|
[1]
|
Wang, H., Nie, L., Li, J., Wang, Y., Wang, G., Wang, J., et al. (2013) Characterization and Assessment of Volatile Organic Compounds (vocs) Emissions from Typical Industries. Chinese Science Bulletin, 58, 724-730. [Google Scholar] [CrossRef]
|
|
[2]
|
Hui, L., Liu, X., Tan, Q., Feng, M., An, J., Qu, Y., et al. (2019) VOC Characteristics, Sources and Contributions to SOA Formation during Haze Events in Wuhan, Central China. Science of the Total Environment, 650, 2624-2639. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chaturvedi, S., Kumar, A., Singh, V., Chakraborty, B., Kumar, R. and Min, L. (2023) Recent Advancement in Organic Aerosol Understanding: A Review of Their Sources, Formation, and Health Impacts. Water, Air, & Soil Pollution, 234, Article No. 750. [Google Scholar] [CrossRef]
|
|
[4]
|
Li, G., Wei, W., Shao, X., Nie, L., Wang, H., Yan, X., et al. (2018) A Comprehensive Classification Method for VOC Emission Sources to Tackle Air Pollution Based on VOC Species Reactivity and Emission Amounts. Journal of Environmental Sciences, 67, 78-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
McDonald, B.C., de Gouw, J.A., Gilman, J.B., Jathar, S.H., Akherati, A., Cappa, C.D., et al. (2018) Volatile Chemical Products Emerging as Largest Petrochemical Source of Urban Organic Emissions. Science, 359, 760-764. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, W. and Kuca, K. (2021) Aflatoxin Detoxification Using Microorganisms and Enzymes. Toxins, 13, Article 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Piccardo, M.T., Geretto, M., Pulliero, A. and Izzotti, A. (2022) Odor Emissions: A Public Health Concern for Health Risk Perception. Environmental Research, 204, Article 112121. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sillman, S. (1999) The Relation between Ozone, Nox and Hydrocarbons in Urban and Polluted Rural Environments. Atmospheric Environment, 33, 1821-1845. [Google Scholar] [CrossRef]
|
|
[9]
|
Wu, W., Zhao, B., Wang, S. and Hao, J. (2017) Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. Journal of Environmental Sciences, 53, 224-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Saeedi, M., Malekmohammadi, B. and Tajalli, S. (2024) Interaction of Benzene, Toluene, Ethylbenzene, and Xylene with Human’s Body: Insights into Characteristics, Sources and Health Risks. Journal of Hazardous Materials Advances, 16, Article 100459. [Google Scholar] [CrossRef]
|
|
[11]
|
Chiavarini, M., Rosignoli, P., Sorbara, B., Giacchetta, I. and Fabiani, R. (2024) Benzene Exposure and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Human Studies. International Journal of Environmental Research and Public Health, 21, Article 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chang, Z., Wang, C. and Zhang, G. (2020) Progress in Degradation of Volatile Organic Compounds Based on Low-Temperature Plasma Technology. Plasma Processes and Polymers, 17, Article 1900131. [Google Scholar] [CrossRef]
|
|
[13]
|
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S. and Hao, Z. (2019) Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews, 119, 4471-4568. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Everaert, K. (2004) Catalytic Combustion of Volatile Organic Compounds. Journal of Hazardous Materials, 109, 113-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhu, X., Xin, Y., Yu, L., Liu, S., Han, D., Jia, J., et al. (2024) Zeolite-Based Materials Eliminating Nitrogen Oxides (NOx) and Volatile Organic Compounds (VOCs): Advances and Future Perspectives. Catalysis Science & Technology, 14, 4756-4774. [Google Scholar] [CrossRef]
|
|
[16]
|
Huang, H., Xie, X., Xiao, F., Liu, B., Zhang, T., Feng, F., et al. (2024) A Critical Review of Deep Oxidation of Gaseous Volatile Organic Compounds via Aqueous Advanced Oxidation Processes. Environmental Science & Technology, 58, 18456-18473. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Assadi, A.A., Bouzaza, A. and Wolbert, D. (2016) Comparative Study between Laboratory and Large Pilot Scales for VOC’s Removal from Gas Streams in Continuous Flow Surface Discharge Plasma. Chemical Engineering Research and Design, 106, 308-314. [Google Scholar] [CrossRef]
|
|
[18]
|
Dahiru, U.H. (2023) Decomposition of Volatile Organic Compounds Using Non-Thermal Plasmas. Newcastle University.
