从分子机制到治疗靶点:线粒体自噬在慢性阻塞性肺疾病中的研究进展
From Molecular Mechanisms to Therapeutic Targets: Research Progress of Mitophagy in Chronic Obstructive Pulmonary Disease
DOI: 10.12677/acm.2025.1571996, PDF, HTML, XML,   
作者: 李美玲:内蒙古医科大学第三临床医学院,内蒙古 包头;徐喜媛*:内蒙古包钢医院呼吸与危重症医学科,内蒙古 包头
关键词: 慢性阻塞性肺疾病线粒体自噬分子机制靶向治疗Chronic Obstructive Pulmonary Disease Mitophagy Molecular Mechanism Targeted Therapy
摘要: 慢性阻塞性肺疾病(COPD)由有毒颗粒或气体暴露引发,全球疾病负担重。香烟烟雾等可致线粒体损伤,线粒体自噬失调是关键,涉及PINK1/Parkin等通路。其在发病初期起保护作用,进展期因通路受抑加剧损伤。目前,靶向线粒体自噬的治疗策略包括线粒体分裂抑制剂、罗氟司特、SIRT1激活剂等药物干预、基因治疗及物理治疗。线粒体自噬调控机制的异质性、动物模型局限性及靶向治疗的安全性等问题仍需解决。未来需深入解析调控网络,开发精准疗法,并结合抗炎、抗氧化策略,为COPD治疗提供新方向。
Abstract: Chronic obstructive pulmonary disease is triggered by exposure to toxic particles or gases and imposes a heavy global disease burden. Cigarette smoke and other factors can cause mitochondrial damage, and dysregulation of mitochondrial autophagy is a key factor, involving pathways such as PINK1/Parkin. In the early stage of the disease, it plays a protective role, but in the advanced stage, the inhibition of the pathway exacerbates the damage. Currently, therapeutic strategies targeting mitochondrial autophagy include drug interventions such as mitochondrial fission inhibitors, roflumi-last, SIRT1 activators, gene therapy, and physical therapy. Issues such as the heterogeneity of the mitochondrial autophagy regulatory mechanism, the limitations of animal models, and the safety of targeted therapy still need to be addressed. In the future, it is necessary to deeply analyze the regulatory network, develop precise therapies, and combine anti-inflammatory and antioxidant strategies to provide new directions for the treatment of COPD.
文章引用:李美玲, 徐喜媛. 从分子机制到治疗靶点:线粒体自噬在慢性阻塞性肺疾病中的研究进展[J]. 临床医学进展, 2025, 15(7): 359-365. https://doi.org/10.12677/acm.2025.1571996

1. 引言

慢性阻塞性肺疾病(Chronic obstructive pulmonary disease, COPD)是一种由直接和长期暴露于有毒颗粒或气体引发气道或肺泡异常而引起的呼吸系统疾病,表现为持续的呼吸道症状和气流受限[1]。香烟烟雾(Cigarette smoke, CS)是主要危险因素之一。在2023年世卫组织发布的全球疾病负担研究中,全球COPD患病人数超过400万,年死亡人数超过300万,疾病负担位列全球第三位[2]。根据王辰等人的研究,我国40岁以上慢阻肺病的患病率达13.7%,60岁以上患病率已超过27%,全国COPD患者总数近1亿[2]。目前依赖支气管扩张剂和糖皮质激素的治疗,虽然能缓解症状,但无法阻止病情进展。

在COPD发病过程中,CS等有害颗粒可导致气道上皮细胞和肺泡巨噬细胞的线粒体损伤,表现为活性氧(Reactive oxygen species, ROS)高表达、线粒体DNA损伤和线粒体膜电位去极化[3]。线粒体自噬作为选择性清除受损线粒体的重要质量控制机制,在正常生理条件下,通过清除受损线粒体来维持内环境稳态,而线粒体自噬的失调是COPD病理过程的重要环节。研究表明,在COPD患者的肺泡巨噬细胞和气道上皮细胞中均观察到线粒体自噬活性下降[4]

