PD-1/PD-L1抑制剂在胃癌的临床应用与耐药性挑战
Clinical Applications and Resistance Challenges of PD-1/PD-L1 Inhibitors in Gastric Cancer
DOI: 10.12677/acm.2025.1572035, PDF, HTML, XML,   
作者: 杨葱葱:赣南医科大学第一临床医学院,江西 赣州;王建忠*:赣南医科大学第一附属医院普通外科,江西 赣州
关键词: 胃癌PD-1PD-L1免疫检查点抑制剂耐药机制生物标志物联合治疗Gastric Cancer PD-1 PD-L1 Immune Checkpoint Inhibitors Resistance Mechanisms Biomarkers Combination Therapy
摘要: 胃癌的发病率在东亚地区呈现显著地域聚集性,是欧美国家的2~3倍。虽然根治性手术联合辅助化疗让早期患者的5年生存率提升至70%以上,但晚期的预后仍不容乐观。近年来,免疫检查点抑制剂的兴起,特别是针对PD-1及其配体PD-L1,通过阻断相关通路,成功唤醒T细胞的抗肿瘤免疫作用,逐步在临床中显现出治疗潜力。本文系统综述了PD-1/PD-L1抑制剂在胃癌中的表达特性、临床意义及其抑制剂的临床应用,并探讨了免疫治疗的耐药机制、潜在生物标志物以及联合治疗策略的最新进展,目的是为胃癌临床决策提供循证依据。
Abstract: The incidence of gastric cancer exhibits significant regional clustering in East Asia, where rates are 2 to 3 times higher than in Western countries. Although radical surgery combined with adjuvant chemotherapy has improved 5-year survival rates to over 70% in early-stage patients, outcomes for advanced-stage disease remain poor. In recent years, immune checkpoint inhibitors—particularly those targeting PD-1 and its ligand PD-L1—have demonstrated therapeutic promise by reactivating antitumor T-cell responses through pathway blockade. This review provides a comprehensive overview of PD-1/PD-L1 expression patterns in gastric cancer, their clinical significance, and the application of corresponding inhibitors. It also discusses mechanisms of resistance, emerging biomarkers, and advancements in combination therapy strategies, aiming to inform evidence-based clinical decision-making in the treatment of gastric cancer.
文章引用:杨葱葱, 王建忠. PD-1/PD-L1抑制剂在胃癌的临床应用与耐药性挑战[J]. 临床医学进展, 2025, 15(7): 641-653. https://doi.org/10.12677/acm.2025.1572035

1. 引言

胃癌(Gastric cancer, GC)是一种胃黏膜上皮细胞恶性变异引起的肿瘤。越来越多的证据表明,幽门螺旋杆菌感染、EB病毒(Epstein-Barr virus, EBV)、肥胖等因素会显著增加胃癌的风险[1]。最新全球癌症统计显示,胃癌的发病率为每年约100万例,位列全球第五;死亡率为78万例,居全球第四位,仅次于肺癌、肝癌和结直肠癌[2]。尽管手术切除联合围手术期化疗可改善早期患者的预后,但约有70%的病例在确诊时已进展至局部晚期或转移阶段,其5年生存率不足10% [3]。传统化疗方案虽能延长总生存期(Overall survival, OS),但受限于肿瘤异质性和药物耐药性,治疗效果有限[4]。此外,晚期患者常伴体能状态下降或脏器功能不全,难以耐受高强度及长时期的化疗。

近年来,免疫检查点抑制剂通过多种途径来阻断程序性死亡受体-1 (Programmed death protein 1, PD-1)及程序性死亡配体-1 (Programmed death ligand 1, PD-L1)的相互作用,重塑肿瘤免疫微环境(Tumor immune microenvironment, TME),在晚期胃癌的治疗中展现出显著临床获益[5]。关键III期临床试验CHECKMATE-649证实[6],纳武利尤单抗(nivolumab)联合化疗可显著延长中位总生存期(Median overall survival, mOS),并为其作为一线治疗新标准提供了坚实依据。然而临床实践中仍面临显著挑战,约50%~70%的晚期肿瘤患者对免疫检查点抑制剂(Immune checkpoint inhibitors, ICIs)原发性耐药,且最初有反应的肿瘤常随着时间的推移产生适应性或获得性耐药[7]

本研究系统总结了PD-1/PD-L1检查点抑制剂在胃癌免疫治疗中的作用机制与应用模式,并深入分析了治疗过程中出现的耐药性及副作用问题,旨在为未来联合疗法的设计与优化提供理论依据,进一步提升PD-1/PD-L1通路在胃癌治疗中的疗效。