|
|
[19]
|
Li, S., Dang, X., Yu, X., Abbas, G., Zhang, Q. and Cao, L. (2020) The Application of Dielectric Barrier Discharge Non-Thermal Plasma in VOCs Abatement: A Review. Chemical Engineering Journal, 388, Article 124275. [Google Scholar] [CrossRef]
|
|
[20]
|
Belkessa, N., Assadi, A.A., Bouzaza, A., Nguyen-Tri, P., Amrane, A. and Khezami, L. (2024) A Review of Non-Thermal Plasma-Catalysis: The Mutual Influence and Sources of Synergetic Effect for Boosting Volatile Organic Compounds Removal. Environmental Research, 257, Article 119333. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pangilinan, C.D.C., Kurniawan, W., Salim, C. and Hinode, H. (2015) Effect of Ag/TiO2 Catalyst Preparation on Gas-Phase Benzene Decomposition Using Non-Thermal Plasma Driven Catalysis under Oxygen Plasma. Reaction Kinetics, Mechanisms and Catalysis, 117, 103-118. [Google Scholar] [CrossRef]
|
|
[22]
|
Palau, J., Assadi, A.A., Penya-Roja, J.M., Bouzaza, A., Wolbert, D. and Martínez-Soria, V. (2015) Isovaleraldehyde Degradation Using UV Photocatalytic and Dielectric Barrier Discharge Reactors, and Their Combinations. Journal of Photochemistry and Photobiology A: Chemistry, 299, 110-117. [Google Scholar] [CrossRef]
|
|
[23]
|
Belkessa, N., Bouzaza, A. and Assadi, A.A. (2023) Understanding of the Synergy Effect of DBD Plasma Discharge Combined to Photocatalysis in the Case of Ethylbenzene Removal: Interaction between Plasma Reactive Species and Catalyst. Journal of Environmental Chemical Engineering, 11, Article 110640. [Google Scholar] [CrossRef]
|
|
[24]
|
Du, C., Gong, X. and Lin, Y. (2019) Decomposition of Volatile Organic Compounds Using Corona Discharge Plasma Technology. Journal of the Air & Waste Management Association, 69, 879-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Jang, D., Lee, H., Jeong, G. and Jang, A. (2022) Experimental Study on Particulate Matter Removal Using Packed-Bed Dielectric Barrier Discharge Plasma Reactor. Journal of Environmental Chemical Engineering, 10, Article 108625. [Google Scholar] [CrossRef]
|
|
[26]
|
Tao, S., Zhu, Y., Chen, C., Liu, J., Chen, M. and Shangguan, W. (2022) Removal of Air Pollutant by a Spike-Tubular Electrostatic Device: Multi-Stage Direct Current Corona Discharge Enhanced Electrostatic Precipitation and Oxidation Ability. Process Safety and Environmental Protection, 165, 347-356. [Google Scholar] [CrossRef]
|
|
[27]
|
Abou Saoud, W., Assadi, A.A., Kane, A., Jung, A., Le Cann, P., Gerard, A., et al. (2020) Integrated Process for the Removal of Indoor VOCs from Food Industry Manufacturing: Elimination of Butane-2,3-Dione and Heptan-2-One by Cold Plasma-Photocatalysis Combination. Journal of Photochemistry and Photobiology A: Chemistry, 386, Article 112071. [Google Scholar] [CrossRef]
|
|
[28]
|
Li, S., Li, Y., Yu, X., Dang, X., Liu, X. and Cao, L. (2022) A Novel Double Dielectric Barrier Discharge Reactor for Toluene Abatement: Role of Different Discharge Zones and Reactive Species. Journal of Cleaner Production, 368, Article 133073. [Google Scholar] [CrossRef]
|
|
[29]
|
Bo, Z., Hao, H., Yang, S., Zhu, J., Yan, J. and Cen, K. (2018) Vertically-Oriented Graphenes Supported Mn3O4 as Advanced Catalysts in Post Plasma-Catalysis for Toluene Decomposition. Applied Surface Science, 436, 570-578. [Google Scholar] [CrossRef]
|
|
[30]
|
