[1]
|
Rodriguez-Roisin, R., Rabe, K.F., Vestbo, J., Vogelmeier, C. and Agustí, A. (2017) Global Initiative for Chronic Obstructive Lung Disease (GOLD) 20th Anniversary: A Brief History of Time. European Respiratory Journal, 50, Article ID: 1700671. https://doi.org/10.1183/13993003.00671-2017
|
[2]
|
Agustí, A., et al. (2022) Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Journal of the Pan African Thoracic Society, 4, 58-80.
|
[3]
|
Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., et al. (2018) Prevalence and Risk Factors of Chronic Obstructive Pulmonary Disease in China (the China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717. https://doi.org/10.1016/s0140-6736(18)30841-9
|
[4]
|
Barnes, P.J. (2022) Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants, 11, Article No. 965. https://doi.org/10.3390/antiox11050965
|
[5]
|
He, H., Xiong, X., Zheng, Y., Hou, J., Jiang, T., Quan, W., et al. (2025) Corrigendum: Parkin Characteristics and Blood Biomarkers of Parkinson's Disease in WPBLC Study. Frontiers in Aging Neuroscience, 17, Article ID: 1621994. https://doi.org/10.3389/fnagi.2025.1621994
|
[6]
|
Wei, X., Wang, Y., Lao, Y., Weng, J., Deng, R., Li, S., et al. (2023) Effects of Honokiol Protects against Chronic Kidney Disease via BNIP3/NIX and FUNDC1-Mediated Mitophagy and AMPK Pathways. Molecular Biology Reports, 50, 6557-6568. https://doi.org/10.1007/s11033-023-08592-1
|
[7]
|
Yan, C., Gong, L., Chen, L., Xu, M., Abou-Hamdan, H., Tang, M., et al. (2019) PHB2 (Prohibitin 2) Promotes PINK1-PRKN/Parkin-Dependent Mitophagy by the PARL-PGAM5-PINK1 Axis. Autophagy, 16, 419-434. https://doi.org/10.1080/15548627.2019.1628520
|
[8]
|
Eldeeb, M.A., Bayne, A.N., Fallahi, A., Goiran, T., MacDougall, E.J., Soumbasis, A., et al. (2024) Tom20 Gates PINK1 Activity and Mediates Its Tethering of the TOM and TIM23 Translocases upon Mitochondrial Stress. Proceedings of the National Academy of Sciences, 121, e2313540121. https://doi.org/10.1073/pnas.2313540121
|
[9]
|
Iriondo, M.N., Etxaniz, A., Varela, Y.R., et al. (2023) Supplementary Information for Effect of ATG12-ATG5-ATG16L1 Autophagy E3-Like Complex on the Ability of LC3/GABARAP Proteins to Induce Vesicle Tethering and Fusion.
|
[10]
|
Choubey, V., Zeb, A. and Kaasik, A. (2021) Molecular Mechanisms and Regulation of Mammalian Mitophagy. Cells, 11, Article No. 38. https://doi.org/10.3390/cells11010038
|
[11]
|
Gok, M.O., Connor, O.M., Wang, X., Menezes, C.J., Llamas, C.B., Mishra, P., et al. (2023) The Outer Mitochondrial Membrane Protein TMEM11 Demarcates Spatially Restricted BNIP3/BNIP3L-Mediated Mitophagy. Journal of Cell Biology, 222, e202204021. https://doi.org/10.1083/jcb.202204021
|
[12]
|
Sun, Y., Zhu, G., Zhao, R., Li, Y., Li, H., Liu, Y., et al. (2025) Deapioplatycodin D Inhibits Glioblastoma Cell Proliferation by Inducing BNIP3L-Mediated Incomplete Mitophagy. Cancer Cell International, 25, Article No. 11. https://doi.org/10.1186/s12935-025-03636-x
|
[13]
|
Field, J.T. and Gordon, J.W. (2022) BNIP3 and NIX: Atypical Regulators of Cell Fate. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1869, Article ID: 119325. https://doi.org/10.1016/j.bbamcr.2022.119325
|
[14]
|
Liu, Z.X., Chen, Y.Y., et al. (2024) Tetrahydropalmatine Inhibiting Mitophagy through ULK1/FUNDC1 Pathway to Alleviate Hypoxia/Reoxygenation Injury in H9c2 Cells. China Journal of Chinese Materia Medica, 49, 1286-1294.
