[1]
|
Liu, F., Peng, W., Chen, J., Xu, Z., Jiang, R., Shao, Q., et al. (2021) Exosomes Derived from Alveolar Epithelial Cells Promote Alveolar Macrophage Activation Mediated by miR-92a-3p in Sepsis-Induced Acute Lung Injury. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 646546. https://doi.org/10.3389/fcimb.2021.646546
|
[2]
|
Tang, D., Kang, R., Zeh, H.J. and Lotze, M.T. (2023) The Multifunctional Protein HMGB1: 50 Years of Discovery. Nature Reviews Immunology, 23, 824-841. https://doi.org/10.1038/s41577-023-00894-6
|
[3]
|
Jia, Y., Xiong, S., Yao, M., Wei, Y. and He, Y. (2024) HMGB1 Inhibition Blocks Ferroptosis and Oxidative Stress to Ameliorate Sepsis‐Induced Acute Lung Injury by Activating the Nrf2 Pathway. The Kaohsiung Journal of Medical Sciences, 40, 710-721. https://doi.org/10.1002/kjm2.12851
|
[4]
|
Yang, H., Wang, H. and Andersson, U. (2020) Targeting Inflammation Driven by HMGB1. Frontiers in Immunology, 11, Article No. 484. https://doi.org/10.3389/fimmu.2020.00484
|
[5]
|
Ruggieri, E., Di Domenico, E., Locatelli, A.G., Isopo, F., Damanti, S., De Lorenzo, R., et al. (2024) HMGB1, an Evolving Pleiotropic Protein Critical for Cellular and Tissue Homeostasis: Role in Aging and Age-Related Diseases. Ageing Research Reviews, 102, Article ID: 102550. https://doi.org/10.1016/j.arr.2024.102550
|
[6]
|
Chen, R., Kang, R. and Tang, D. (2022) The Mechanism of HMGB1 Secretion and Release. Experimental & Molecular Medicine, 54, 91-102. https://doi.org/10.1038/s12276-022-00736-w
|
[7]
|
Zhang, W., Jiang, H., Wu, G., Huang, P., Wang, H., An, H., et al. (2023) The Pathogenesis and Potential Therapeutic Targets in Sepsis. MedComm, 4, e418. https://doi.org/10.1002/mco2.418
|
[8]
|
Yamashita, A., Ito, Y., Osada, M., Matsuda, H., Hosono, K., Tsujikawa, K., et al. (2024) RAMP1 Signaling Mitigates Acute Lung Injury by Distinctively Regulating Alveolar and Monocyte-Derived Macrophages. International Journal of Molecular Sciences, 25, Article No. 10107. https://doi.org/10.3390/ijms251810107
|
[9]
|
Yu, H., Liu, S., Wang, S. and Gu, X. (2024) The Involvement of HDAC3 in the Pathogenesis of Lung Injury and Pulmonary Fibrosis. Frontiers in Immunology, 15, Article ID: 1392145. https://doi.org/10.3389/fimmu.2024.1392145
|
[10]
|
曹毓文. HMGB1/LPS经非经典途径诱导巨噬细胞焦亡参与败血症进展的机制研究[D]: [博士学位论文]. 镇江: 江苏大学, 2025.
|
[11]
|
Ding, X., Jin, S., Tian, W., Zhang, Y., Xu, L., Zhang, T., et al. (2024) Role of Caspase-1/Caspase-11-HMGB1-Rage/Tlr4 Signaling in the Exacerbation of Extrapulmonary Sepsis-Induced Lung Injury by Mechanical Ventilation. Shock, 63, 299-311. https://doi.org/10.1097/shk.0000000000002471
|
[12]
|
张列, 苗树船, 杨中鑫, 等. HMGB1下调的作用: 通过抑制神经元细胞自噬和凋亡减轻大鼠脑出血后的神经元损伤[J]. 南方医科大学学报, 2022, 42(7): 1050-1056.
|
[13]
|
Chen, R., Zou, J., Zhong, X., Li, J., Kang, R. and Tang, D. (2024) HMGB1 in the Interplay between Autophagy and Apoptosis in Cancer. Cancer Letters, 581, Article ID: 216494. https://doi.org/10.1016/j.canlet.2023.216494
|
[14]
|
Liu, J., Song, K., Lin, B., Chen, Z., Zuo, Z., Fang, Y., et al. (2024) HMGB1 Promotes Neutrophil PD-L1 Expression through TLR2 and Mediates T Cell Apoptosis Leading to Immunosuppression in Sepsis. International Immunopharmacology, 133, Article ID: 112130. https://doi.org/10.1016/j.intimp.2024.112130
|
[15]
|
舒小燚, 李有霞, 范绍辉, 等. HMGB1和TLR4在ARDS中作用的研究进展[J]. 天津医药, 2022, 50(4): 433-438.
|
[16]
|
Le, Y., Wang, Y., Zhou, L., Xiong, J., Tian, J., Yang, X., et al. (2019) Cigarette Smoke‐Induced HMGB1 Translocation and Release Contribute to Migration and NF‐κB Activation through Inducing Autophagy in Lung Macrophages. Journal of Cellular and Molecular Medicine, 24, 1319-1331. https://doi.org/10.1111/jcmm.14789
|
[17]
|
Hu, Q., Zhang, S., Yang, Y., Yao, J., Tang, W., Lyon, C.J., et al. (2022) Extracellular Vesicles in the Pathogenesis and Treatment of Acute Lung Injury. Military Medical Research, 9, Article No. 61. https://doi.org/10.1186/s40779-022-00417-9
|
[18]
|
董学程, 刘玲. 2-ARDS中肺泡巨噬细胞自噬对肺损伤调节作用的研究进展[J]. 中华重症医学电子杂志(网络版), 2021, 7(3): 268-271.