2. PD-1/PD-L1在胃癌中的表达及临床意义

2.1. PD-1/PD-L1在胃癌组织及微环境中的表达特点

PD-1作为T细胞反应的关键抑制剂,主要在活化的T细胞、B细胞、和髓样细胞上表达,通过与PD-L1结合调节免疫反应[8]。在肿瘤细胞中,PD-1的显著表达可能是其逃避免疫监视的一种策。PD-L1和PD-L2是PD-1受体的天然配体,通过向表达PD-1的免疫细胞传递抑制信号,发挥重要的免疫检查点作用。

PD-1/PD-L1信号通路在胃癌中的表达具有显著的异质性,其模式受TME和分子亚型的影响。PD-L1的表达在胃癌患者中呈现出显著的差异性,其中肿瘤细胞的表达率为19%~63%,肿瘤浸润淋巴细胞(Tumor-infiltrating lymphocytes, TILs)的表达率为34%~53%,而通过综合阳性评分(Combined positive score, CPS)评估,大约63%的患者呈现PD-L1的阳性表达[9]。PD-L1表达与特定分子亚型密切相关,例如微卫星不稳定性高(Microsatellite Instability-High, MSI-H)和EBV胃癌中PD-L1表达显著上调,而HER2高表达或ATM基因低表达的亚型中,免疫浸润水平较低[10] [11]

2.2. PD-1/PD-L1通路在胃癌免疫逃逸中的分子机制

PD-1/PD-L1信号通路的激活是胃癌逃避免疫系统识别和清除的关键分子机制。肿瘤细胞通过上调PD-L1的表达水平,与T细胞表面的PD-1受体发生特异性结合。此一结合不仅抑制了T细胞的活化和增殖,还显著降低了其细胞毒性T细胞(Cytotoxic T Lymphocytes, CTLs)的功能。同时,这一交互作用还引发T细胞程序性死亡和功能性耗竭,从而突破免疫系统的抗肿瘤防御机制,促进肿瘤的疾进。这种免疫逃逸现象在肿瘤微环境的免疫抑制条件下尤为明显[12]

2.2.1. PD-L1的基因调控和表观调控机制

遗传和表观遗传等多层次调控PD-L1的表达。PD-L1的基因扩增或重排可直接上调其表达,这一机制在血液肿瘤中尤为显著。在胃癌中,PD-L1 3'非翻译区(3'UTR)的突变或结构破坏也可增强mRNA稳定性,例如RNA结合蛋白TTP (Tristetraprolin)调控缺失减少mRNA降解,从而促进表达[13]。DNA甲基化和组蛋白修饰也至关重要,TET3功能缺失导致PD-L1启动子区域的甲基化,抑制转录,而KMT2家族突变则与低表达相关[14]。转录后,miR-105-5p和EBV相关的miR-BART5-5p抑制PD-L1翻译,而lncRNA PROX1-AS1通过miR-877-5p/PD-L1轴促进表达[15]

2.2.2. 关键信号通路在PD-L1表达调控中的作用

多种致癌信号通路调控PD-L1的表达。MYC基因通过上调CD47影响其表达,而EGFR或ALK的激活可通过STAT3及PI3K/Akt信号通路诱导的表达,而肿瘤抑制蛋白(Phosphatase and Tensin Homolog, PTEN)基因缺失则通过激活PI3K/Akt/mTOR信号通路来增强免疫抑制[16]。缺氧环境下,缺氧诱导因子-1 (HIF-1)促进PD-L1转录。此外,泛素特异性蛋白酶(Ubiquitin-Specific Protease 7, USP7)通过去泛素化,导致其蛋白质水平的显著提升,从而增强免疫逃逸能力,进而与患者的不良预后相关[17]

2.2.3. 肿瘤微环境对PD-L1表达的调控

肿瘤微环境中的细胞因子和炎症介质也促进PD-L1的表达。胃癌细胞可分泌粒细胞–巨噬细胞集落刺激因子(GM-CSF)致JAK/STAT3信号通路上调中性粒细胞和巨噬细胞表面的PD-L1表达。干扰素-γ (Interferon-γ, IFN-γ)通过JAK2/STAT3轴促进PD-L1转录,抑制自噬降解,并募集髓源性抑制细胞(Myeloid-derived suppressor cells, MDSC)从而抑制CD8+ T细胞功能[18]

2.2.4. 分子分型与PD-L1的异常表达

不同分子分型的胃癌在PD-L1表达上存在显著差异。EBV阳性胃癌中,IFN-γ/IRF3/CD274轴被激活,进而使PD-L1以组成型显著上调[18]。MSI-H型胃癌因高突变负荷产生新抗原,诱导CD8+ T细胞浸润及IFN-γ释放,激活适应性免疫逃逸[19]