|
[15]
|
Chen, Z., Liu, L., Cheng, Q., Li, Y., Wu, H., Zhang, W., et al. (2017) Mitochondrial E3 Ligase March 5 Regulates FUNDC 1 to Finetune Hypoxic Mitophagy. EMBO reports, 18, 495-509. https://doi.org/10.15252/embr.201643309
|
[16]
|
Wu, H., Xue, D., Chen, G., Han, Z., Huang, L., Zhu, C., et al. (2014) The BCL2L1 and PGAM5 Axis Defines Hypoxia-Induced Receptor-Mediated Mitophagy. Autophagy, 10, 1712-1725. https://doi.org/10.4161/auto.29568
|
[17]
|
Li, M., Qin, Y., Tian, Y., Li, K., Oliver, B.G., Liu, X., et al. (2022) Effective-Component Compatibility of Bufei Yishen Formula III Ameliorated COPD by Improving Airway Epithelial Cell Senescence by Promoting Mitophagy via the NRF2/PINK1 Pathway. BMC Pulmonary Medicine, 22, Article No. 434. https://doi.org/10.1186/s12890-022-02191-9
|
[18]
|
Li, D., Hu, J., Wang, T., Zhang, X., Liu, L., Wang, H., et al. (2016) Silymarin Attenuates Cigarette Smoke Extract-Induced Inflammation via Simultaneous Inhibition of Autophagy and ERK/p38 MAPK Pathway in Human Bronchial Epithelial Cells. Scientific Reports, 6, Article No. 37751. https://doi.org/10.1038/srep37751
|
[19]
|
Li, C., Liu, Q., Chang, Q., Xie, M., Weng, J., Wang, X., et al. (2023) Role of Mitochondrial Fusion Proteins MFN2 and OPA1 on Lung Cellular Senescence in Chronic Obstructive Pulmonary Disease. Respiratory Research, 24, Article No. 319. https://doi.org/10.1186/s12931-023-02634-9
|
[20]
|
D’Arcy, M.S. (2024) Mitophagy in Health and Disease. Molecular Mechanisms, Regulatory Pathways, and Therapeutic Implications. Apoptosis, 29, 1415-1428. https://doi.org/10.1007/s10495-024-01977-y
|
[21]
|
Liu, D., Zhong, Z. and Karin, M. (2022) NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines, 10, Article No. 1250. https://doi.org/10.3390/biomedicines10061250
|
[22]
|
Palma, F.R., Gantner, B.N., Sakiyama, M.J., Kayzuka, C., Shukla, S., Lacchini, R., et al. (2023) ROS Production by Mitochondria: Function or Dysfunction? Oncogene, 43, 295-303. https://doi.org/10.1038/s41388-023-02907-z
|
[23]
|
Antunes, M.A., Lopes-Pacheco, M. and Rocco, P.R.M. (2021) Oxidative Stress‐Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6644002. https://doi.org/10.1155/2021/6644002
|
[24]
|
Qin, Y., Lv, C., Zhang, X., Ruan, W., Xu, X., Chen, C., et al. (2021) Neuraminidase1 Inhibitor Protects against Doxorubicin-Induced Cardiotoxicity via Suppressing DRP1-Dependent Mitophagy. Frontiers in Cell and Developmental Biology, 9, Article ID: 802502. https://doi.org/10.3389/fcell.2021.802502
|
[25]
|
Li, H., Zuo, J. and Tang, W. (2018) Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Frontiers in Pharmacology, 9, Article No. 1048. https://doi.org/10.3389/fphar.2018.01048
|
[26]
|
Crocetti, L., Floresta, G., Cilibrizzi, A. and Giovannoni, M.P. (2022) An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules, 27, Article No. 4964. https://doi.org/10.3390/molecules27154964
|
[27]
|
Wang, Y., Wang, H., Yang, G., Hao, Q., Yang, K., Shen, H., et al. (2023) Design and Synthesis of a Novel Class of PDE4 Inhibitors with Antioxidant Properties as Bifunctional Agents for the Potential Treatment of COPD. European Journal of Medicinal Chemistry, 256, Article ID: 115374. https://doi.org/10.1016/j.ejmech.2023.115374
|
[28]
|
Li, S., Huang, Q. and He, B. (2023) SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung, 201, 201-215. https://doi.org/10.1007/s00408-023-00607-9
|
[29]
|
Zhang, X., Li, W., Zhang, J., Li, C., Zhang, J. and Lv, X. (2022) Roles of Sirtuin Family Members in Chronic Obstructive Pulmonary Disease. Respiratory Research, 23, Article No. 66. https://doi.org/10.1186/s12931-022-01986-y
|
[30]
|
Sun, C., Bai, S., Liang, Y., Liu, D., Liao, J., Chen, Y., et al. (2023) The Role of Sirtuin 1 and Its Activators in Age-Related Lung Disease. Biomedicine & Pharmacotherapy, 162, Article ID: 114573. https://doi.org/10.1016/j.biopha.2023.114573
|
[31]
|
杨坤. 白藜芦醇激活SIRT1/PGC-1α信号通路减轻新生大鼠高氧性肺损伤[D]: [硕士学位论文]. 泸州: 西南医科大学,2022.
|
[32]
|
Zhang, Y., Li, T., Pan, M., Wang, W., Huang, W., Yuan, Y., et al. (2022) SIRT1 Prevents Cigarette Smoking-Induced Lung Fibroblasts Activation by Regulating Mitochondrial Oxidative Stress and Lipid Metabolism. Journal of Translational Medicine, 20, Article No. 222. https://doi.org/10.1186/s12967-022-03408-5
|
[33]
|
Lin, Q., Zhang, C., Guo, J., Su, J., Guo, Z. and Li, H. (2022) Involvement of NEAT1/PINK1-Mediated Mitophagy in Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke or PM2.5. Annals of Translational Medicine, 10, 277-277. https://doi.org/10.21037/atm-22-542
|
[34]
|
冯怡, 李锋. 线粒体代谢重编程与慢性阻塞性肺疾病[J]. 国际呼吸杂志, 2022, 42(12): 889-894.
|
[35]
|
He, Q., Li, P., Han, L., Yang, C., Jiang, M., Wang, Y., et al. (2024) Revisiting Airway Epithelial Dysfunction and Mechanisms in Chronic Obstructive Pulmonary Disease: The Role of Mitochondrial Damage. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L754-L769. https://doi.org/10.1152/ajplung.00362.2023
|