[1]
|
Thrift, A.P., Wenker, T.N. and El-Serag, H.B. (2023) Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention. Nature Reviews Clinical Oncology, 20, 338-349. https://doi.org/10.1038/s41571-023-00747-0
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[3]
|
Wagner, A.D., Syn, N.L., Moehler, M., Grothe, W., Yong, W.P., Tai, B., et al. (2017) Chemotherapy for Advanced Gastric Cancer. Cochrane Database of Systematic Reviews, No. 8, CD004064. https://doi.org/10.1002/14651858.cd004064.pub4
|
[4]
|
Bang, Y., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., et al. (2010) Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. The Lancet, 376, 687-697. https://doi.org/10.1016/s0140-6736(10)61121-x
|
[5]
|
Zhang, H., Liu, L., Liu, J., Dang, P., Hu, S., Yuan, W., et al. (2023) Roles of Tumor-Associated Macrophages in Anti-Pd-1/Pd-L1 Immunotherapy for Solid Cancers. Molecular Cancer, 22, Article No. 58. https://doi.org/10.1186/s12943-023-01725-x
|
[6]
|
Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-Line Nivolumab Plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40. https://doi.org/10.1016/s0140-6736(21)00797-2
|
[7]
|
Jenkins, R.W., Barbie, D.A. and Flaherty, K.T. (2018) Mechanisms of Resistance to Immune Checkpoint Inhibitors. British Journal of Cancer, 118, 9-16. https://doi.org/10.1038/bjc.2017.434
|
[8]
|
Musolino, P.L., Gong, Y., Snyder, J.M.T., Jimenez, S., Lok, J., Lo, E.H., et al. (2015) Brain Endothelial Dysfunction in Cerebral Adrenoleukodystrophy. Brain, 138, 3206-3220. https://doi.org/10.1093/brain/awv250
|
[9]
|
The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209. https://doi.org/10.1038/nature13480
|
[10]
|
Kawazoe, A., Kuwata, T., Kuboki, Y., Shitara, K., Nagatsuma, A.K., Aizawa, M., et al. (2016) Clinicopathological Features of Programmed Death Ligand 1 Expression with Tumor-Infiltrating Lymphocyte, Mismatch Repair, and Epstein-Barr Virus Status in a Large Cohort of Gastric Cancer Patients. Gastric Cancer, 20, 407-415. https://doi.org/10.1007/s10120-016-0631-3
|
[11]
|
Amirmoezi, F. and Geramizadeh, B. (2022) Molecular Classification of Gastric Cancer with Emphasis on PDL-1 Expression: The First Report from Iran. Clinical Pathology, 15. https://doi.org/10.1177/2632010x221096378
|
[12]
|
McDermott, D.F. and Atkins, M.B. (2013) PD‐1 as a Potential Target in Cancer Therapy. Cancer Medicine, 2, 662-673. https://doi.org/10.1002/cam4.106
|
[13]
|
Kataoka, K., Shiraishi, Y., Takeda, Y., Sakata, S., Matsumoto, M., Nagano, S., et al. (2016) Aberrant PD-L1 Expression through 3’-UTR Disruption in Multiple Cancers. Nature, 534, 402-406. https://doi.org/10.1038/nature18294
|
[14]
|
Yoon, C.J., Chang, M.S., Kim, D.H., Kim, W., Koo, B.K., Yun, S., et al. (2020) Epstein-Barr Virus-Encoded miR-BART5-5p Upregulates PD-L1 through PI-AS3/pSTAT3 Modulation, Worsening Clinical Outcomes of Pd-L1-Positive Gastric Carcinomas. Gastric Cancer, 23, 780-795. https://doi.org/10.1007/s10120-020-01059-3
|
[15]
|
Miliotis, C. and Slack, F.J. (2021) MiR-105-5p Regulates PD-L1 Expression and Tumor Immunogenicity in Gastric Cancer. Cancer Letters, 518, 115-126. https://doi.org/10.1016/j.canlet.2021.05.037
|
[16]
|
Parsa, A.T., Waldron, J.S., Panner, A., Crane, C.A., Parney, I.F., Barry, J.J., et al. (2006) Loss of Tumor Suppressor PTEN Function Increases B7-H1 Expression and Immunoresistance in Glioma. Nature Medicine, 13, 84-88. https://doi.org/10.1038/nm1517