2.2.5. 免疫治疗的联合应用影响PD-L1的表达

化疗和靶向治疗影响PD-L1表达及免疫治疗效果。5-氟尿嘧啶(5-Fluorouracil, 5-FU)诱导PD-L1上调,但与PD-1抑制剂联合可增强抗肿瘤效应[20]。雷帕霉素通过抑制Gli信号阻断PD-L1转录,提示mTOR抑制剂可改善免疫治疗耐受性[21]

3. PD-1/PD-L1抑制剂在胃癌中的临床应用

3.1. GC中的PD-1/PD-L1抑制剂单药治疗

作为一种免疫检查点抑制的治疗手段,PD-1/PD-L1抑制剂在胃癌治疗中已经展示出一定的临床效益,尤其适用于多线治疗失败的晚期或复发性患者。代表性药物包括纳武利尤单抗(Nivolumab)和帕博利珠单抗(Pembrolizumab), 多项临床试验验证了其疗效。其中帕博利珠单抗和纳武利尤单抗已在多项关键III期临床试验中展示出改善生存和客观缓解率的潜力。例如,KEYNOTE-061研究表明,对于CPS ≥ 1的患者,帕博利珠单抗单药治疗的mOS达9.1个月[22]。ATTRACTION-2研究了纳武利尤单抗与安慰剂三线治疗晚期胃癌疗效,纳武利尤单抗治疗延长了患者的mOS (5.26个月比4.14个月)、mPFS (1.61个月比1.45个月)和提高了ORR至11.2% [23]

3.2. GC中的PD-1/PD-L1抑制剂联合治疗

考虑到许多患者的PD-L1阴性状态和单药免疫治疗的局限性[24],目前的研究越来越多地聚焦于探索与其他治疗手段的联合应用。现有研究表明,PD-1/PD-L1抑制剂与化疗、放疗、靶向药物和其他ICI联合使用可增强抗肿瘤效果。

3.2.1. PD-1/PD-L1抑制剂联合手术治疗

在局部晚期胃癌中,PD-1/PD-L1抑制剂与手术结合显著改善预后。术前免疫治疗联合化疗可提高病理反应率,并优化淋巴结清扫效果,及减少手术并发症[25] [26]。术后辅助免疫治疗通过清除微小残留病灶降低复发风险,初步研究显示其耐受性良好并具潜在生存获益[27]。尽管围手术期综合策略在胃癌个体化治疗中优势明显,但不可忽略术前样本获取有限,其预后评估仍存在局限[28]

3.2.2. PD-1/PD-L1抑制剂联合化学治疗

PD-1/PD-L1抑制剂与化疗联合表现出显著协同效应。化疗通过诱导免疫原性细胞死亡(ICD)、释放损伤相关分子模式(DAMP)及重塑肿瘤微环境(TME),增强肿瘤免疫原性和T细胞活化,同时缓解免疫抑制状态[29]。临床试验进一步验证其疗效。例如:NEOSUMMIT-01研究表明,围手术期使用特瑞普利单抗(toripalimab)联合替吉奥 + 奥沙利铂(SOX)或卡培他滨 + 奥沙利铂(XELOX)治疗的局部晚期胃癌患者中,病理完全缓解高达44.4%,显著高于单纯化疗组的20.4% [26]。Tang等人的研究显示,PD-1抑制剂联合阿帕替尼(apatinib)及SOX新辅助化学治疗在局部晚期胃癌患者中获得71.5%的客观缓解率(ORR)及94.5%的疾病控制率(DCR),其中R0切除率高达96.1%,且病理完全缓解率(pCR)为21.6% [30]。值得注意的是,RATIONALE-305研究是一项涵盖全球多中心的重要研究,其结果表明卡瑞利珠单抗联合化疗对晚期胃癌患者具有显著的临床益处,中位总生存期(OS)可达15个月,其中近三分之一的患者实现了持续2年以上的持久反应[31]。这些数据凸显联合化疗在提升反应率和手术可行性方面的优势。然而,化疗的毒性和患者耐受性问题仍不可忽视。

3.2.3. PD-1/PD-L1抑制剂联合放疗

放疗通过释放肿瘤抗原、上调PD-L1表达及减少TME中免疫抑制细胞,与PD-1/PD-L1抑制剂协同增强抗肿瘤免疫反应[32]。SHARED研究显示,信迪利单抗联合同步放化疗在局部晚期胃癌中的病理完全缓解率高于单纯放化疗[33]。正在进行的RACING III期试验将进一步评估联合放化疗加PD-1抑制剂的长期获益[34]