Zhang, H., Li, K., Sun, T., Jia, J., Yang, X., Shen, Y., et al. (2012) The Removal of Styrene Using a Dielectric Barrier Discharge (DBD) Reactor and the Analysis of the By-Products and Intermediates. Research on Chemical Intermediates, 39, 1021-1035. [Google Scholar] [CrossRef]
|
|
[31]
|
Chang, T., Shen, Z., Huang, Y., Lu, J., Ren, D., Sun, J., et al. (2018) Post-Plasma-Catalytic Removal of Toluene Using MnO2-CO3O4 Catalysts and Their Synergistic Mechanism. Chemical Engineering Journal, 348, 15-25. [Google Scholar] [CrossRef]
|
|
[32]
|
Chang, T., Lu, J., Shen, Z., Huang, Y., Lu, D., Wang, X., et al. (2019) Simulation and Optimization of the Post Plasma-Catalytic System for Toluene Degradation by a Hybrid ANN and NSGA-II Method. Applied Catalysis B: Environmental, 244, 107-119. [Google Scholar] [CrossRef]
|
|
[33]
|
Zhu, T., Wan, Y.D., Li, J., He, X.W., Xu, D.Y., Shu, X.Q., et al. (2011) Volatile Organic Compounds Decomposition Using Nonthermal Plasma Coupled with a Combination of Catalysts. International Journal of Environmental Science & Technology, 8, 621-630. [Google Scholar] [CrossRef]
|
|
[34]
|
Subedi, D.P., Joshi, U.M. and Wong, C.S. (2017) Dielectric Barrier Discharge (DBD) Plasmas and Their Applications. In: Plasma Science and Technology for Emerging Economies, Springer, 693-737. [Google Scholar] [CrossRef]
|
|
[35]
|
Subrahmanyam, C., Renken, A. and Kiwi-Minsker, L. (2006) Catalytic Abatement of Volatile Organic Compounds Assisted by Non-Thermal Plasma. Applied Catalysis B: Environmental, 65, 157-162. [Google Scholar] [CrossRef]
|
|
[36]
|
Liang, W., Li, J., Li, J. and Jin, Y. (2009) Abatement of Toluene from Gas Streams via Ferro-Electric Packed Bed Dielectric Barrier Discharge Plasma. Journal of Hazardous Materials, 170, 633-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Valdivia-Barrientos, R., Pacheco-Sotelo, J., Pacheco-Pacheco, M., Benítez-Read, J.S. and López-Callejas, R. (2006) Analysis and Electrical Modelling of a Cylindrical DBD Configuration at Different Operating Frequencies. Plasma Sources Science and Technology, 15, 237-245. [Google Scholar] [CrossRef]
|
|
[38]
|
Lu, W., Abbas, Y., Mustafa, M.F., Pan, C. and Wang, H. (2019) A Review on Application of Dielectric Barrier Discharge Plasma Technology on the Abatement of Volatile Organic Compounds. Frontiers of Environmental Science & Engineering, 13, Article No. 30. [Google Scholar] [CrossRef]
|
|
[39]
|
Ditthawat, N., Pornmai, K., Seneesrisakul, K., Ouraipryvan, P., Santikunaporn, M. and Chavadej, S. (2023) Removal of Mixed Volatile Organic Compounds of Benzene, Toluene, and Xylene in a Multistage Corona Discharge System under Excess Air. Industrial & Engineering Chemistry Research, 62, 17527-17536. [Google Scholar] [CrossRef]
|
|
[40]
|
Schiorlin, M., Marotta, E., Rea, M. and Paradisi, C. (2009) Comparison of Toluene Removal in Air at Atmospheric Conditions by Different Corona Discharges. Environmental Science & Technology, 43, 9386-9392. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yan, X.F. and Zhen, H. (2004) Experiment and Analysis on the Treatment of Gaseous Benzene Using Pulsed Corona Discharge Plasma. Plasma Science and Technology, 6, 2241-2246. [Google Scholar] [CrossRef]
|
|
[42]
|
Baránková, H. and Bárdos, L. (2010) Effect of the Electrode Material on the Atmospheric Plasma Conversion of NO in Air Mixtures. Vacuum, 84, 1385-1388. [Google Scholar] [CrossRef]
|
|
[43]
|
Jin, X. (1998) Analysis of Electrode Material Effect on Organic Exhaust Gas Decomposition by Pulse Plasma. China Environmental Science (Chinese Edition), 18, 213-217.
