[1]
|
Sugioka, K. and Cheng, Y. (2014) Ultrafast Lasers—Reliable Tools for Advanced Materials Processing. Light: Science & Applications, 3, e149. https://doi.org/10.1038/lsa.2014.30
|
[2]
|
Sha, W., Chanteloup, J. and Mourou, G. (2022) Ultrafast Fiber Technologies for Compact Laser Wake Field in Medical Application. Photonics, 9, Article 423. https://doi.org/10.3390/photonics9060423
|
[3]
|
Leefmans, C.R., Parto, M., Williams, J., Li, G.H.Y., Dutt, A., Nori, F., et al. (2024) Topological Temporally Mode-Locked Laser. Nature Physics, 20, 852-858. https://doi.org/10.1038/s41567-024-02420-4
|
[4]
|
Kieu, K. and Wise, F.W. (2009) Soliton Thulium-Doped Fiber Laser with Carbon Nanotube Saturable Absorber. IEEE Photonics Technology Letters, 21, 128-130. https://doi.org/10.1109/lpt.2008.2008727
|
[5]
|
Chernysheva, M., Araimi, M.A., Rance, G.A., Weston, N.J., Shi, B., Saied, S., et al. (2018) Revealing the Nature of Morphological Changes in Carbon Nanotube-Polymer Saturable Absorber under High-Power Laser Irradiation. Scientific Reports, 8, Article No. 7491. https://doi.org/10.1038/s41598-018-24734-z
|
[6]
|
Lazdovskaia, U.S., Orekhov, I.O., Ismaeel, A., Feifei, Y., Dvoretskiy, D.A., Sazonkin, S.G., et al. (2023) High-Density Well-Aligned Single-Walled Carbon Nanotubes for Application as a Saturable Absorber with a High-Pass Filter Effect in an Erbium-Doped Ultra-Short-Pulse Fiber Laser. ACS Applied Nano Materials, 6, 23410-23417. https://doi.org/10.1021/acsanm.3c04766
|
[7]
|
Zhang, R., Wang, J., Liao, M., Li, X., Guan, P., Liu, Y., et al. (2019) Generation of Wide-Bandwidth Pulse with Graphene Saturable Absorber Based on Tapered Fiber. Chinese Physics B, 28, Article ID: 034203. https://doi.org/10.1088/1674-1056/28/3/034203
|
[8]
|
史瑞平, 白杨, 祁媚, 魏洪铎, 任兆玉, 白晋涛. 基于石墨烯的1064 nm连续锁模超短脉冲激光器[J]. 应用光学, 2014, 35(1): 159-162.
|
[9]
|
Sobon, G., Sotor, J., Jagiello, J., Kozinski, R., Zdrojek, M., Holdynski, M., et al. (2012) Graphene Oxide vs Reduced Graphene Oxide as Saturable Absorbers for Er-Doped Passively Mode-Locked Fiber Laser. Optics Express, 20, 19463-19473. https://doi.org/10.1364/oe.20.019463
|
[10]
|
Li, J., Luo, H., Zhai, B., Lu, R., Guo, Z., Zhang, H., et al. (2016) Black Phosphorus: A Two-Dimension Saturable Absorption Material for Mid-Infrared Q-Switched and Mode-Locked Fiber Lasers. Scientific Reports, 6, Article No. 30361. https://doi.org/10.1038/srep30361
|
[11]
|
Sotor, J., Sobon, G., Macherzynski, W., Paletko, P. and Abramski, K.M. (2015) Black Phosphorus Saturable Absorber for Ultrashort Pulse Generation. Applied Physics Letters, 107, Article ID: 051108. https://doi.org/10.1063/1.4927673
|
[12]
|
Zhang, B., Lou, F., Zhao, R., He, J., Li, J., Su, X., et al. (2015) Exfoliated Layers of Black Phosphorus as Saturable Absorber for Ultrafast Solid-State Laser. Optics Letters, 40, 3691-3694. https://doi.org/10.1364/ol.40.003691
|
[13]
|
Wang, Z., Xu, Y., Guo, Z., Zhao, C. and Zhang, H. (2016) Black Phosphorus Quantum Dots (BPQDs) Saturable Absorber for the Passive Mode-Locking of an Er-Doped Fiber Laser. Conference on Lasers and Electro-Optics, San Jose, 5-10 June 2016, 1-2. https://doi.org/10.1364/cleo_si.2016.stu1r.2
|
[14]
|
Yan, P., Lin, R., Ruan, S., Liu, A., Chen, H., Zheng, Y., et al. (2015) A Practical Topological Insulator Saturable Absorber for Mode-Locked Fiber Laser. Scientific Reports, 5, Article No. 8690. https://doi.org/10.1038/srep08690
|
[15]
|
Al-Masoodi, A.H.H., Ahmad, F., Ahmed, M.H.M., Arof, H. and Harun, S.W. (2017) Q-Switched Ytterbium-Doped Fiber Laser with Topological Insulator-Based Saturable Absorber. Optical Engineering, 56, Article ID: 056103. https://doi.org/10.1117/1.oe.56.5.056103
|
[16]
|
Mondal, S., Ganguly, R. and Mondal, K. (2021) Topological Insulators: An In‐Depth Review of Their Use in Modelocked Fiber Lasers. Annalen der Physik, 533, Article ID: 2000564. https://doi.org/10.1002/andp.202000564
|
[17]
|