|
[19]
|
Long, M.E., Mallampalli, R.K. and Horowitz, J.C. (2022) Pathogenesis of Pneumonia and Acute Lung Injury. Clinical Science, 136, 747-769. https://doi.org/10.1042/cs20210879
|
[20]
|
Gu, W., Zeng, Q., Wang, X., Jasem, H. and Ma, L. (2024) Acute Lung Injury and the NLRP3 Inflammasome. Journal of Inflammation Research, 17, 3801-3813. https://doi.org/10.2147/jir.s464838
|
[21]
|
徐宇, 范绍辉, 秘乐, 等. HMGB1/RAGE信号通路在ALI/ARDS肺泡巨噬细胞焦亡中作用的研究进展[J]. 重庆医学, 2021, 50(10): 1789-1793.
|
[22]
|
王晓艳, 李璟, 胡海峰, 等. 高速泳动族蛋白B1和自噬在急性肺损伤致病中的作用机制[J]. 重庆医科大学学报, 2021, 46(10): 1255-1259.
|
[23]
|
吴海兰, 戴伟, 赵明, 等. 高迁移率族蛋白B1在急性肺损伤中的研究进展[J]. 临床肺科杂志, 2019, 24(12): 2276-2280.
|
[24]
|
Jang, E.J., Kim, H., Baek, S.E., Jeon, E.Y., Kim, J.W., Kim, J.Y., et al. (2022) HMGB1 Increases RAGE Expression in Vascular Smooth Muscle Cells via ERK and P-38 Mapk-Dependent Pathways. The Korean Journal of Physiology & Pharmacology, 26, 389-396. https://doi.org/10.4196/kjpp.2022.26.5.389
|
[25]
|
王发龙, 韩菲菲, 王婷婷, 等. HMGB1诱导肺泡巨噬细胞释放促炎细胞因子[J]. 细胞与分子免疫学杂志, 2012, 28(10): 1062-1063, 1066.
|
[26]
|
Zhang, P., Yang, M., Chen, C., Liu, L., Wei, X. and Zeng, S. (2020) Toll-Like Receptor 4 (TLR4)/Opioid Receptor Pathway Crosstalk and Impact on Opioid Analgesia, Immune Function, and Gastrointestinal Motility. Frontiers in Immunology, 11, Article No. 1455. https://doi.org/10.3389/fimmu.2020.01455
|
[27]
|
丁宁, 肖慧, 高巨, 等. p38 MAPK在周期性机械牵张诱导肺泡巨噬细胞表达HMGB1中的作用[J]. 中国病理生理杂志, 2009, 25(10): 1979-1982.
|
[28]
|
杨庆华, 冯英凯, 胡明冬. 35-高迁移率族蛋白1在内毒素急性肺损伤大鼠肺泡巨噬细胞吞噬功能改变中的作用[J]. 重庆医学, 2006(5): 412-414, 417.
|
[29]
|
Lien, E., Chow, J.C., Hawkins, L.D., McGuinness, P.D., Miyake, K., Espevik, T., et al. (2001) A Novel Synthetic Acyclic Lipid A-Like Agonist Activates Cells via the Lipopolysaccharide/toll-Like Receptor 4 Signaling Pathway. Journal of Biological Chemistry, 276, 1873-1880. https://doi.org/10.1074/jbc.m009040200
|
[30]
|
van Zoelen, M.A.D., Yang, H., Florquin, S., Meijers, J.C.M., Akira, S., Arnold, B., et al. (2009) Role of Toll-Like Receptors 2 and 4, and the Receptor for Advanced Glycation End Products in High-Mobility Group Box 1-Induced Inflammation in Vivo. Shock, 31, 280-284. https://doi.org/10.1097/shk.0b013e318186262d
|
[31]
|
Abdulmahdi, W., Patel, D., Rabadi, M.M., Azar, T., Jules, E., Lipphardt, M., et al. (2017) HMGB1 Redox during Sepsis. Redox Biology, 13, 600-607. https://doi.org/10.1016/j.redox.2017.08.001
|
[32]
|
Li, J., Kokkola, R., Tabibzadeh, S., Yang, R., Ochani, M., Qiang, X., et al. (2003) Structural Basis for the Proinflammatory Cytokine Activity of High Mobility Group Box 1. Molecular Medicine, 9, 37-45. https://doi.org/10.1007/bf03402105
|
[33]
|
Gong, W., Zheng, Y., Chao, F., Li, Y., Xu, Z., Huang, G., et al. (2010) The Anti-Inflammatory Activity of HMGB1 a Box Is Enhanced When Fused with C-Terminal Acidic Tail. Journal of Biomedicine and Biotechnology, 2010, Article ID: 915234. https://doi.org/10.1155/2010/915234
|
[34]
|
Bonaldi, T. (2003) Monocytic Cells Hyperacetylate Chromatin Protein HMGB1 to Redirect It towards Secretion. The EMBO Journal, 22, 5551-5560. https://doi.org/10.1093/emboj/cdg516
|
[35]
|
Tang, D., Shi, Y., Kang, R., Li, T., Xiao, W., Wang, H., et al. (2006) Hydrogen Peroxide Stimulates Macrophages and Monocytes to Actively Release HMGB1. Journal of Leukocyte Biology, 81, 741-747. https://doi.org/10.1189/jlb.0806540
|
[36]
|
Kim, Y.H., Kwak, M.S., Lee, B., Shin, J.M., Aum, S., Park, I.H., et al. (2020) Secretory Autophagy Machinery and Vesicular Trafficking Are Involved in HMGB1 Secretion. Autophagy, 17, 2345-2362. https://doi.org/10.1080/15548627.2020.1826690
|