|
|
[44]
|
Jahanmiri, A., Rahimpour, M.R., Mohamadzadeh Shirazi, M., Hooshmand, N. and Taghvaei, H. (2012) Naphtha Cracking through a Pulsed DBD Plasma Reactor: Effect of Applied Voltage, Pulse Repetition Frequency and Electrode Material. Chemical Engineering Journal, 191, 416-425. [Google Scholar] [CrossRef]
|
|
[45]
|
Yao, X., Jiang, N., Li, J., Lu, N., Shang, K. and Wu, Y. (2019) An Improved Corona Discharge Ignited by Oxide Cathodes with High Secondary Electron Emission for Toluene Degradation. Chemical Engineering Journal, 362, 339-348. [Google Scholar] [CrossRef]
|
|
[46]
|
Jiang, N., Lu, N., Li, J. and Wu, Y. (2012) Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor. Plasma Science and Technology, 14, 140-146. [Google Scholar] [CrossRef]
|
|
[47]
|
Jiang, N., Lu, N., Shang, K., Li, J. and Wu, Y. (2013) Effects of Electrode Geometry on the Performance of Dielectric Barrier/Packed-Bed Discharge Plasmas in Benzene Degradation. Journal of Hazardous Materials, 262, 387-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Du, C., Gong, X. and Lin, Y. (2019) Decomposition of Volatile Organic Compounds Using Corona Discharge Plasma Technology. Journal of the Air & Waste Management Association, 69, 879-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
He, L. and Sulkes, M. (2011) Chemical Intermediate Detection Following Corona Discharge on Volatile Organic Compounds: General Method Using Molecular Beam Techniques. Journal of Physics D: Applied Physics, 44, Article 274006. [Google Scholar] [CrossRef]
|
|
[50]
|
Eliasson, B. and Kogelschatz, U. (1991) Nonequilibrium Volume Plasma Chemical Processing. IEEE Transactions on Plasma Science, 19, 1063-1077. [Google Scholar] [CrossRef]
|
|
[51]
|
Chang, M.B. and Chang, C. (1997) Destruction and Removal of Toluene and MEK from Gas Streams with Silent Discharge Plasmas. AIChE Journal, 43, 1325-1330. [Google Scholar] [CrossRef]
|
|
[52]
|
Kohno, H., Berezin, A.A., Chang, J.S., Tamura, M., Yamamoto, T., Shibuya, A., et al. (1998) Destruction of Volatile Organic Compounds Used in a Semiconductor Industry by a Capillary Tube Discharge Reactor. IEEE Transactions on Industry Applications, 34, 953-966. [Google Scholar] [CrossRef]
|
|
[53]
|
Atkinson, R. (2000) Atmospheric Chemistry of VOCs and NOX. Atmospheric Environment, 34, 2063-2101. [Google Scholar] [CrossRef]
|
|
[54]
|
Perillo, R., Ferracin, E., Giardina, A., Marotta, E. and Paradisi, C. (2019) Efficiency, Products and Mechanisms of Ethyl Acetate Oxidative Degradation in Air Non-Thermal Plasma. Journal of Physics D: Applied Physics, 52, Article 295206. [Google Scholar] [CrossRef]
|
|
[55]
|
Hu, X., Wang, Y., Tong, Z., Wang, C., Duan, E., Han, M., et al. (2023) Degradation of Trichloroethylene by Double Dielectric Barrier Discharge (DDBD) Plasma Technology: Performance, Product Analysis and Acute Biotoxicity Assessment. Chemosphere, 329, Article 138651. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Mu, Y. and Williams, P.T. (2022) Recent Advances in the Abatement of Volatile Organic Compounds (VOCs) and Chlorinated-VOCs by Non-Thermal Plasma Technology: A Review. Chemosphere, 308, Article 136481. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Mok, Y.S., Lee, S.-B., Oh, J.-H., et al. (2008) Abatement of Trichloromethane by Using Nonthermal Plasma Reactors. Plasma Chemistry and Plasma Processing, 28, 663-676. [Google Scholar] [CrossRef]