3.2.4. PD-1/PD-L1抑制剂联合靶向治疗

在晚期胃癌(GC)的治疗中,PD-1/PD-L1抑制剂与靶向药物(如抗VEGF和HER2靶向药物)的联合应用已成为提升疗效的重要策略。抗VEGF药物,如贝伐珠单抗(bevacizumab)和雷莫芦单抗(ramucirumab),能通过抑制肿瘤血管生成改善肿瘤微环境(TME),从而显著增强免疫效应细胞的浸润,并与PD-1抑制剂协同作用[35]。KEYNOTE-811研究评估了帕博利珠单抗联合曲妥珠单抗和化疗在HER2阳性晚期胃癌中的一线治疗方案的效果,结果显示mOS达20个月,mPFS为10个月,ORR显著提高至74.4%,较单独化疗组有呈现显著改善[36]。但该方案在非HER2阳性患者中的适用性和耐药问题仍需进一步验证。针对HER2过表达的胃癌患者,HER2靶向药物如曲妥珠单抗(trastuzumab)和曲妥珠单抗德鲁特康(Trastuzumab deruxtecan, T-DXd),与PD-1抑制剂联合可通过增强抗肿瘤免疫反应和直接细胞毒性双重机制发挥作用[37]。作为HER-2阳性胃癌的一线治疗,帕博利珠单抗联合曲妥珠单抗联合化疗的ORR为74.4%,与对照组相比增加了22.7%,完全缓解率为11%,显著优于对照组的3% [38]。这些联合策略旨在克服单一疗法的局限性,如PD-1抑制剂单药治疗的有效率通常低于20%~30%。通过这种方式,为HER2阳性或阴性的晚期胃癌患者提供更个性化的治疗选择。

3.2.5. PD-1/PD-L1抑制剂联合其他ICIs

除PD-1外,细胞毒性T淋巴细胞抗原4 (Cytotoxic T-Lymphocyte Antigen 4, CTLA-4)和淋巴细胞活化基因3 (Lymphocyte-Activation Gene 3, LAG-3)等免疫抑制分子同样受到广泛关注,并已在临床实践中得到应用。CTLA-4抑制剂则通过抑制CTLA-4与B7分子的结合,主要增强T细胞在早期活化和增殖阶段的功能[39]。由于PD-1主要作用于效应T细胞阶段,而CTLA-4则在T细胞活化初期发挥抑制作用,因此联合阻断这两种检查点能够更全面地解除免疫抑制,显著增强抗肿瘤免疫反应。例如,CheckMate-032试验评估了Nivolumab联合伊匹木单抗(ipilimumab)在晚期胃癌患者中的疗效,结果显示联合治疗组的客观缓解率(ORR)达24%,中位无进展生存期(mPFS)为1.4个月,中位总生存期(mOS)则达到6.9个月[40]。另一项研究表明,pembrolizumab联合替西木单抗(tremelimumab)在晚期胃癌患者中亦展现出一定疗效,但同时伴一定概率的不良反应[41]。这些研究结果提示,联合治疗在提高疗效方面具有潜力,尤其对部分难治性胃癌患者。然而,挑战依然存在,首要问题是联合治疗显著增加了免疫相关不良事件(irAEs)的发生率,如皮疹、腹泻和肝炎,且严重irAEs发生率可超过30% [42]。未来研究需致力于优化治疗方案,并探索可预测疗效及安全性的生物标志物,以提高临床获益。

4. PD-1/PD-L1抑制剂耐药的关键机制

4.1. 肿瘤细胞内在机制相关耐药性

各种原因引起肿瘤细胞表面缺乏PD-L1表达时,阻断T细胞的抗肿瘤作用,导致治疗效果显著下降[43]。如在微卫星不稳定性高的胃癌中,JAK1的移码突变或功能丧失会导致PD-L1表达显著降低。TCGA数据库显示,15%的MSI-H胃癌患者存在JAK1功能丧失,导致IFN-γ诱导的PD-L1表达减少,引发对PD-1抗体的原发性耐药[44]。在部分转移性结直肠癌患者中,K162fs和L88S基因突变通过无义介导的RNA衰变或蛋白质降解机制,使PD-L1表达缺失,进而引起对PD-L1抗体治疗的耐药[45]。信号通路异常同样可以干扰PD-L1的正常表达。例如,JAK1/2功能丧失通过抑制PD-L1的转录,使肿瘤细胞无法响应PD-1/PD-L1抑制剂[46]。研究发现,在非小细胞肺癌中,KRAS突变通过增强ERK信号诱导PD-L1表达,导致对PD-1阻断的初始抵抗[47]。这些证据表明,PD-L1表达缺失以及信号通路异常通过削弱免疫检查点抑制剂的作用靶点,直接导致胃癌中的耐药性。

