|
[1]
|
Smith, V.H. and Schindler, D.W. (2009) Eutrophication Science: Where Do We Go from Here? Trends in Ecology & Evolution, 24, 201-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wang, S., Li, J., Zhang, B., Spyrakos, E., Tyler, A.N., Shen, Q., et al. (2018) Trophic State Assessment of Global Inland Waters Using a Modis-Derived Forel-Ule Index. Remote Sensing of Environment, 217, 444-460. [Google Scholar] [CrossRef]
|
|
[3]
|
Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J., et al. (2008) Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences, 105, 11254-11258. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Schindler, D.W., Carpenter, S.R., Chapra, S.C., Hecky, R.E. and Orihel, D.M. (2016) Reducing Phosphorus to Curb Lake Eutrophication Is a Success. Environmental Science & Technology, 50, 8923-8929. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mackay, E., Maberly, S., Pan, G., Reitzel, K., Bruere, A., Corker, N., et al. (2014) Geoengineering in Lakes: Welcome Attraction or Fatal Distraction? Inland Waters, 4, 349-356. [Google Scholar] [CrossRef]
|
|
[6]
|
张巧颖, 杜瑛珣, 罗春燕, 刘正文. 镧改性膨润土钝化湖泊中的磷及其生态风险的研究进展[J]. 湖泊科学, 2019, 31(6): 1499-1509.
|
|
[7]
|
Dithmer, L., Lipton, A.S., Reitzel, K., Warner, T.E., Lundberg, D. and Nielsen, U.G. (2015) Characterization of Phosphate Sequestration by a Lanthanum Modified Bentonite Clay: A Solid-State NMR, EXAFS, and PXRD Study. Environmental Science & Technology, 49, 4559-4566. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Copetti, D., Finsterle, K., Marziali, L., Stefani, F., Tartari, G., Douglas, G., et al. (2016) Eutrophication Management in Surface Waters Using Lanthanum Modified Bentonite: A Review. Water Research, 97, 162-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. and Walker, B. (2001) Catastrophic Shifts in Ecosystems. Nature, 413, 591-596. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Scheffer, M. and Jeppesen, E. (2007) Regime Shifts in Shallow Lakes. Ecosystems, 10, 1-3. [Google Scholar] [CrossRef]
|
|
[11]
|
Jeppesen, E., Søndergaard, M., Søndergaard, K. and Christoffersen (1998) The Structuring Role of Submerged Macrophytes in Lakes. Springer.
|
|
[12]
|
Levi, P.S., Riis, T., Alnøe, A.B., Peipoch, M., Maetzke, K., Bruus, C., et al. (2015) Macrophyte Complexity Controls Nutrient Uptake in Lowland Streams. Ecosystems, 18, 914-931. [Google Scholar] [CrossRef]
|
|
[13]
|
李敏娟, 燕文明, 陈翔, 李琪, 何翔宇, 吴婧玮, 郭梓锐. 锁磷剂-苦草联用对沉积物水界面中钴的影响研究[J]. 中国环境科学, 2024, 44(12): 6838-6845.
|
|
[14]
|
Zhang, X., Zhen, W., Cui, S., Wang, S., Chen, W., Zhou, Q., et al. (2024) The Effects of Different Doses of Lanthanum-Modified Bentonite in Combination with a Submerged Macrophyte (Vallisneria denseserrulata) on Phosphorus Inactivation and Macrophyte Growth: A Mesocosm Study. Journal of Environmental Management, 352, Article ID: 120053. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
符亦舒, 何虎, 何宏业, 马路生, 苏雅玲, 刘正文. 不同水体营养盐浓度下沉积物添加镧改性膨润土(Phoslock®)对轮叶黑藻(Hydrilla verticillata)生长的影响[J].湖泊科学, 2021, 33(2): 388-396.