|
|
[58]
|
Neyts, E.C., Ostrikov, K., Sunkara, M.K. and Bogaerts, A. (2015) Plasma Catalysis: Synergistic Effects at the Nanoscale. Chemical Reviews, 115, 13408-13446. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Ruiz-Martín, M., Oliva-Ramírez, M., González-Elipe, A.R. and Gómez-Ramírez, A. (2025) Plasma Catalysis for Gas Conversion—Impact of Catalyst on the Plasma Behavior. Current Opinion in Green and Sustainable Chemistry, 51, Article 100990. [Google Scholar] [CrossRef]
|
|
[60]
|
De Meyer, R., Gorbanev, Y., Ciocarlan, R., Cool, P., Bals, S. and Bogaerts, A. (2024) Importance of Plasma Discharge Characteristics in Plasma Catalysis: Dry Reforming of Methane vs. Ammonia Synthesis. Chemical Engineering Journal, 488, Article 150838. [Google Scholar] [CrossRef]
|
|
[61]
|
Lefferts, L. (2024) Leveraging Expertise in Thermal Catalysis to Understand Plasma Catalysis. Angewandte Chemie, 136, e202305322. [Google Scholar] [CrossRef]
|
|
[62]
|
Navascués, P., Garrido-García, J., Cotrino, J., González-Elipe, A.R. and Gómez-Ramírez, A. (2023) Incorporation of a Metal Catalyst for the Ammonia Synthesis in a Ferroelectric Packed-Bed Plasma Reactor: Does It Really Matter? ACS Sustainable Chemistry & Engineering, 11, 3621-3632. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Gorky, F., Nambo, A., Carreon, M.A. and Carreon, M.L. (2023) Plasma Catalytic Conversion of Nitrogen and Hydrogen to Ammonia over Silico Alumino Phosphate (SAPO) Zeolites. Plasma Chemistry and Plasma Processing, 44, 1357-1368. [Google Scholar] [CrossRef]
|
|
[64]
|
Van Duc Long, N., Pourali, N., Lamichhane, P., Mohsen Sarafraz, M., Nghiep Tran, N., Rebrov, E., et al. (2024) Catalytic Ammonia Formation in a Microreaction Chamber with Electrically Intensified Arc Plasma. ChemCatChem, 16, e202400005. [Google Scholar] [CrossRef]
|
|
[65]
|
Wang, J., Zhang, K., Bogaerts, A. and Meynen, V. (2023) 3D Porous Catalysts for Plasma-Catalytic Dry Reforming of Methane: How Does the Pore Size Affect the Plasma-Catalytic Performance? Chemical Engineering Journal, 464, Article 142574. [Google Scholar] [CrossRef]
|
|
[66]
|
Vervloedt, S.C.L. and von Keudell, A. (2024) Ammonia Synthesis by Plasma Catalysis in an Atmospheric RF Helium Plasma. Plasma Sources Science and Technology, 33, Article 045005. [Google Scholar] [CrossRef]
|
|
[67]
|
Zhu, X., Liu, J., Hu, X., Zhou, Z., Li, X., Wang, W., et al. (2022) Plasma-Catalytic Synthesis of Ammonia over Ru-Based Catalysts: Insights into the Support Effect. Journal of the Energy Institute, 102, 240-246. [Google Scholar] [CrossRef]
|
|
[68]
|
Hensel, K., Katsura, S. and Mizuno, A. (2005) DC Microdischarges Inside Porous Ceramics. IEEE Transactions on Plasma Science, 33, 574-575. [Google Scholar] [CrossRef]
|
|