|
[17]
|
Wang, Z., Kang, W., Li, O., Qi, F., Wang, J., You, Y., et al. (2021) Abrogation of USP7 Is an Alternative Strategy to Downregulate PD-L1 and Sensitize Gastric Cancer Cells to T Cells Killing. Acta Pharmaceutica Sinica B, 11, 694-707. https://doi.org/10.1016/j.apsb.2020.11.005
|
[18]
|
Kim, W., Chu, T.H., Nienhüser, H., Jiang, Z., Del Portillo, A., Remotti, H.E., et al. (2021) PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice. Gastroenterology, 160, 781-796. https://doi.org/10.1053/j.gastro.2020.10.036
|
[19]
|
Nakano, H., Saito, M., Nakajima, S., Saito, K., Nakayama, Y., Kase, K., et al. (2021) PD-L1 Overexpression in EBV-Positive Gastric Cancer Is Caused by Unique Genomic or Epigenomic Mechanisms. Scientific Reports, 11, Article No. 1982. https://doi.org/10.1038/s41598-021-81667-w
|
[20]
|
Van Der Kraak, L., Goel, G., Ramanan, K., Kaltenmeier, C., Zhang, L., Normolle, D.P., et al. (2016) 5-Fluorouracil Upregulates Cell Surface B7-H1 (PD-L1) Expression in Gastrointestinal Cancers. Journal for ImmunoTherapy of Cancer, 4, Article No. 65. https://doi.org/10.1186/s40425-016-0163-8
|
[21]
|
Jia, M., Yuan, Z., Yu, H., Feng, S., Tan, X., Long, Z., et al. (2024) Rapamycin Circumvents Anti PD-1 Therapy Resistance in Colorectal Cancer by Reducing PD-L1 Expression and Optimizing the Tumor Microenvironment. Biomedicine & Pharmacotherapy, 176, Article ID: 116883. https://doi.org/10.1016/j.biopha.2024.116883
|
[22]
|
Fuchs, C.S., Özgüroğlu, M., Bang, Y., Di Bartolomeo, M., Mandala, M., Ryu, M., et al. (2021) Pembrolizumab versus Paclitaxel for Previously Treated Pd-L1-Positive Advanced Gastric or Gastroesophageal Junction Cancer: 2-Year Update of the Randomized Phase 3 KEYNOTE-061 Trial. Gastric Cancer, 25, 197-206. https://doi.org/10.1007/s10120-021-01227-z
|
[23]
|
Kang, Y., Boku, N., Satoh, T., Ryu, M., Chao, Y., Kato, K., et al. (2017) Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory To, or Intolerant Of, at Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 390, 2461-2471. https://doi.org/10.1016/s0140-6736(17)31827-5
|
[24]
|
Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10. https://doi.org/10.1016/j.immuni.2013.07.012
|
[25]
|
Bao, Z., Hu, C., Zhang, Y., Yu, P., Wang, Y., Xu, Z., et al. (2024) Safety and Efficacy of a Programmed Cell Death 1 Inhibitor Combined with Oxaliplatin Plus S-1 in Patients with Borrmann Large Type III and IV Gastric Cancers. World Journal of Gastrointestinal Oncology, 16, 1281-1295. https://doi.org/10.4251/wjgo.v16.i4.1281
|
[26]
|
Yuan, S., Nie, R., Jin, Y., Liang, C., Li, Y., Jian, R., et al. (2024) Perioperative Toripalimab and Chemotherapy in Locally Advanced Gastric or Gastro-Esophageal Junction Cancer: A Randomized Phase 2 Trial. Nature Medicine, 30, 552-559. https://doi.org/10.1038/s41591-023-02721-w
|
[27]
|
Chang, C., Cai, Z., Cheng, K., Shen, C., Zhang, B., Chen, Z., et al. (2024) Efficacy and Safety of S-1 Plus Oxaliplatin Combined with Apatinib and Camrelizumab as Neoadjuvant Therapy for Patients with Locally Advanced Gastric or Gastroesophageal Junction Adenocarcinoma: A Protocol for a Single-Arm Phase II Trial. Updates in Surgery, 77, 165-174. https://doi.org/10.1007/s13304-024-02052-6
|
[28]
|
Wu, M., Huang, Q., Xie, Y., Wu, X., Ma, H., Zhang, Y., et al. (2022) Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade via Combination Therapy and PD-L1 Regulation. Journal of Hematology & Oncology, 15, Article No. 24. https://doi.org/10.1186/s13045-022-01242-2