线粒体自噬在COPD中发挥作用主要集中于PINK1/Parkin通路和BNIP3/NIX通路。PINK1/Parkin通路通过泛素–蛋白酶体系统识别并清除受损线粒体,而BNIP3/NIX则通过直接与LC3相互作用来启动线粒体自噬[5] [6]。这些通路的异常调控导致COPD的氧化应激和慢性炎症持续存在。深入研究线粒体自噬与COPD的关系,有望为疾病的早期诊断、精准治疗和预后评估提供新方向。

2. 线粒体自噬的分子机制

线粒体自噬的调控涉及多条信号通路,其中PINK1/Parkin依赖途径和受体介导途径最为关键。

2.1. 泛素化途径

PTEN诱导激酶1 (PTEN-induced kinase 1, PINK1)和Parkin E3泛素连接酶(Parkin)是线粒体自噬经典调控通路中的关键调控蛋白。在正常线粒体中,PINK1被转运酶复合物转运至线粒体内膜,随后被线粒体内膜蛋白酶PARL切割,最终被泛素–蛋白酶体降解[7]。在应激状态下,线粒体受损导致膜电位降低,PINK1转运受阻,使其在线粒体外膜上积累并形成二聚体。PINK1二聚体通过其激酶活性磷酸化自身,活化的PINK1二聚体将Parkin招募到受损线粒体[8]。募集到线粒体的Parkin被PINK1激活后,将线粒体外膜上的多种蛋白如电压依赖性阴离子通道(VDAC)、线粒体融合蛋白1/2 (MFN1/2)等泛素化修饰。泛素化的线粒体蛋白进而招募p62等自噬受体蛋白,促进其LC3相互作用区(LC3-interacting region, LIR)与自噬体膜上的微管相关蛋白1轻链3 (LC3)蛋白结合,从而将受损线粒体招募到自噬体中,最终自噬体与溶酶体结合,降解受损线粒体[9]

此外,线粒体外膜上活化的Parkin与泛素化蛋白可为PINK1提供额外底物,进而招募更多Parkin,通过正反馈进一步增强线粒体自噬效应。

2.2. 非泛素化途径

除了PINK1/Parkin通路,线粒体自噬还可通过受体介导的途径启动。如BNIP3、BNIP3样蛋白(Nix)、FUN14结构域包含蛋白1 (FUN14domaincontaining1, FUNDC1)等定位于OMM的受体蛋白,在特定条件下可直接与LC3结合,触发线粒体自噬。Nix (BNIP3L)和BNIP3属于Bcl-2家族的促凋亡蛋白,在线粒体自噬过程中发挥重要作用,尤其在红细胞生成和肺泡上皮细胞中具有独特功能[10]。在缺氧、氧化应激和营养缺乏等病理生理状态下,BNIP3和NIX的表达显著上调并直接插入线粒体外膜,其N端LIR模体结构与LC3结合,启动线粒体自噬[11]。此外BNIP3和Nix还可以通过促进Parkin的线粒体易位和促进Parkin介导的线粒体自噬[12]

在正常情况下,FUNDC分别在酪氨酸18和丝氨酸13位点被非受体酪氨酸激酶(Steroid receptor coactivator, SRC)和酪蛋白激酶2 (Casein kinase 2, CK2)组成性磷酸化,而磷酸化的FUNDC1与LC3的相互作用减弱,表现为对线粒体自噬的抑制作用[13]。当细胞在缺氧等应激条件下,线粒体磷酸酶PGAM家族成员5 (phosphoglycerate mutase 5, PGAM5)介导FUNDC1去磷酸化,使其与LC3的结合能力增强,从而启动线粒体自噬[14]

此外,线粒体E3泛素连接酶march5介导的FUNDC1泛素化已被发现通过蛋白酶体降解FUNDC1抑制初始缺氧诱导的线粒体自噬[15]。BCL-XL通过调节PGAM5的活性,对FUNDC1的自噬活性进行微调。在正常情况下,PGAM5活性被BCL-XL抑制,一旦缺氧,BCL-XL被降解导致PGAM5活化,促进FUNDC1的去磷酸化,从而诱导线粒体自噬[16]