Mohanraj, J., Velmurugan, V. and Sivabalan, S. (2016) Transition Metal Dichalcogenides Based Saturable Absorbers for Pulsed Laser Technology. Optical Materials, 60, 601-617. https://doi.org/10.1016/j.optmat.2016.09.007
|
[18]
|
Mao, D., Zhang, S., Wang, Y., Gan, X., Zhang, W., Mei, T., et al. (2015) WS2 Saturable Absorber for Dissipative Soliton Mode Locking at 106 and 155 μm. Optics Express, 23, 27509-27519. https://doi.org/10.1364/oe.23.027509
|
[19]
|
Chen, H., Yin, J., Yang, J., Zhang, X., Liu, M., Jiang, Z., et al. (2017) Transition-Metal Dichalcogenides Heterostructure Saturable Absorbers for Ultrafast Photonics. Optics Letters, 42, 4279-4282. https://doi.org/10.1364/ol.42.004279
|
[20]
|
Wang, C., Gao, L., Chen, H., Xu, Y., Ma, C., Yao, H., et al. (2021) Broadband and Ultrafast All-Optical Switching Based on Transition Metal Carbide. Nanophotonics, 10, 2617-2623. https://doi.org/10.1515/nanoph-2021-0066
|
[21]
|
Wang, Y., Wang, Y. and He, J. (2023) 2D Transition Metal Carbides (MXenes) for Third Order Nonlinear Optics: Status and Prospects. Laser & Photonics Reviews, 17, Article ID: 2200733. https://doi.org/10.1002/lpor.202200733
|
[22]
|
姚杰, 王勇刚, 李永放. 基于WS2可饱和吸收体的脉冲激光器研究[J]. 应用光学, 2018, 39(2): 279-283.
|
[23]
|
Yang, Z., Gao, L., Chen, H., Zhang, F., Yang, Q., Ren, X., et al. (2021) Broadband Few-Layer Niobium Carbide MXene as Saturable Absorber for Solid-State Lasers. Optics & Laser Technology, 142, Article ID: 107199. https://doi.org/10.1016/j.optlastec.2021.107199
|
[24]
|
Hantanasirisakul, K. and Gogotsi, Y. (2023) Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). In: Gogotsi, Y., Ed., MXenes, Jenny Stanford Publishing, 135-205. https://doi.org/10.1201/9781003306511-10
|
[25]
|
Wang, J., Wang, Y., Liu, S., Li, G., Zhang, G. and Cheng, G. (2020) Nonlinear Optical Response of Reflective MXene Molybdenum Carbide Films as Saturable Absorbers. Nanomaterials, 10, Article 2391. https://doi.org/10.3390/nano10122391
|
[26]
|
Shi, Y., Xu, N. and Wen, Q. (2020) Ti2Ctx (T = O, OH or F) Nanosheets as New Broadband Saturable Absorber for Ultrafast Photonics. Journal of Lightwave Technology, 38, 1975-1980. https://doi.org/10.1109/jlt.2020.2973805
|
[27]
|
Jafry, A.A.A., Muhammad, A.R., Kasim, N., Rosol, A.H.A., Rusdi, M.F.M., Ab Alim, N.N.N., et al. (2021) Ultrashort Pulse Generation with MXene Ti3C2Tx Embedded in PVA and Deposited Onto D-Shaped Fiber. Optics & Laser Technology, 136, Article ID: 106780. https://doi.org/10.1016/j.optlastec.2020.106780
|
[28]
|
Rosol, A.H.A., Jafry, A.A.A., Nizamani, B., Zulkipli, N.F., Khudus, M.I.M.A., Yasin, M., et al. (2021) MXene Ti3C2Tx Thin Film as a Saturable Absorber for Passively Mode-Locked and Q-Switched Fibre Laser. Journal of Modern Optics, 68, 984-993. https://doi.org/10.1080/09500340.2021.1967494
|
[29]
|
Li, Y., He, Y., Cai, Y., Chen, S., Liu, J., Chen, Y., et al. (2018) Black Phosphorus: Broadband Nonlinear Optical Absorption and Application. Laser Physics Letters, 15, Article ID: 025301. https://doi.org/10.1088/1612-202x/aa94e3
|
[30]
|
Yuan, J., Mu, H., Li, L., Chen, Y., Yu, W., Zhang, K., et al. (2018) Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers. ACS Applied Materials & Interfaces, 10, 21534-21540. https://doi.org/10.1021/acsami.8b03045
|
[31]
|
Chi, C., Lee, J., Koo, J. and Han Lee, J. (2014) All-Normal-Dispersion Dissipative-Soliton Fiber Laser at 1.06 µm Using a Bulk-Structured Bi2Te3 Topological Insulator-Deposited Side-Polished Fiber. Laser Physics, 24, Article ID: 105106. https://doi.org/10.1088/1054-66/24/10/105106
|
[32]
|
Kowalczyk, M., Bogusławski, J., Zybała, R., Mars, K., Mikuła, A., Soboń, G. and Sotor, J. (2016) Sb2Te3-Deposited D-Shaped Fiber as a Saturable Absorber for Mode-Locked Yb-Doped Fiber Lasers. Optical Materials Express, 6, 2273-2282. https://doi.org/10.1364/OME.6.002273
|
[33]
|
Li, P., Chen, Y., Yang, T., Wang, Z., Lin, H., Xu, Y., et al. (2017) Two-Dimensional CH3NH3PbI3 Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces, 9, 12759-12765. https://doi.org/10.1021/acsami.7b01709
|