|
[29]
|
Zhu, S., Zhang, T., Zheng, L., Liu, H., Song, W., Liu, D., et al. (2021) Combination Strategies to Maximize the Benefits of Cancer Immunotherapy. Journal of Hematology & Oncology, 14, Article No. 156. https://doi.org/10.1186/s13045-021-01164-5
|
[30]
|
Tang, Y., Dai, L., Wang, Z., Zhang, M., Xie, H., Yang, Y., et al. (2024) Short Term Efficacy and Safety of PD-1 Inhibitor and Apatinib Plus S-1 and Oxaliplatin as Neoadjuvant Chemotherapy for Patients with Locally Advanced Gastric Cancer. Medicine, 103, e40572. https://doi.org/10.1097/md.0000000000040572
|
[31]
|
Qiu, M., Oh, D., Kato, K., Arkenau, T., Tabernero, J., Correa, M.C., et al. (2024) Tislelizumab Plus Chemotherapy versus Placebo Plus Chemotherapy as First Line Treatment for Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma: RATIONALE-305 Randomised, Double Blind, Phase 3 Trial. BMJ, 385, e078876. https://doi.org/10.1136/bmj-2023-078876
|
[32]
|
Zhang, Z., Liu, X., Chen, D. and Yu, J. (2022) Radiotherapy Combined with Immunotherapy: The Dawn of Cancer Treatment. Signal Transduction and Targeted Therapy, 7, Article No. 258. https://doi.org/10.1038/s41392-022-01102-y
|
[33]
|
Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. Journal of Clinical Investigation, 124, 687-695. https://doi.org/10.1172/jci67313
|
[34]
|
Yang, W., Zhou, M., Li, G., Zhou, C., Wang, L., Xia, F., et al. (2024) Adjuvant Chemoradiotherapy Plus PD-1 Inhibitor for PN3 Gastric Cancer: A Randomized, Multicenter, Phase III Trial. Future Oncology, 20, 3389-3396. https://doi.org/10.1080/14796694.2024.2421156
|
[35]
|
Yi, M., Jiao, D., Qin, S., Chu, Q., Wu, K. and Li, A. (2019) Synergistic Effect of Immune Checkpoint Blockade and Anti-Angiogenesis in Cancer Treatment. Molecular Cancer, 18, Article No. 60. https://doi.org/10.1186/s12943-019-0974-6
|
[36]
|
Janjigian, Y.Y., Kawazoe, A., Bai, Y., Xu, J., Lonardi, S., Metges, J.P., et al. (2023) Pembrolizumab Plus Trastuzumab and Chemotherapy for Her2-Positive Gastric or Gastro-Oesophageal Junction Adenocarcinoma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. The Lancet, 402, 2197-2208. https://doi.org/10.1016/s0140-6736(23)02033-0
|
[37]
|
Chaganty, B.K.R., Qiu, S., Gest, A., Lu, Y., Ivan, C., Calin, G.A., et al. (2018) Trastuzumab Upregulates PD-L1 as a Potential Mechanism of Trastuzumab Resistance through Engagement of Immune Effector Cells and Stimulation of IFNγ Secretion. Cancer Letters, 430, 47-56. https://doi.org/10.1016/j.canlet.2018.05.009
|
[38]
|
Lee, C., Rha, S.Y., Kim, H.S., Jung, M., Kang, B., Che, J., et al. (2022) A Single Arm Phase Ib/II Trial of First-Line Pembrolizumab, Trastuzumab and Chemotherapy for Advanced HER2-Positive Gastric Cancer. Nature Communications, 13, Article No. 6002. https://doi.org/10.1038/s41467-022-33267-z
|
[39]
|
Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67. https://doi.org/10.1182/blood-2017-06-741033
|
[40]
|
Janjigian, Y.Y., Bendell, J., Calvo, E., Kim, J.W., Ascierto, P.A., Sharma, P., et al. (2018) Checkmate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients with Metastatic Esophagogastric Cancer. Journal of Clinical Oncology, 36, 2836-2844. https://doi.org/10.1200/jco.2017.76.6212
|
[41]
|
Shitara, K., Ajani, J.A., Moehler, M., Garrido, M., Gallardo, C., Shen, L., et al. (2022) Nivolumab Plus Chemotherapy or Ipilimumab in Gastro-Oesophageal Cancer. Nature, 603, 942-948. https://doi.org/10.1038/s41586-022-04508-4