3. 线粒体自噬在COPD发病机制中的作用

线粒体自噬作为细胞维持线粒体稳态的关键机制,在COPD的发病机制中发挥着复杂作用,它在COPD中既起到保护作用,也扮演着致病角色[17]

3.1. 保护性作用

在COPD发病初期,CS、重金属离子及环境空气中的细颗粒物等外源性刺激,刺激肺泡巨噬细胞、气道上皮细胞释放TNF-α、IL-6及IL-8等炎性细胞因子,激活了NLRP3炎症小体[18]。这些炎性细胞因子进一步趋化募集中性粒细胞和单核细胞,使其形成呼吸爆发并产生过量超氧阴离子、过氧化氢等活性氧(Reactive oxygen species, ROS)。大量ROS导致线粒体损伤,使得线粒体膜电位去极化与呼吸链功能障碍。因线粒体损伤,细胞内PINK1/Parkin见到的线粒体质量控制机制即线粒体自噬被激活。线粒体自噬通过选择性识别清除受损线粒体,有效减少ROS的持续释放,减轻氧化应激对肺组织的损伤,避免炎症因子的过度激活[19]。同时,线粒体自噬可促进细胞内ATP生成,维持细胞的能量代谢平衡,保障肺泡上皮细胞、气道平滑肌细胞等关键细胞的正常功能,防止因线粒体功能障碍引发的细胞凋亡与组织重塑。此外,适度的线粒体自噬能够通过降解异常线粒体成分,减少线粒体DNA等危险因素的释放,避免免疫系统的异常激活,从而缓解肺部慢性炎症状态,维持肺组织正常功能[20]

3.2. 致病性作用

随着COPD进入晚期,持续性炎性反应微环境与氧化应激对线粒体自噬的调控机制产生多重抑制作用。在炎症级联反应中,TNF-α、IL-1β等炎性细胞因子大量释放激活了NF-κB信号通路。NF-κB直接抑制PINK1的转录,NF-κB转录因子复合物入核后,与PINK1基因启动子区域特异性结合,降低PINK1基因位点的转录活性,导致PINK1蛋白表达显著下调。作为PINK1/Parkin通路的关键起始分子,PINK1表达缺失直接削弱E3泛素连接酶Parkin的招募与活化效率,使受损线粒体无法获得泛素化标记,阻碍线粒体自噬的启动[21]。与此同时,过量ROS攻击线粒体DNA引发碱基氧化损伤与双链断裂,激活ATM/ATR-DNA损伤应答通路,该通路通过磷酸化Beclin1等自噬相关蛋白,干扰自噬体的形成与成熟,打破线粒体自噬的调控平衡[22]。ROS持续累积和炎症信号通路的持续激活,加剧肺组织炎症浸润、气道重塑与肺泡结构破坏,加速COPD病理进程的恶化。

4. 线粒体自噬作为COPD治疗靶点的研究进展

基于上述机制,靶向线粒体自噬的调控成为COPD治疗的潜在策略。目前研究主要聚焦于通过药物干预恢复线粒体自噬的动态平衡,以阻断疾病进展的关键环节(见表1)。

Table 1. Mitophagy regulators

1. 线粒体自噬调节剂

药物

作用靶点

机制

临床意义

Mdivi-1

抑制Drp1

减少线粒体过度分裂→恢复动态平衡

缓解氧化应激与炎症,延缓肺气肿进展

罗氟司特

PDE4抑制剂→降低PINK1表达

抑制过度炎症反应→间接减少细胞凋亡

适用于晚期COPD患者(减少急性加重)

SIRT1激活剂

激活SIRT1→抑制NF-κB

恢复PINK1表达→增强线粒体自噬

潜在延缓COPD进展

4.1. 药物干预

4.1.1. 线粒体分裂抑制剂1 (Mitochondrial Division Inhibitor 1, Mdivi-1)

