[1]
|
Yao, L., Zhang, Z., Keles, E., Yazici, C., Tirkes, T. and Bagci, U. (2023) A Review of Deep Learning and Radiomics Approaches for Pancreatic Cancer Diagnosis from Medical Imaging. Current Opinion in Gastroenterology, 39, 436-447. https://doi.org/10.1097/mog.0000000000000966
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[3]
|
Kaczor-Urbanowicz, K.E., Cheng, J., King, J.C., Sedarat, A., Pandol, S.J., Farrell, J.J., et al. (2020) Reviews on Current Liquid Biopsy for Detection and Management of Pancreatic Cancers. Pancreas, 49, 1141-1152. https://doi.org/10.1097/mpa.0000000000001662
|
[4]
|
Park, W., Chawla, A. and O’Reilly, E.M. (2021) Pancreatic Cancer. JAMA, 326, 851-862. https://doi.org/10.1001/jama.2021.13027
|
[5]
|
Marti-Bonmati, L., Cerdá-Alberich, L., Pérez-Girbés, A., Díaz Beveridge, R., Montalvá Orón, E., Pérez Rojas, J., et al. (2022) Pancreatic Cancer, Radiomics and Artificial Intelligence. The British Journal of Radiology, 95, Article ID: 20220072. https://doi.org/10.1259/bjr.20220072
|
[6]
|
Lee, E.S. (2014) Imaging Diagnosis of Pancreatic Cancer: A State-of-the-Art Review. World Journal of Gastroenterology, 20, 7864-7877. https://doi.org/10.3748/wjg.v20.i24.7864
|
[7]
|
Yang, Y., Liu, J., Gui, Y., Lei, L. and Zhang, S. (2017) Relationship between Autophagy and Perineural Invasion, Clinicopathological Features, and Prognosis in Pancreatic Cancer. World Journal of Gastroenterology, 23, 7232-7241. https://doi.org/10.3748/wjg.v23.i40.7232
|
[8]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[9]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R.G.P.M., Granton, P., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. https://doi.org/10.1016/j.ejca.2011.11.036
|
[10]
|
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S.A., Schabath, M.B., et al. (2012) Radiomics: The Process and the Challenges. Magnetic Resonance Imaging, 30, 1234-1248. https://doi.org/10.1016/j.mri.2012.06.010
|
[11]
|
Rizzo, S., Botta, F., Raimondi, S., Origgi, D., Fanciullo, C., Morganti, A.G., et al. (2018) Radiomics: The Facts and the Challenges of Image Analysis. European Radiology Experimental, 2, Article No. 36. https://doi.org/10.1186/s41747-018-0068-z
|
[12]
|
de la Pinta, C. (2022) Radiomics in Pancreatic Cancer for Oncologist: Present and Future. Hepatobiliary & Pancreatic Diseases International, 21, 356-361. https://doi.org/10.1016/j.hbpd.2021.12.006
|
[13]
|
中华医学会肿瘤分会早诊早治学组. 中华医学会肿瘤学分会胰腺癌早诊早治专家共识[J]. 中华肿瘤杂志, 2020, 42(9): 706-712.
|
[14]
|
Mukherjee, S., Patra, A., Khasawneh, H., Korfiatis, P., Rajamohan, N., Suman, G., et al. (2022) Radiomics-Based Machine-Learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time before Clinical Diagnosis. Gastroenterology, 163, 1435-1446.e3. https://doi.org/10.1053/j.gastro.2022.06.066
|
[15]
|
Chu, L.C., Park, S., Kawamoto, S., Fouladi, D.F., Shayesteh, S., Zinreich, E.S., et al. (2019) Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma from Normal Pancreatic Tissue. American Journal of Roentgenology, 213, 349-357. https://doi.org/10.2214/ajr.18.20901
|
[16]
|
Wu, L., Cen, C., Yue, X., Chen, L., Wu, H., Yang, M., et al. (2024) A Clinical-Radiomics Nomogram Based on Dual-Layer Spectral Detector CT to Predict Cancer Stage in Pancreatic Ductal Adenocarcinoma. Cancer Imaging, 24, Article No. 55. https://doi.org/10.1186/s40644-024-00700-z
|
[17]
|
Tong, T., Gu, J., Xu, D., Song, L., Zhao, Q., Cheng, F., et al. (2022) Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Images for Assisted Diagnosis of Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. BMC Medicine, 20, Article No. 74. https://doi.org/10.1186/s12916-022-02258-8
|
[18]
|