|
[42]
|
Johnson, D.B., Manouchehri, A., Haugh, A.M., Quach, H.T., Balko, J.M., Lebrun-Vignes, B., et al. (2019) Neurologic Toxicity Associated with Immune Checkpoint Inhibitors: A Pharmacovigilance Study. Journal for ImmunoTherapy of Cancer, 7, Article No. 134. https://doi.org/10.1186/s40425-019-0617-x
|
[43]
|
Zhuo, N., Liu, C., Zhang, Q., Li, J., Zhang, X., Gong, J., et al. (2022) Characteristics and Prognosis of Acquired Resistance to Immune Checkpoint Inhibitors in Gastrointestinal Cancer. JAMA Network Open, 5, e224637. https://doi.org/10.1001/jamanetworkopen.2022.4637
|
[44]
|
Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan, S., Kalbasi, A., et al. (2017) Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discovery, 7, 188-201. https://doi.org/10.1158/2159-8290.cd-16-1223
|
[45]
|
Gong, J., Wang, C., Lee, P.P., Chu, P. and Fakih, M. (2017) Response to PD-1 Blockade in Microsatellite Stable Metastatic Colorectal Cancer Harboring a Pole Mutation. Journal of the National Comprehensive Cancer Network, 15, 142-147. https://doi.org/10.6004/jnccn.2017.0016
|
[46]
|
Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723. https://doi.org/10.1016/j.cell.2017.01.017
|
[47]
|
Coelho, M.A., de Carné Trécesson, S., Rana, S., Zecchin, D., Moore, C., Molina-Arcas, M., et al. (2017) Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 47, 1083-1099.e6. https://doi.org/10.1016/j.immuni.2017.11.016
|
[48]
|
Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R., et al. (2017) Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 7, 1420-1435. https://doi.org/10.1158/2159-8290.cd-17-0593
|
[49]
|
Koyama, S., Akbay, E.A., Li, Y.Y., et al. (2016) Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nature Communications, 7, Article No. 10501.
|
[50]
|
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., et al. (2007) Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood, 109, 3812-3819. https://doi.org/10.1182/blood-2006-07-035972
|
[51]
|
Chen, L., Diao, L., Yang, Y., Yi, X., Rodriguez, B.L., Li, Y., et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery, 8, 1156-1175. https://doi.org/10.1158/2159-8290.cd-17-1033
|
[52]
|
Kim, T.K., Herbst, R.S. and Chen, L. (2018) Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in Immunology, 39, 624-631. https://doi.org/10.1016/j.it.2018.05.001
|
[53]
|
Bergholz, J.S., Wang, Q., Wang, Q., Ramseier, M., Prakadan, S., Wang, W., et al. (2023) PI3Kβ Controls Immune Evasion in PTEN-Deficient Breast Tumours. Nature, 617, 139-146. https://doi.org/10.1038/s41586-023-05940-w
|
[54]
|
Spranger, S., Bao, R. and Gajewski, T.F. (2015) Melanoma-Intrinsic β-Catenin Signalling Prevents Anti-Tumour Immunity. Nature, 523, 231-235. https://doi.org/10.1038/nature14404
|
[55]
|
Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264. https://doi.org/10.1038/nrc3239
|
[56]
|
Sharma, P. and Allison, J.P. (2015) The Future of Immune Checkpoint Therapy. Science, 348, 56-61. https://doi.org/10.1126/science.aaa8172
|
[57]
|
Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K. and Anderson, A.C. (2010) Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. Journal of Experimental Medicine, 207, 2187-2194. https://doi.org/10.1084/jem.20100643
|
[58]
|