4.2. T细胞功能障碍相关耐药性

在抗肿瘤免疫应答过程中,T细胞需依次经历抗原识别、活化、克隆增殖与功能特化,并通过趋化迁移与肿瘤浸润实现免疫清除。然而,胃肿瘤细胞通过多种途径破坏抗原呈递系统,从而导致T细胞功能障碍。肿瘤细胞中的B2M基因突变或HLA-I表达下调会削弱肿瘤抗原的呈递,从而阻碍T细胞对抗原的识别,进一步影响CD8+ T细胞的激活[48]。PD-1阻断虽可短暂逆转T细胞耗竭,但往往诱导T细胞免疫球蛋白黏蛋白分子-3 (T-cell Immunoglobulin and Mucin-domain containing-3, TIM-3)等替代性检查点代偿性上调,进而抑制细胞毒性T细胞(CTL)和Th1细胞的功能[49]。肿瘤微环境中乳酸水平的升高及调节性T细胞(Tregs)的增殖也会加剧T细胞耗竭,使其难以有效杀伤肿瘤细胞[50]。研究结果表明,CD38的过表达通过调控腺苷受体通路,显著抑制了T细胞的增殖能力和细胞因子的分泌过程,这一机制已成为肿瘤获得性耐药的重要驱动因素之一[51]。T细胞对肿瘤组织的有效浸润,是触发和维持抗肿瘤免疫反应的关键环节[52]。在胃癌等“免疫冷”肿瘤中,由于特异性基因突变和多条信号通路的异常,呈现出T细胞浸润不足的特征[53]。WNT/β-catenin信号通路的异常激活也减少了T细胞浸润,并通过干扰树突状细胞(DC)的募集,进一步阻碍抗肿瘤免疫反应的启动和维持[54]

4.3. 免疫检查点相关耐药性

PD-1/PD-L1抑制剂在肿瘤治疗中的耐药性也有部分源于肿瘤微环境中其他免疫检查点的存在,如CTLA-4、TIM-3和LAG-3,这些检查点在调节T细胞功能中起重要作用。CTLA-4作为一种抑制性受体,阻断T细胞的共刺激通路,从而抑制其活化,导致T细胞活化阈值升高,与不良预后密切相关[55]。研究显示:胃癌组织中CTLA-4+ Tregs浸润水平与患者生存期成负相关(P < 0.01),而阻断CTLA-4可加强树突状细胞的免疫激活能力,为联合治疗提供机制支撑[56]。在PD-1阻断微环境下,TIM-3表达呈现补偿性上调,其通过与磷脂酰丝氨酸或半乳糖凝集素-9交联,抑制IFN-γ与TNF-α产生,并诱导CD8+ TILs凋亡[57]。Klapholz等人发现,MSS型胃肠肿瘤中TIM-3及PD-1双阳性TILs比例超过30%的患者,对PD-1抑制剂无应答率提高4.2倍[58]。LAG-3则通过调节效应T细胞(Teff)的功能,增强调节性T细胞的作用,维持免疫耐受,在胃癌患者中其高表达与肿瘤进展密切相关[59]

4.4. 肿瘤微环境(TME)相关耐药性

胃癌TME中免疫抑制细胞的增加导致免疫细胞功能障碍和免疫抑制细胞扩增,从而形成免疫抑制环境[60]。调节性T细胞(Tregs)、髓源性抑制细胞(MDSCs)和肿瘤相关巨噬细胞(Tumor-associated macrophages, TAMs)通过多种机制削弱抗肿瘤免疫反应。Tregs可通过分泌IL-10和TGF-β等抑制性细胞因子,耗竭效应T细胞的IL-2,或通过细胞接触直接抑制T细胞活性,从而构建免疫抑制性微环境[61]。M2型TAMs通过分泌IL-10和募集Tregs加剧免疫抑制,并在TME中形成正反馈循环[62]

细胞外基质(Extracellular Matrix, ECM)的化学特性在对PD-1/PD-L1抑制剂耐药性的形成具有重要影响。TME中硬化的ECM通过阻碍免疫细胞和药物的渗透,降低了抗肿瘤免疫反应和药物递送效率[63]。而癌细胞和癌症相关成纤维细胞(Cancer-Associated Fibroblasts, CAFs)分泌的TGF-β既促进ECM硬化,又诱导CAFs形成,进一步加剧免疫抑制环境[64]。ECM重塑还与新生血管的异常形成相关,由M2型TAMs分泌的血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)等因子驱动,导致药物分布不均和肿瘤缺氧,肿瘤缺氧状态触发HIF-1的表达,调节MDSCs的功能,并促进外泌体中PD-L1的释放,从而加强免疫逃逸[65]

4.5. 代谢介导的耐药性

肿瘤细胞的代谢重编程与PD-1/PD-L1抑制剂的耐药密切相关,主要表现为葡萄糖、脂质与氨基酸代谢的协同异常[66]。肿瘤细胞微环境中乳酸浓度升高,直接抑制细胞毒性T淋巴细胞(CTL)分泌IFN-γ,导致PD-L1表达下降[67]。在胃癌中这一过程被进一步放大,如己糖激酶-2 (HK2)过表达通过NF-κB通路诱导PD-L1转录激活,而靶向HK2可使PD-1单药治疗的小鼠模型肿瘤体积缩减78% [68]