Mdivi-1是线粒体分裂的特异性抑制剂。生理状态下,动力蛋白相关蛋白1 (Dynamin-related protein 1, Drp1)凭借GTP酶活性维持线粒体动态平衡。在COPD中,CS、炎症因子(如TNF-α)和氧化应激通过激活蛋白激酶C (Protein kinase C, PKC),促进Drp1磷酸化,引起线粒体过度分裂。过度分裂的线粒体因膜电位下降、呼吸链功能受损,产生大量ROS,并释放线粒体DNA等损伤因子,进一步加重炎症反应[23]。Mdivi-1通过与Drp1的GTP酶结构域结合,降低Drp1的表达,从而特异性抑制线粒体过度分裂,减少ROS爆发及mtDNA释放[24]。此外,线粒体形态恢复可提高线粒体自噬的选择性,碎片化线粒体更容易被PINK1/Parkin通路识别并清除。Mdivi-1可缓解COPD早期的氧化应激与小气道炎症,延缓肺气肿进展。

4.1.2. 罗氟司特

磷酸二酯酶4 (phosphodiesterase4, PDE4)是降解环磷酸腺苷(Cyclic adenosine monophosphate, cAMP)的关键酶,其活性升高导致气道平滑肌细胞内的cAMP水平下降,进一步激活蛋白激酶A (Protein kinase A, PKA),促进IL-8、TNF-α等炎症因子释放,加剧气道高反应性[25]。选择性PDE4抑制剂罗氟司特,可通过升高cAMP水平来抑制NF-κB信号通路,从而减少中性粒细胞募集和气道壁炎症细胞浸润[26]。罗氟司特对线粒体自噬的调控具有双向性,在COPD急性期,其可通过降低PINK1表达来抑制过度激活的PINK1/Parkin通路,减少线粒体过度清除,避免“自噬性细胞损伤”。在COPD晚期,患者的气道壁已发生广泛纤维化,过度的线粒体自噬会促进成纤维细胞活化并加剧细胞外基质沉积,进而加重纤维化。而罗氟司特可抑制气道炎性反应,减少ROS对线粒体的损伤,降低线粒体自噬的激活,减少过度自噬,延缓肺纤维化进程[26] [27]

4.1.3. SIRT1激活剂

作为依赖烟酰胺腺嘌呤二核苷酸的组蛋白去乙酰化酶SIRT1,其通过对转录因子、信号蛋白及代谢酶的去乙酰化修饰调控细胞应激反应。在COPD中,SIRT1活性被氧化应激和衰老的双重抑制,进而导致NF-κB通路持续激活,线粒体自噬功能减退[28]。SIRT1激活剂,如白藜芦醇可通过多种方式增强线粒体自噬。一是直接对NF-κB进行去乙酰化修饰,阻止NF-κB的表达,降低IL-6、TNF-α等炎症因子的释放,减少ROS生成对线粒体的损伤[29];二是通过激活PINK1基因启动子,增强PINK1表达,进而增强PINK1/Parkin介导的线粒体自噬[30];三是与过氧化物酶体增殖物激活受体γ共激活因子1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha, PGC-1α)协同作用,促进线粒体DNA复制,增强呼吸链复合物表达,补充功能性线粒体,维持线粒体质量与数量的平衡[31]。在CS暴露的小鼠模型中,该类激活剂可使肺泡巨噬细胞线粒体自噬通量显著提升,并降低支气管肺泡灌洗液中中性粒细胞比例及基质金属蛋白酶-9水平,显示出抑制气道重塑的潜力,但当SIRT1过度激活是可能会促进细胞凋亡,需精准调控剂量范围以平衡疗效与安全性[32]

4.2. 其他治疗方式

除了现有药物外,在COPD研究进程中,多项前沿探索为治疗带来新希望。首先,基因治疗方面,通过载体将PINK1、Parkin等线粒体自噬相关基因导入细胞是重要策略。研究表明,PINK1和Parkin能协同检测线粒体去极化、标记受损线粒体并触发线粒体自噬。将Parkin基因导入烟熏小鼠肺中,可改善其肺功能[33]。但该方法存在载体安全问题,以及如何精准调控导入基因的表达水平等难题。

其次,RNA干扰技术也用于增强自噬,其原理是靶向负调控因子,以解除对自噬的抑制。然而,在实际应用中,RNA干扰技术面临着在体内稳定性差以及靶向性难以精准实现等困境[34]