[69]
|
Takuma, T. (1991) Field Behaviour at a Triple Junction in Composite Dielectric Arrangements. IEEE Transactions on Electrical Insulation, 26, 500-509. [Google Scholar] [CrossRef]
|
|
[70]
|
Kang, W.S., Kim, H., Teramoto, Y., Ogata, A., Lee, J.Y., Kim, D., et al. (2018) Surface Streamer Propagations on an Alumina Bead: Experimental Observation and Numerical Modeling. Plasma Sources Science and Technology, 27, Article 015018. [Google Scholar] [CrossRef]
|
|
[71]
|
Song, Y., Kim, S., Choi, K. and Yamamoto, T. (2002) Effects of Adsorption and Temperature on a Nonthermal Plasma Process for Removing VOCs. Journal of Electrostatics, 55, 189-201. [Google Scholar] [CrossRef]
|
|
[72]
|
Feng, X., Liu, H., He, C., Shen, Z. and Wang, T. (2018) Synergistic Effects and Mechanism of a Non-Thermal Plasma Catalysis System in Volatile Organic Compound Removal: A Review. Catalysis Science & Technology, 8, 936-954. [Google Scholar] [CrossRef]
|
|
[73]
|
Roland, U., Holzer, F. and Kopinke, F.-D. (2002) Improved Oxidation of Air Pollutants in a Non-Thermal Plasma. Catalysis Today, 73, 315-323. [Google Scholar] [CrossRef]
|
|
[74]
|
Guo, Y., Ye, D., Chen, K., He, J. and Chen, W. (2006) Toluene Decomposition Using a Wire-Plate Dielectric Barrier Discharge Reactor with Manganese Oxide Catalyst in Situ. Journal of Molecular Catalysis A: Chemical, 245, 93-100. [Google Scholar] [CrossRef]
|
|
[75]
|
Shi, X., Liang, W., Yin, G. and Liu, J. (2023) Degradation of Chlorobenzene by Non-Thermal Plasma Coupled with Catalyst: Influence of Catalyst, Interaction between Plasma and Catalyst. Plasma Science and Technology, 25, Article 055506. [Google Scholar] [CrossRef]
|
|
[76]
|
Petrović, M., Jovanović, T., Rančev, S., Kovač, J., Velinov, N., Najdanović, S., et al. (2022) Plasma Modified Electrosynthesized Cerium Oxide Catalyst for Plasma and Photocatalytic Degradation of RB 19 Dye. Journal of Environmental Chemical Engineering, 10, Article 107931. [Google Scholar] [CrossRef]
|
|
[77]
|
Sajjadi, B. and Chen, W. (2023) Catalytic Non-Thermal Milli-Pulse Plasma for Methanation of CO2 without Carbon Deposition and Catalyst Deactivation. Chemical Engineering Journal, 469, Article 143428. [Google Scholar] [CrossRef]
|
|
[78]
|
Sultana, S., Vandenbroucke, A.M., Mora, M., Jiménez-Sanchidrián, C., Romero-Salguero, F.J., Leys, C., et al. (2019) Post Plasma-Catalysis for Trichloroethylene Decomposition over CeO2 Catalyst: Synergistic Effect and Stability Test. Applied Catalysis B: Environmental, 253, 49-59. [Google Scholar] [CrossRef]
|
|
[79]
|
Liu, J., Zhang, F., Sun, X., Tan, T., Liu, Q., Liu, X., et al. (2022) Non-Thermal Plasma Coupled with CM/Z5 Catalyst for Toluene Removal. Environmental Pollutants and Bioavailability, 34, 171-179. [Google Scholar] [CrossRef]
|
|
[80]
|
Yu, X., Li, S., Dang, X., Jiao, Y., Ren, Y. and Kou, Y. (2023) Boosting Toluene Mineralization and Ozone Decomposition in Plasma Catalytic System by Regulating the Oxygen Vacancy over Ag-Based Catalyst. Separation and Purification Technology, 325, Article 124753. [Google Scholar] [CrossRef]
|