Klapholz, M., Drage, M.G., Srivastava, A. and Anderson, A.C. (2022) Presence of Tim3+ and PD‐1+CD8+T Cells Identifies Microsatellite Stable Colorectal Carcinomas with Immune Exhaustion and Distinct Clinicopathological Features. The Journal of Pathology, 257, 186-197. https://doi.org/10.1002/path.5877
|
[59]
|
Andrews, L.P., Marciscano, A.E., Drake, C.G. and Vignali, D.A.A. (2017) LAG3 (CD223) as a Cancer Immunotherapy Target. Immunological Reviews, 276, 80-96. https://doi.org/10.1111/imr.12519
|
[60]
|
Tie, Y., Tang, F., Wei, Y. and Wei, X. (2022) Immunosuppressive Cells in Cancer: Mechanisms and Potential Therapeutic Targets. Journal of Hematology & Oncology, 15, Article No. 61. https://doi.org/10.1186/s13045-022-01282-8
|
[61]
|
Di Pilato, M., Kim, E.Y., Cadilha, B.L., Prüßmann, J.N., Nasrallah, M.N., Seruggia, D., et al. (2019) Targeting the CBM Complex Causes Treg Cells to Prime Tumours for Immune Checkpoint Therapy. Nature, 570, 112-116. https://doi.org/10.1038/s41586-019-1215-2
|
[62]
|
Zhang, A.Z., Yuan, X., Liang, W.H., Zhang, H.J., Li, Y., Xie, Y.F., et al. (2022) Immune Infiltration in Gastric Cancer Microenvironment and Its Clinical Significance. Frontiers in Cell and Developmental Biology, 9, Article 762029. https://doi.org/10.3389/fcell.2021.762029
|
[63]
|
Chakravarthy, A., Khan, L., Bensler, N.P., Bose, P. and De Carvalho, D.D. (2018) TGF-β-Associated Extracellular Matrix Genes Link Cancer-Associated Fibroblasts to Immune Evasion and Immunotherapy Failure. Nature Communications, 9, Article No. 4692. https://doi.org/10.1038/s41467-018-06654-8
|
[64]
|
Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S. and Ahringer, J. (2009) Differential Chromatin Marking of Introns and Expressed Exons by H3k36me3. Nature Genetics, 41, 376-381. https://doi.org/10.1038/ng.322
|
[65]
|
Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014) PD-L1 Is a Novel Direct Target of HIF-1α, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. Journal of Experimental Medicine, 211, 781-790. https://doi.org/10.1084/jem.20131916
|
[66]
|
Xia, L., Oyang, L., Lin, J., Tan, S., Han, Y., Wu, N., et al. (2021) The Cancer Metabolic Reprogramming and Immune Response. Molecular Cancer, 20, Article No. 28. https://doi.org/10.1186/s12943-021-01316-8
|
[67]
|
Chang, C., Qiu, J., O’Sullivan, D., Buck, M.D., Noguchi, T., Curtis, J.D., et al. (2015) Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 162, 1229-1241. https://doi.org/10.1016/j.cell.2015.08.016
|
[68]
|
Guo, D., Tong, Y., Jiang, X., Meng, Y., Jiang, H., Du, L., et al. (2022) Aerobic Glycolysis Promotes Tumor Immune Evasion by Hexokinase2-Mediated Phosphorylation of IκBα. Cell Metabolism, 34, 1312-1324.e6. https://doi.org/10.1016/j.cmet.2022.08.002
|
[69]
|
Wu, W., Shi, X. and Xu, C. (2018) Erratum: Regulation of T Cell Signalling by Membrane Lipids. Nature Reviews Immunology, 18, Article No. 219. https://doi.org/10.1038/nri.2018.9
|
[70]
|
Byun, J., Park, M., Lee, S., Yun, J.W., Lee, J., Kim, J.S., et al. (2020) Inhibition of Glutamine Utilization Synergizes with Immune Checkpoint Inhibitor to Promote Antitumor Immunity. Molecular Cell, 80, 592-606.e8. https://doi.org/10.1016/j.molcel.2020.10.015
|
[71]
|
Han, Y., Zhang, Y., Pan, Y., Zheng, X., Liao, K., Mo, H., et al. (2023) Il-1β-Associated NNT Acetylation Orchestrates Iron-Sulfur Cluster Maintenance and Cancer Immunotherapy Resistance. Molecular Cell, 83, 1887-1902.e8. https://doi.org/10.1016/j.molcel.2023.05.011
|
[72]
|