最后,物理治疗同样可作用于线粒体自噬。运动训练便是一种有效的方式,其通过激活PINK1/Parkin通路,促进泛素化标记异常线粒体,随后经自噬体将其降解。长期运动还能增强TFEB核转位,增加溶酶体生物合成,减少含不溶物的溶酶体数量[35]

5. 总结与展望

线粒体自噬作为维系线粒体稳态的核心机制,在COPD的病理进程中呈现双重调控特征:其通过PINK1/Parkin与BNIP3/NIX等通路清除受损线粒体,缓解早期氧化应激与炎症反应,而晚期调控失衡则加剧肺组织损伤。当前针对线粒体自噬的干预策略(如Mdivi-1、罗氟司特及SIRT1激活剂等)已展现治疗潜力,但仍面临多重科学挑战:不同细胞类型及疾病阶段的调控机制异质性显著,动物模型难以完全模拟人类COPD的复杂病理,且靶向干预存在自噬过度激活或抑制的风险。

值得注意的是,PINK1/Parkin与BNIP3/NIX通路的细胞特异性调控差异仍存争议,动物实验中自噬过度激活促进肺纤维化的现象与临床晚期患者自噬功能低下的矛盾,提示物种间病理机制的差异性。此外,罗氟司特对PINK1的双向调控效应及SIRT1激活剂的剂量依赖性毒性,凸显精准调控线粒体自噬网络的复杂性。这些争议本质上反映了线粒体自噬时空调控的异质性,亟待通过多组学技术解析其动态作用网络。

未来研究需聚焦以下方向:深入阐明不同调控通路的协同机制,开发具有细胞选择性的靶向药物,建立更贴近临床病理的动物模型,并探索线粒体自噬干预与抗炎、抗氧化疗法的联合策略。随着调控机制研究的深入,线粒体自噬有望成为COPD精准治疗的新靶点,为改善患者预后提供创新解决方案。