胃癌细胞通过SCD1介导的脂肪酸去饱和化增强膜脂筏形成,导致CD8+ T细胞免疫突触结构完整性破坏,进而降低TCR信号转导效率[69]。肿瘤细胞通过ASCT2转运体摄取微环境中80%以上的谷氨酰胺,导致CTL线粒体氧化磷酸化受阻,ATP产量下降55%。在胃癌中,谷氨酰胺缺乏激活Ca2+/NF-κB信号轴,促使PD-L1表达上调并抑制T细胞颗粒酶B释放[70]

4.6. 表观遗传学介导的耐药性

肿瘤细胞的表观遗传改变通过重塑肿瘤微环境和调控免疫应答导致治疗抵抗。相关研究显示:IL-1β通过烟酰胺核苷酸转氢酶(Nicotinamide Nucleotide Transhydrogenase, NNT)的乙酰化修饰,干扰铁硫簇的稳定性,最终导致胃癌对ICI的原发耐药。阻断IL-1β信号可恢复T细胞功能,并增强抗PD-1疗法的疗效,提示靶向NNT乙酰化可能是克服耐药的新策略[71]。组蛋白修饰的异常通过调节TME的免疫抑制状态参与其中。例如,组蛋白脱乙酰酶8 (HDAC8)的过表达已被证实促进肝细胞癌的ICI耐药,而类似机制可能在胃癌中通过表观遗传重塑影响免疫细胞浸润[72]

DNA甲基化在表观遗传调控中发挥着重要的作用,直接影响TME与ICI疗效。DNA甲基转移酶1 (DNA-methyltransferase 1, DNMT1)作为维持DNA甲基化的核心酶,其活性异常可导致PD-L1基因的低甲基化,从而上调肿瘤细胞表面PD-L1表达,形成适应性免疫逃逸[73]。研究发现,使用表观遗传药物5-氮杂胞苷(5-AZA)可逆转趋化因子CXCL9和CXCL10启动子的甲基化,恢复其在肝细胞癌(HCC)中的表达,从而增强T细胞浸润并降低ICI耐药风险[74]

5. PD-L1/PD-1抑制剂在胃癌的潜在疗效生物标志物

PD-L1免疫组化是目前用于免疫治疗疗效预测的生物标志物之一,其中Dako22C3和Dako28-8抗体是最常用于临床的检测方法。Dako28-8抗体主要采用肿瘤比例评分(TPS)进行评估,而Dako22C3抗体主要采用CPS评分进行评估,与TPS不同,CPS同时量化了肿瘤细胞及浸润免疫细胞的PD-L1表达,从而更全面地反映了肿瘤微环境的免疫抑制状态。在临床实践中通常采用CPS ≥ 1、≥5或≥10等阈值来筛选潜在获益人群[75]。例如,KEYNOTE-062试验结果,在CPS评分≥10的患者中,帕博利珠单抗单药治疗使OS显著延长(17.4个月vs 10.6个月),证实了高PD-L1表达的预测价值[76]。但是PD-L1临床应用仍面临显著挑战。如同一患者原发灶与转移灶间,甚至同一标本不同区域的PD-L1表达均可能存在显著差异,使得单次活检样本难以准确反映整体免疫特征[77]。不同检测抗体(如22C3 vs 28-8)和评分系统(CPS vs TPS)之间缺乏统一标准,增加了判断的主观性与可重复性问题。PD-L1表达具有动态变化特性,可能受治疗影响而上下波动,其阳性状态并非恒定。这些问题限制了PD-L1作为独立预测指标的可靠性。更加值得注意的是部分PD-L1阴性患者在临床试验中仍对免疫治疗产生缓解反应,提示其阴性预测价值有限,不能作为排除治疗资格的唯一标准。

微卫星不稳定性高(MSI-H)主要是在DNA复制过程中引发微卫星序列高频率插入/缺失突变。KEYNOTE系列研究的汇总分析显示,接受帕博利珠单抗治疗的MSI-H胃癌患者ORR达到57%,显著高于MSS型患者的9%~15% [78]。但在微卫星稳定的患者中亦存在一定比例的免疫应答者,说明MSI-H的阴性预测价值仍不绝对。