Shen, K., Su, W., Liang, C., Shi, D., Sun, J. and Yu, R. (2024) Differentiating Small (< 2 cm) Pancreatic Ductal Adenocarcinoma from Neuroendocrine Tumors with Multiparametric MRI-Based Radiomic Features. European Radiology, 34, 7553-7563. https://doi.org/10.1007/s00330-024-10837-x
|
[19]
|
Li, J., Liu, F., Fang, X., Cao, K., Meng, Y., Zhang, H., et al. (2022) CT Radiomics Features in Differentiation of Focal-Type Autoimmune Pancreatitis from Pancreatic Ductal Adenocarcinoma: A Propensity Score Analysis. Academic Radiology, 29, 358-366. https://doi.org/10.1016/j.acra.2021.04.014
|
[20]
|
Shin, J., Shin, S., Lee, J.H., Song, K.B., Hwang, D.W., Kim, H.J., et al. (2020) Lymph Node Size and Its Association with Nodal Metastasis in Ductal Adenocarcinoma of the Pancreas. Journal of Pathology and Translational Medicine, 54, 387-395. https://doi.org/10.4132/jptm.2020.06.23
|
[21]
|
Bian, Y., Guo, S., Jiang, H., Gao, S., Shao, C., Cao, K., et al. (2022) Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Cancer Imaging, 22, Article No. 4. https://doi.org/10.1186/s40644-021-00443-1
|
[22]
|
Zeng, P., Qu, C., Liu, J., Cui, J., Liu, X., Xiu, D., et al. (2022) Comparison of MRI and CT-Based Radiomics for Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Acta Radiologica, 64, 2221-2228. https://doi.org/10.1177/02841851221142552
|
[23]
|
Shi, S., Lin, C., Zhou, J., Wei, L., chen, M., Zhang, J., et al. (2024) Development and Validation of a Deep Learning Radiomics Model with Clinical-Radiological Characteristics for the Identification of Occult Peritoneal Metastases in Patients with Pancreatic Ductal Adenocarcinoma. International Journal of Surgery, 110, 2669-2678. https://doi.org/10.1097/js9.0000000000001213
|
[24]
|
Zhang, T., Dong, X., Zhou, Y., Liu, M., Hang, J. and Wu, L. (2021) Development and Validation of a Radiomics Nomogram to Discriminate Advanced Pancreatic Cancer with Liver Metastases or Other Metastatic Patterns. Cancer Biomarkers, 32, 541-550. https://doi.org/10.3233/cbm-210190
|
[25]
|
König, A., Gros, H., Hinz, U., Hank, T., Kaiser, J., Hackert, T., et al. (2022) Refined Prognostic Staging for Resected Pancreatic Cancer by Modified Stage Grouping and Addition of Tumour Grade. European Journal of Surgical Oncology, 48, 113-120. https://doi.org/10.1016/j.ejso.2021.07.020
|
[26]
|
Nurmi, A., Mustonen, H., Parviainen, H., Peltola, K., Haglund, C. and Seppänen, H. (2017) Neoadjuvant Therapy Offers Longer Survival than Upfront Surgery for Poorly Differentiated and Higher Stage Pancreatic Cancer. Acta Oncologica, 57, 799-806. https://doi.org/10.1080/0284186x.2017.1415458
|
[27]
|
Cen, C., Wang, C., Wang, S., Wen, K., Liu, L., Li, X., et al. (2023) Clinical-radiomics Nomogram Using Contrast-Enhanced CT to Predict Histological Grade and Survival in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 13, Article 1218128. https://doi.org/10.3389/fonc.2023.1218128
|
[28]
|
Liao, H., Li, Y., Yang, Y., Liu, H., Zhang, J., Liang, H., et al. (2022) Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics, 12, Article 1915. https://doi.org/10.3390/diagnostics12081915
|
[29]
|
Myoteri, D., Dellaportas, D., Lykoudis, P.M., Apostolopoulos, A., Marinis, A. and Zizi-Sermpetzoglou, A. (2017) Prognostic Evaluation of Vimentin Expression in Correlation with Ki67 and CD44 in Surgically Resected Pancreatic Ductal Adenocarcinoma. Gastroenterology Research and Practice, 2017, Article ID: 9207616. https://doi.org/10.1155/2017/9207616
|
[30]
|
Li, Q., Song, Z., Li, X., Zhang, D., Yu, J., Li, Z., et al. (2023) Development of a CT Radiomics Nomogram for Preoperative Prediction of Ki-67 Index in Pancreatic Ductal Adenocarcinoma: A Two-Center Retrospective Study. European Radiology, 34, 2934-2943. https://doi.org/10.1007/s00330-023-10393-w
|
[31]
|
