018) Th2 Cell Differentiation from Naive CD4+ T Cells Is Enhanced by Autocrine CC Chemokines in Atopic Diseases. Clinical & Experimental Allergy, 49, 474-483. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Rochman, Y., Dienger-Stambaugh, K., Richgels, P.K., Lewkowich, I.P., Kartashov, A.V., Barski, A., et al. (2018) TSLP Signaling in CD4+ T Cells Programs a Pathogenic T Helper 2 Cell State. Science Signaling, 11, eaam8858. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jiang, D., Ma, X., Wu, X., Peng, L., Yin, J., Dan, Y., et al. (2015) Genetic Variations in STAT4, C2, HLA-DRB1 and HLA-DQ Associated with Risk of Hepatitis B Virus-Related Liver Cirrhosis. Scientific Reports, 5, Article No. 16278. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pacheco, I.L., Abril, N., Morales-Prieto, N., Bautista, M.J., Zafra, R., Escamilla, A., et al. (2017) Th1/Th2 Balance in the Liver and Hepatic Lymph Nodes of Vaccinated and Unvaccinated Sheep during Acute Stages of Infection with Fasciola Hepatica. Veterinary Parasitology, 238, 61-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Morrison, A.H., Byrne, K.T. and Vonderheide, R.H. (2018) Immunotherapy and Prevention of Pancreatic Cancer. Trends in Cancer, 4, 418-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Vizio, B., Boita, M., Cristiano, C., Mazibrada, J., Bosco, O., Novarino, A., et al. (2018) Thymic Stromal Lymphopoietin in Human Pancreatic Ductal Adenocarcinoma: Expression and Prognostic Significance. Oncotarget, 9, 32795-32809. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
De Monte, L., Reni, M., Tassi, E., Clavenna, D., Papa, I., Recalde, H., et al. (2011) Intratumor T Helper Type 2 Cell Infiltrate Correlates with Cancer-Associated Fibroblast Thymic Stromal Lymphopoietin Production and Reduced Survival in Pancreatic Cancer. Journal of Experimental Medicine, 208, 469-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Protti, M.P. and De Monte, L. (2012) Cross-Talk within the Tumor Microenvironment Mediates Th2-Type Inflammation in Pancreatic Cancer. OncoImmunology, 1, 89-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
DeNardo, D.G., Barreto, J.B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., et al. (2009) CD4+ T Cells Regulate Pulmonary Metastasis of Mammary Carcinomas by Enhancing Protumor Properties of Macrophages. Cancer Cell, 16, 91-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Semlali, A., Almutairi, M.H., Alamri, A., Reddy Parine, N., Arafah, M., Almadi, M.A., et al. (2021) Expression and Polymorphism of TSLP/TSLP Receptors as Potential Diagnostic Markers of Colorectal Cancer Progression. Genes, 12, Article No. 1386. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gupta, N., Pawar, R., Banerjee, S., Brahma, S., Rath, A., Shewale, S., et al. (2019) Spectrum and Immunophenotypic Profile of Acute Leukemia: A Tertiary Center Flow Cytometry Experience. Mediterranean Journal of Hematology and Infectious Diseases, 11, e2019017. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Rasekh, E., Atef, A., Khalil, M., Ebeid, E., Madney, Y. and Hamdy, N. (2021) Characterization of CRLF2 Expression in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Clinical Laboratory, 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Koschut, D., Ray, D., Li, Z., Giarin, E., Groet, J., Alić, I., et al. (2020) RAS-Protein Activation but Not Mutation Status Is an Outcome Predictor and Unifying Therapeutic Target for High-Risk Acute Lymphoblastic Leukemia. Oncogene, 40, 746-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Vetter, T., Borowski, A., Wohlmann, A., Ranjan, N., Kuepper, M., Badura, S., et al. (2016) Blockade of Thymic Stromal Lymphopoietin (TSLP) Receptor Inhibits TSLP-Driven Proliferation and Signalling in Lymphoblasts from a Subset of B-Precursor ALL Patients. Leukemia Research, 40, 38-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Protti, M.P. and De Monte, L. (2020) Thymic Stromal Lymphopoietin and Cancer: Th2-Dependent and-Independent Mechanisms. Frontiers in Immunology, 11, Article No. 2088. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Wysong, A. (2023) Squamous-Cell Carcinoma of the Skin. New England Journal of Medicine, 388, 2262-2273. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Oka, T., Smith, S.S., Son, H.G., Lee, T., Oliver-Garcia, V.S., Mortaja, M., et al. (2025) T Helper 2 Cell-Directed Immunotherapy Eliminates Precancerous Skin Lesions. Journal of Clinical Investigation, 135, e183274. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vesely, M.D. and Christensen, S.R. (2025) Type 2 Immunity to the Rescue: Enhancing Antitumor Immunity for Skin Cancer Prevention. Journal of Clinical Investigation, 135, e188018. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Demehri, S., Turkoz, A., Manivasagam, S., Yockey, L.J., Turkoz, M. and Kopan, R. (2012) Elevated Epidermal Thymic Stromal Lymphopoietin Levels Establish an Antitumor Environment in the Skin. Cancer Cell, 22, 494-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yue, W., Lin, Y., Yang, X., Li, B., Liu, J. and He, R. (2016) Thymic Stromal Lymphopoietin (TSLP) Inhibits Human Colon Tumor Growth by Promoting Apoptosis of Tumor Cells. Oncotarget, 7, 16840-16854. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Marcella, S., Braile, M., Grimaldi, A.M., Soricelli, A. and Smaldone, G. (2025) Exploring Thymic Stromal Lymphopoietin in the Breast Cancer Microenvironment: A Preliminary Study. Oncology Letters, 29, Article No. 182. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Demehri, S., Cunningham, T.J., Manivasagam, S., Ngo, K.H., Moradi Tuchayi, S., Reddy, R., et al. (2016) Thymic Stromal Lymphopoietin Blocks Early Stages of Breast Carcinogenesis. Journal of Clinical Investigation, 126, 1458-1470. [Google Scholar] [CrossRef] [PubMed]
|