|
|
[16]
|
Zhang, X., Zhen, W., Jensen, H.S., Reitzel, K., Jeppesen, E. and Liu, Z. (2021) The Combined Effects of Macrophytes (Vallisneria denseserrulata) and a Lanthanum-Modified Bentonite on Water Quality of Shallow Eutrophic Lakes: A Mesocosm Study. Environmental Pollution, 277, Article ID: 116720. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lin, J., Zhong, Y., Fan, H., Song, C., Yu, C., Gao, Y., et al. (2016) Chemical Treatment of Contaminated Sediment for Phosphorus Control and Subsequent Effects on Ammonia-Oxidizing and Ammonia-Denitrifying Microorganisms and on Submerged Macrophyte Revegetation. Environmental Science and Pollution Research, 24, 1007-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yu, W., Yang, H., Yang, Y., Chen, J., Liao, P., Wang, J., et al. (2022) Synergistic Effects and Ecological Responses of Combined In Situ Passivation and Macrophytes toward the Water Quality of a Macrophytes-Dominated Eutrophic Lake. Water, 14, Article No. 1847. [Google Scholar] [CrossRef]
|
|
[19]
|
Yan, W., He, X., Wu, T., Chen, M., Lin, J., Chen, X., et al. (2023) A Combined Study on Vallisneria Spiralis and Lanthanum Modified Bentonite to Immobilize Arsenic in Sediments. Environmental Research, 216, Article ID: 114689. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Han, Y., Zhang, Y., Li, Q., Lürling, M., Li, W., He, H., et al. (2021) Submerged Macrophytes Benefit from Lanthanum Modified Bentonite Treatment under Juvenile Omni‐Benthivorous Fish Disturbance: Implications for Shallow Lake Restoration. Freshwater Biology, 67, 672-683. [Google Scholar] [CrossRef]
|
|
[21]
|
Waajen, G., van Oosterhout, F., Douglas, G. and Lürling, M. (2016) Management of Eutrophication in Lake De Kuil (the Netherlands) Using Combined Flocculant-Lanthanum Modified Bentonite Treatment. Water Research, 97, 83-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gunn, I.D.M., Meis, S., Maberly, S.C. and Spears, B.M. (2013) Assessing the Responses of Aquatic Macrophytes to the Application of a Lanthanum Modified Bentonite Clay, at Loch Flemington, Scotland, UK. Hydrobiologia, 737, 309-320. [Google Scholar] [CrossRef]
|
|
[23]
|
Spears, B.M., Mackay, E.B., Yasseri, S., Gunn, I.D.M., Waters, K.E., Andrews, C., et al. (2016) A Meta-Analysis of Water Quality and Aquatic Macrophyte Responses in 18 Lakes Treated with Lanthanum Modified Bentonite (Phoslock®). Water Research, 97, 111-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lin, Z., Zhong, C., Yu, G., Fu, Y., Guan, B., Liu, Z., et al. (2021) Effects of Sediments Phosphorus Inactivation on the Life Strategies of Myriophyllum Spicatum: Implications for Lake Restoration. Water, 13, Article No. 2112. [Google Scholar] [CrossRef]
|
|
[25]
|
董百丽, 秦伯强, 龚志军, 王永平. 三种沉积物改良措施比较及其对苦草生长的影响[J]. 生态学杂志, 2011, 30(12): 2726-2731.
|
|
[26]
|
Han, Y., Zou, X., Li, Q., Zhang, Y. and Li, K. (2022) Responses of Different Submerged Macrophytes to the Application of Lanthanum-Modified Bentonite (LMB): A Mesocosm Study. Water, 14, Article No. 1783. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, C., He, R., Wu, Y., Lürling, M., Cai, H., Jiang, H., et al. (2017) Bioavailable Phosphorus (P) Reduction Is Less than Mobile P Immobilization in Lake Sediment for Eutrophication Control by Inactivating Agents. Water Research, 109, 196-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ågren, G.I. (2004) The C: N: P Stoichiometry of Autotrophs—Theory and Observations. Ecology Letters, 7, 185-191. [Google Scholar] [CrossRef]
|
|
[29]
|
Rao, Q., Su, H., Ruan, L., Deng, X., Wang, L., Rao, X., et al. (2021) Stoichiometric and Physiological Mechanisms That Link Hub Traits of Submerged Macrophytes with Ecosystem Structure and Functioning. Water Research, 202, Article ID: 117392. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Waajen, G., van Oosterhout, F. and Lürling, M. (2017) Bio-Accumulation of Lanthanum from Lanthanum Modified Bentonite Treatments in Lake Restoration. Environmental Pollution, 230, 911-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
van Oosterhout, F., Waajen, G., Yasseri, S., Manzi Marinho, M., Pessoa Noyma, N., Mucci, M., et al. (2020) Lanthanum in Water, Sediment, Macrophytes and Chironomid Larvae Following Application of Lanthanum Modified Bentonite to Lake Rauwbraken (the Netherlands). Science of the Total Environment, 706, Article ID: 135188. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, Y., Wang, L., Chao, C., Yu, H., Yu, D. and Liu, C. (2021) Submerged Macrophytes Successfully Restored a Subtropical Aquacultural Lake by Controlling Its Internal Phosphorus Loading. Environmental Pollution, 268, Article ID: 115949. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, Z., Hu, J., Zhong, P., Zhang, X., Ning, J., Larsen, S.E., et al. (2018) Successful Restoration of a Tropical Shallow Eutrophic Lake: Strong Bottom-Up but Weak Top-Down Effects Recorded. Water Research, 146, 88-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jain, M.S. and Kalamdhad, A.S. (2018) A Review on Management of Hydrilla verticillata and Its Utilization as Potential Nitrogen-Rich Biomass for Compost or Biogas Production. Bioresource Technology Reports, 1, 69-78. [Google Scholar] [CrossRef]
|