NOTES

*通讯作者。

参考文献

[1] Rodriguez-Roisin, R., Rabe, K.F., Vestbo, J., Vogelmeier, C. and Agustí, A. (2017) Global Initiative for Chronic Obstructive Lung Disease (GOLD) 20th Anniversary: A Brief History of Time. European Respiratory Journal, 50, Article ID: 1700671.
https://doi.org/10.1183/13993003.00671-2017
[2] Agustí, A., et al. (2022) Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Journal of the Pan African Thoracic Society, 4, 58-80.
[3] Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., et al. (2018) Prevalence and Risk Factors of Chronic Obstructive Pulmonary Disease in China (the China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717.
https://doi.org/10.1016/s0140-6736(18)30841-9
[4] Barnes, P.J. (2022) Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants, 11, Article No. 965.
https://doi.org/10.3390/antiox11050965
[5] He, H., Xiong, X., Zheng, Y., Hou, J., Jiang, T., Quan, W., et al. (2025) Corrigendum: Parkin Characteristics and Blood Biomarkers of Parkinson's Disease in WPBLC Study. Frontiers in Aging Neuroscience, 17, Article ID: 1621994.
https://doi.org/10.3389/fnagi.2025.1621994
[6] Wei, X., Wang, Y., Lao, Y., Weng, J., Deng, R., Li, S., et al. (2023) Effects of Honokiol Protects against Chronic Kidney Disease via BNIP3/NIX and FUNDC1-Mediated Mitophagy and AMPK Pathways. Molecular Biology Reports, 50, 6557-6568.
https://doi.org/10.1007/s11033-023-08592-1
[7] Yan, C., Gong, L., Chen, L., Xu, M., Abou-Hamdan, H., Tang, M., et al. (2019) PHB2 (Prohibitin 2) Promotes PINK1-PRKN/Parkin-Dependent Mitophagy by the PARL-PGAM5-PINK1 Axis. Autophagy, 16, 419-434.
https://doi.org/10.1080/15548627.2019.1628520
[8] Eldeeb, M.A., Bayne, A.N., Fallahi, A., Goiran, T., MacDougall, E.J., Soumbasis, A., et al. (2024) Tom20 Gates PINK1 Activity and Mediates Its Tethering of the TOM and TIM23 Translocases upon Mitochondrial Stress. Proceedings of the National Academy of Sciences, 121, e2313540121.
https://doi.org/10.1073/pnas.2313540121
[9] Iriondo, M.N., Etxaniz, A., Varela, Y.R., et al. (2023) Supplementary Information for Effect of ATG12-ATG5-ATG16L1 Autophagy E3-Like Complex on the Ability of LC3/GABARAP Proteins to Induce Vesicle Tethering and Fusion.
[10] Choubey, V., Zeb, A. and Kaasik, A. (2021) Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells, 11, Article No. 38.
https://doi.org/10.3390/cells11010038
[11] Gok, M.O., Connor, O.M., Wang, X., Menezes, C.J., Llamas, C.B., Mishra, P., et al. (2023) The Outer Mitochondrial Membrane Protein TMEM11 Demarcates Spatially Restricted BNIP3/BNIP3L-Mediated Mitophagy. Journal of Cell Biology, 222, e202204021.
https://doi.org/10.1083/jcb.202204021
[12] Sun, Y., Zhu, G., Zhao, R., Li, Y., Li, H., Liu, Y., et al. (2025) Deapioplatycodin D Inhibits Glioblastoma Cell Proliferation by Inducing BNIP3L-Mediated Incomplete Mitophagy. Cancer Cell International, 25, Article No. 11.
https://doi.org/10.1186/s12935-025-03636-x
[13] Field, J.T. and Gordon, J.W. (2022) BNIP3 and NIX: Atypical Regulators of Cell Fate. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1869, Article ID: 119325.
https://doi.org/10.1016/j.bbamcr.2022.119325
[14] Liu, Z.X., Chen, Y.Y., et al. (2024) Tetrahydropalmatine Inhibiting Mitophagy through ULK1/FUNDC1 Pathway to Alleviate Hypoxia/Reoxygenation Injury in H9c2 Cells. China Journal of Chinese Materia Medica, 49, 1286-1294.
[15] Chen, Z., Liu, L., Cheng, Q., Li, Y., Wu, H., Zhang, W., et al. (2017) Mitochondrial E3 Ligase March 5 Regulates FUNDC 1 to Finetune Hypoxic Mitophagy. EMBO reports, 18, 495-509.
https://doi.org/10.15252/embr.201643309
[16] Wu, H., Xue, D., Chen, G., Han, Z., Huang, L., Zhu, C., et al. (2014) The BCL2L1 and PGAM5 Axis Defines Hypoxia-Induced Receptor-Mediated Mitophagy. Autophagy, 10, 1712-1725.
https://doi.org/10.4161/auto.29568
[17] Li, M., Qin, Y., Tian, Y., Li, K., Oliver, B.G., Liu, X., et al. (2022) Effective-Component Compatibility of Bufei Yishen Formula III Ameliorated COPD by Improving Airway Epithelial Cell Senescence by Promoting Mitophagy via the NRF2/PINK1 Pathway. BMC Pulmonary Medicine, 22, Article No. 434.