肿瘤突变负荷是肿瘤基因组中每百万碱基对的非同义突变数,其中高TMB提示肿瘤可能产生更多新抗原,从而激活抗肿瘤免疫应答。KEYNOTE-158试验的突破性发现显示,在泛癌种TMB-H患者中,帕博利珠单抗单药治疗的ORR高达29% [79]。但在胃癌中,TMB中位数显著低于黑色素瘤等免疫治疗敏感瘤种,且部分低TMB患者亦能产生应答,TMB的阴性预测价值尚存不确定性,需与肿瘤免疫浸润情况共同评估[80]

高密度肿瘤浸润淋巴细胞(TILs)通常说明有较为活跃的抗肿瘤效应,如CD8+细胞毒性T细胞通过识别肿瘤抗原释放颗粒酶和穿孔素介导肿瘤杀伤。例如,一项针对胃癌免疫治疗的前瞻性研究显示,TILs密度 ≥ 100/mm2的患者接受PD-1抑制剂治疗时,其ORR高达52.3%,显著高于TILs低密度组的15.7% [81]。但是TILs密度较低并不完全等同于免疫治疗无效,部分低密度患者亦显示一定程度的治疗反应,提示其阴性筛选能力有限。

微生物多样性与稳定性的降低会削弱肠粘膜局部免疫力,并通过免疫细胞激活触发全身免疫反应。幽门螺杆菌的存在与胃癌发生密切相关,并在调控免疫系统及改变免疫微环境方面发挥作用,从而可能影响免疫治疗效果。相关研究显示,乳酸杆菌相对丰度超过3%的患者中位PFS达9.2个月,显著高于低丰度组的4.1个月(p = 0.006) [82]。微生态组成因个体差异大而具有不确定性,其负面预测能力仍待进一步明确。

EBV相关胃癌(EBVaGC)作为独特的分子亚型,对免疫治疗显示出超常敏感性。III期临床试验数据显示,EBVaGC患者接受帕博利珠单抗一线治疗的ORR高达100% [83]。然而,一项前瞻性临床研究,6例接受卡瑞利珠单抗治疗的EBV阳性mGC患者,均未达到客观缓解,这让人怀疑EBV阳性是否是mGC免疫治疗反应的可靠预测指标[84]。当前证据存在明显不一致,提示EBV状态虽具潜在预测价值,但其阴性表达并不能完全排除治疗反应,仍需更大样本验证。

液体活检技术凭借其无创、动态监测优势,已成为预测胃癌PD-1/PD-L1抑制剂疗效的重要研究方向。循环肿瘤细胞(Circulating tumor cells, CTC)、循环肿瘤DNA (Circulating tumor DNA, ctDNA)和细胞外囊泡(Extracellular vesicles, EVs)为主要关注的生物标志物。研究显示,ctDNA丰度降低与肿瘤退缩呈正相关,且基因谱分析揭示相关通路变异可预测疗效差异[85]。基线CTC携带PD-L1高表达提示更优应答,治疗后PD-L1 + CTC丰度升高往往预示耐药进展[86]。在EV生物标志物的开发方面,基于PD-L1、PD-L2和CD3表达构建的EV评分模型,已将免疫治疗的客观缓解率提升至42.9%,且与中位无进展生存期的延长显著相关[87]

6. 结论

PD-1/PD-L1抑制剂在胃癌治疗中展现出显著进展,主要通过联合化疗或靶向的方案提高了晚期患者的客观缓解率与生存期。但是仍面临重重挑战,部分患者的免疫系统难以被有效激活,或深陷于肿瘤微环境的强抑制状态,导致治疗反应迟钝甚至完全无效。与此同时,免疫检查点抑制剂也可能唤醒系统性的免疫反应,引发多器官毒性,治疗风险陡然增加。在此背景下,现有的CPS评分和MSI-H/dMMR等生物标志物在不同人群中表现出明显的预测效能差异,难以满足精准筛选与广泛适用的需求。为走出这一困境,我们应推动基于肿瘤免疫表型和微环境特征的分型策略,明确肿瘤的免疫状态,进而制定差异化的治疗组合方案。并发展基于多组学特征的不良反应预测模型,以实现毒性事件的早期预警与分层管理,从而提高治疗安全性。我们更应该突破单一指标的局限,构建多维数据的复合预测模型,并结合人工智能算法优化。在适应性临床试验的支持下,疗效与毒性的实时反馈将直接反哺治疗决策,使每一步都更贴近患者真实反应。