Yang, W., Feng, Y., Zhou, J., Cheung, O.K., Cao, J., Wang, J., et al. (2021) A Selective HDAC8 Inhibitor Potentiates Antitumor Immunity and Efficacy of Immune Checkpoint Blockade in Hepatocellular Carcinoma. Science Translational Medicine, 13, eaaz6804. https://doi.org/10.1126/scitranslmed.aaz6804
|
[73]
|
Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. Advances in Genetics, 70, 27-56. https://doi.org/10.1016/b978-0-12-380866-0.60002-2
|
[74]
|
Hong, Y.K., Li, Y., Pandit, H., Li, S., Pulliam, Z., Zheng, Q., et al. (2019) Epigenetic Modulation Enhances Immunotherapy for Hepatocellular Carcinoma. Cellular Immunology, 336, 66-74. https://doi.org/10.1016/j.cellimm.2018.12.010
|
[75]
|
Yeong, J., Lum, H.Y.J., Teo, C.B., Tan, B.K.J., Chan, Y.H., Tay, R.Y.K., et al. (2022) Choice of PD-L1 Immunohistochemistry Assay Influences Clinical Eligibility for Gastric Cancer Immunotherapy. Gastric Cancer, 25, 741-750. https://doi.org/10.1007/s10120-022-01301-0
|
[76]
|
Shitara, K., Van Cutsem, E., Bang, Y., Fuchs, C., Wyrwicz, L., Lee, K., et al. (2020) Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer. JAMA Oncology, 6, 1571-1580. https://doi.org/10.1001/jamaoncol.2020.3370
|
[77]
|
Schoemig-Markiefka, B., Eschbach, J., Scheel, A.H., Pamuk, A., Rueschoff, J., Zander, T., et al. (2021) Optimized PD-L1 Scoring of Gastric Cancer. Gastric Cancer, 24, 1115-1122. https://doi.org/10.1007/s10120-021-01195-4
|
[78]
|
Chao, J., Fuchs, C.S., Shitara, K., Tabernero, J., Muro, K., Van Cutsem, E., et al. (2021) Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncology, 7, 895-902. https://doi.org/10.1001/jamaoncol.2021.0275
|
[79]
|
Marabelle, A., Le, D.T., Ascierto, P.A., et al. (2020) Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 38, 1-10.
|
[80]
|
Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206. https://doi.org/10.1038/s41588-018-0312-8
|
[81]
|
Kim, K., Yang, H.K., Kim, W.H. and Kang, G.H. (2017) Combined Prognostic Effect of PD-L1 Expression and Immunoscore in Microsatellite-Unstable Advanced Gastric Cancers. Oncotarget, 8, 58887-58902. https://doi.org/10.18632/oncotarget.19439
|
[82]
|
Peng, Z., Cheng, S., Kou, Y., Wang, Z., Jin, R., Hu, H., et al. (2020) The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research, 8, 1251-1261. https://doi.org/10.1158/2326-6066.cir-19-1014
|
[83]
|
Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458. https://doi.org/10.1038/s41591-018-0101-z
|
[84]
|
Sun, Y.T., Guan, W.L., Zhao, Q., et al. (2021) PD-1 Antibody Camrelizumab for Epstein-Barr Virus-Positive Metastatic Gastric Cancer: A Single-Arm, Open-Label, Phase 2 Trial. American Journal of Cancer Research, 11, 5006-5015.
|
[85]
|
Jin, Y., Chen, D., Wang, F., Yang, C., Chen, X., You, J., et al. (2020) The Predicting Role of Circulating Tumor DNA Landscape in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors. Molecular Cancer, 19, Article No. 154. https://doi.org/10.1186/s12943-020-01274-7
|
[86]
|
Yue, C., Jiang, Y., Li, P., Wang, Y., Xue, J., Li, N., et al. (2018) Dynamic Change of PD-L1 Expression on Circulating Tumor Cells in Advanced Solid Tumor Patients Undergoing PD-1 Blockade Therapy. OncoImmunology, 7, e1438111. https://doi.org/10.1080/2162402x.2018.1438111
|
[87]
|
Chong, X., Li, Y., Lu, J., Feng, X., Li, Y. and Zhang, X. (2023) Tracking Circulating Pd-L1-Positive Cells to Monitor the Outcome of Patients with Gastric Cancer Receiving Anti-HER2 Plus Anti-PD-1 Therapy. Human Cell, 37, 258-270. https://doi.org/10.1007/s13577-023-00990-8
|