https://doi.org/10.1186/s12890-022-02191-9
[18] Li, D., Hu, J., Wang, T., Zhang, X., Liu, L., Wang, H., et al. (2016) Silymarin Attenuates Cigarette Smoke Extract-Induced Inflammation via Simultaneous Inhibition of Autophagy and ERK/p38 MAPK Pathway in Human Bronchial Epithelial Cells. Scientific Reports, 6, Article No. 37751.
https://doi.org/10.1038/srep37751
[19] Li, C., Liu, Q., Chang, Q., Xie, M., Weng, J., Wang, X., et al. (2023) Role of Mitochondrial Fusion Proteins MFN2 and OPA1 on Lung Cellular Senescence in Chronic Obstructive Pulmonary Disease. Respiratory Research, 24, Article No. 319.
https://doi.org/10.1186/s12931-023-02634-9
[20] D’Arcy, M.S. (2024) Mitophagy in Health and Disease. Molecular Mechanisms, Regulatory Pathways, and Therapeutic Implications. Apoptosis, 29, 1415-1428.
https://doi.org/10.1007/s10495-024-01977-y
[21] Liu, D., Zhong, Z. and Karin, M. (2022) NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines, 10, Article No. 1250.
https://doi.org/10.3390/biomedicines10061250
[22] Palma, F.R., Gantner, B.N., Sakiyama, M.J., Kayzuka, C., Shukla, S., Lacchini, R., et al. (2023) ROS Production by Mitochondria: Function or Dysfunction? Oncogene, 43, 295-303.
https://doi.org/10.1038/s41388-023-02907-z
[23] Antunes, M.A., Lopes-Pacheco, M. and Rocco, P.R.M. (2021) Oxidative Stress‐Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6644002.
https://doi.org/10.1155/2021/6644002
[24] Qin, Y., Lv, C., Zhang, X., Ruan, W., Xu, X., Chen, C., et al. (2021) Neuraminidase1 Inhibitor Protects against Doxorubicin-Induced Cardiotoxicity via Suppressing DRP1-Dependent Mitophagy. Frontiers in Cell and Developmental Biology, 9, Article ID: 802502.
https://doi.org/10.3389/fcell.2021.802502
[25] Li, H., Zuo, J. and Tang, W. (2018) Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 9, Article No. 1048.
https://doi.org/10.3389/fphar.2018.01048
[26] Crocetti, L., Floresta, G., Cilibrizzi, A. and Giovannoni, M.P. (2022) An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules, 27, Article No. 4964.
https://doi.org/10.3390/molecules27154964
[27] Wang, Y., Wang, H., Yang, G., Hao, Q., Yang, K., Shen, H., et al. (2023) Design and Synthesis of a Novel Class of PDE4 Inhibitors with Antioxidant Properties as Bifunctional Agents for the Potential Treatment of COPD. European Journal of Medicinal Chemistry, 256, Article ID: 115374.
https://doi.org/10.1016/j.ejmech.2023.115374
[28] Li, S., Huang, Q. and He, B. (2023) SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung, 201, 201-215.
https://doi.org/10.1007/s00408-023-00607-9
[29] Zhang, X., Li, W., Zhang, J., Li, C., Zhang, J. and Lv, X. (2022) Roles of Sirtuin Family Members in Chronic Obstructive Pulmonary Disease. Respiratory Research, 23, Article No. 66.
https://doi.org/10.1186/s12931-022-01986-y
[30] Sun, C., Bai, S., Liang, Y., Liu, D., Liao, J., Chen, Y., et al. (2023) The Role of Sirtuin 1 and Its Activators in Age-Related Lung Disease. Biomedicine & Pharmacotherapy, 162, Article ID: 114573.
https://doi.org/10.1016/j.biopha.2023.114573
[31] 杨坤. 白藜芦醇激活SIRT1/PGC-1α信号通路减轻新生大鼠高氧性肺损伤[D]: [硕士学位论文]. 泸州: 西南医科大学,2022.
[32] Zhang, Y., Li, T., Pan, M., Wang, W., Huang, W., Yuan, Y., et al. (2022) SIRT1 Prevents Cigarette Smoking-Induced Lung Fibroblasts Activation by Regulating Mitochondrial Oxidative Stress and Lipid Metabolism. Journal of Translational Medicine, 20, Article No. 222.
https://doi.org/10.1186/s12967-022-03408-5
[33] Lin, Q., Zhang, C., Guo, J., Su, J., Guo, Z. and Li, H. (2022) Involvement of NEAT1/PINK1-Mediated Mitophagy in Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke or PM2.5. Annals of Translational Medicine, 10, 277-277.
https://doi.org/10.21037/atm-22-542
[34] 冯怡, 李锋. 线粒体代谢重编程与慢性阻塞性肺疾病[J]. 国际呼吸杂志, 2022, 42(12): 889-894.
[35] He, Q., Li, P., Han, L., Yang, C., Jiang, M., Wang, Y., et al. (2024) Revisiting Airway Epithelial Dysfunction and Mechanisms in Chronic Obstructive Pulmonary Disease: The Role of Mitochondrial Damage. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L754-L769.
https://doi.org/10.1152/ajplung.00362.2023