Li, Q., Yu, J., Zhang, H., Meng, Y., Liu, Y.F., Jiang, H., et al. (2022) Prediction of Tumor-Infiltrating CD20+ B-Cells in Patients with Pancreatic Ductal Adenocarcinoma Using a Multilayer Perceptron Network Classifier Based on Non-Contrast MRI. Academic Radiology, 29, e167-e177. https://doi.org/10.1016/j.acra.2021.11.013
|
[32]
|
Smeets, E.M.M., Trajkovic-Arsic, M., Geijs, D., Karakaya, S., van Zanten, M., Brosens, L.A.A., et al. (2024) Histology-based Radiomics for [18F]FDG PET Identifies Tissue Heterogeneity in Pancreatic Cancer. Journal of Nuclear Medicine, 65, 1151-1159. https://doi.org/10.2967/jnumed.123.266262
|
[33]
|
Seymour, L., Bogaerts, J., Perrone, A., Ford, R., Schwartz, L.H., Mandrekar, S., et al. (2017) iRECIST: Guidelines for Response Criteria for Use in Trials Testing Immunotherapeutics. The Lancet Oncology, 18, e143-e152. https://doi.org/10.1016/s1470-2045(17)30074-8
|
[34]
|
Katz, M.H.G., Fleming, J.B., Bhosale, P., Varadhachary, G., Lee, J.E., Wolff, R., et al. (2012) Response of Borderline Resectable Pancreatic Cancer to Neoadjuvant Therapy Is Not Reflected by Radiographic Indicators. Cancer, 118, 5749-5756. https://doi.org/10.1002/cncr.27636
|
[35]
|
Ikuta, S., Aihara, T., Nakajima, T. and Yamanaka, N. (2024) Predicting Pathological Response to Preoperative Chemotherapy in Pancreatic Ductal Adenocarcinoma Using Post-Chemotherapy Computed Tomography Radiomics. Cureus, 16, e52193. https://doi.org/10.7759/cureus.52193
|
[36]
|
Borhani, A.A., Dewan, R., Furlan, A., Seiser, N., Zureikat, A.H., Singhi, A.D., et al. (2020) Assessment of Response to Neoadjuvant Therapy Using CT Texture Analysis in Patients with Resectable and Borderline Resectable Pancreatic Ductal Adenocarcinoma. American Journal of Roentgenology, 214, 362-369. https://doi.org/10.2214/ajr.19.21152
|
[37]
|
Gregucci, F., Fiorentino, A., Mazzola, R., Ricchetti, F., Bonaparte, I., Surgo, A., et al. (2021) Radiomic Analysis to Predict Local Response in Locally Advanced Pancreatic Cancer Treated with Stereotactic Body Radiation Therapy. La radiologia Medica, 127, 100-107. https://doi.org/10.1007/s11547-021-01422-z
|
[38]
|
Simpson, G., Spieler, B., Dogan, N., Portelance, L., Mellon, E.A., Kwon, D., et al. (2020) Predictive Value of 0.35 T Magnetic Resonance Imaging Radiomic Features in Stereotactic Ablative Body Radiotherapy of Pancreatic Cancer: A Pilot Study. Medical Physics, 47, 3682-3690. https://doi.org/10.1002/mp.14200
|
[39]
|
Park, S., Sham, J.G., Kawamoto, S., Blair, A.B., Rozich, N., Fouladi, D.F., et al. (2021) CT Radiomics-Based Preoperative Survival Prediction in Patients with Pancreatic Ductal Adenocarcinoma. American Journal of Roentgenology, 217, 1104-1112. https://doi.org/10.2214/ajr.20.23490
|
[40]
|
Yoo, J., Hyun, S.H., Lee, J., Cheon, M., Lee, K.H., Heo, J.S., et al. (2024) Prognostic Significance of 18F-FDG PET/CT Radiomics in Patients with Resectable Pancreatic Ductal Adenocarcinoma Undergoing Curative Surgery. Clinical Nuclear Medicine, 49, 909-916. https://doi.org/10.1097/rlu.0000000000005363
|
[41]
|
Parr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., et al. (2020) Radiomics-Based Outcome Prediction for Pancreatic Cancer Following Stereotactic Body Radiotherapy. Cancers, 12, Article 1051. https://doi.org/10.3390/cancers12041051
|
[42]
|
Shao, C., Zhang, J., Guo, J., Zhang, L., Zhang, Y., Ma, L., et al. (2023) A Radiomics Nomogram Model for Predicting Prognosis of Pancreatic Ductal Adenocarcinoma after High-Intensity Focused Ultrasound Surgery. International Journal of Hyperthermia, 40, Article ID: 2184397. https://doi.org/10.1080/02656736.2023.2184397
|
[43]
|
Lambin, P., Leijenaar, R.T.H., Deist, T.M., Peerlings, J., de Jong, E.E.C., van Timmeren, J., et al. (2017) Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nature Reviews Clinical Oncology, 14, 749-762. https://doi.org/10.1038/nrclinonc.2017.141
|