NOTES

*通讯作者。

参考文献

[1] Thrift, A.P., Wenker, T.N. and El-Serag, H.B. (2023) Global Burden of Gastric Cancer: Epidemiological Trends, Risk Factors, Screening and Prevention. Nature Reviews Clinical Oncology, 20, 338-349.
https://doi.org/10.1038/s41571-023-00747-0
[2] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[3] Wagner, A.D., Syn, N.L., Moehler, M., Grothe, W., Yong, W.P., Tai, B., et al. (2017) Chemotherapy for Advanced Gastric Cancer. Cochrane Database of Systematic Reviews, No. 8, CD004064.
https://doi.org/10.1002/14651858.cd004064.pub4
[4] Bang, Y., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., et al. (2010) Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. The Lancet, 376, 687-697.
https://doi.org/10.1016/s0140-6736(10)61121-x
[5] Zhang, H., Liu, L., Liu, J., Dang, P., Hu, S., Yuan, W., et al. (2023) Roles of Tumor-Associated Macrophages in Anti-Pd-1/Pd-L1 Immunotherapy for Solid Cancers. Molecular Cancer, 22, Article No. 58.
https://doi.org/10.1186/s12943-023-01725-x
[6] Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-Line Nivolumab Plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40.
https://doi.org/10.1016/s0140-6736(21)00797-2
[7] Jenkins, R.W., Barbie, D.A. and Flaherty, K.T. (2018) Mechanisms of Resistance to Immune Checkpoint Inhibitors. British Journal of Cancer, 118, 9-16.
https://doi.org/10.1038/bjc.2017.434
[8] Musolino, P.L., Gong, Y., Snyder, J.M.T., Jimenez, S., Lok, J., Lo, E.H., et al. (2015) Brain Endothelial Dysfunction in Cerebral Adrenoleukodystrophy. Brain, 138, 3206-3220.
https://doi.org/10.1093/brain/awv250
[9] The Cancer Genome Atlas Research Network (2014) Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature, 513, 202-209.
https://doi.org/10.1038/nature13480
[10] Kawazoe, A., Kuwata, T., Kuboki, Y., Shitara, K., Nagatsuma, A.K., Aizawa, M., et al. (2016) Clinicopathological Features of Programmed Death Ligand 1 Expression with Tumor-Infiltrating Lymphocyte, Mismatch Repair, and Epstein-Barr Virus Status in a Large Cohort of Gastric Cancer Patients. Gastric Cancer, 20, 407-415.
https://doi.org/10.1007/s10120-016-0631-3
[11] Amirmoezi, F. and Geramizadeh, B. (2022) Molecular Classification of Gastric Cancer with Emphasis on PDL-1 Expression: The First Report from Iran. Clinical Pathology, 15.
https://doi.org/10.1177/2632010x221096378
[12] McDermott, D.F. and Atkins, M.B. (2013) PD‐1 as a Potential Target in Cancer Therapy. Cancer Medicine, 2, 662-673.
https://doi.org/10.1002/cam4.106
[13] Kataoka, K., Shiraishi, Y., Takeda, Y., Sakata, S., Matsumoto, M., Nagano, S., et al. (2016) Aberrant PD-L1 Expression through 3’-UTR Disruption in Multiple Cancers. Nature, 534, 402-406.
https://doi.org/10.1038/nature18294
[14] Yoon, C.J., Chang, M.S., Kim, D.H., Kim, W., Koo, B.K., Yun, S., et al. (2020) Epstein-Barr Virus-Encoded miR-BART5-5p Upregulates PD-L1 through PI-AS3/pSTAT3 Modulation, Worsening Clinical Outcomes of Pd-L1-Positive Gastric Carcinomas. Gastric Cancer, 23, 780-795.
https://doi.org/10.1007/s10120-020-01059-3
[15] Miliotis, C. and Slack, F.J. (2021) MiR-105-5p Regulates PD-L1 Expression and Tumor Immunogenicity in Gastric Cancer. Cancer Letters, 518, 115-126.
https://doi.org/10.1016/j.canlet.2021.05.037
[16] Parsa, A.T., Waldron, J.S., Panner, A., Crane, C.A., Parney, I.F., Barry, J.J., et al. (2006) Loss of Tumor Suppressor PTEN Function Increases B7-H1 Expression and Immunoresistance in Glioma. Nature Medicine, 13, 84-88.
https://doi.org/10.1038/nm1517
[17] Wang, Z., Kang, W., Li, O., Qi, F., Wang, J., You, Y., et al. (2021) Abrogation of USP7 Is an Alternative Strategy to Downregulate PD-L1 and Sensitize Gastric Cancer Cells to T Cells Killing. Acta Pharmaceutica Sinica B, 11, 694-707.
https://doi.org/10.1016/j.apsb.2020.11.005
[18] Kim, W., Chu, T.H., Nienhüser, H., Jiang, Z., Del Portillo, A., Remotti, H.E., et al. (2021) PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice. Gastroenterology, 160, 781-796.
https://doi.org/10.1053/j.gastro.2020.10.036
[19] Nakano, H., Saito, M., Nakajima, S., Saito, K., Nakayama, Y., Kase, K., et al. (2021) PD-L1 Overexpression in EBV-Positive Gastric Cancer Is Caused by Unique Genomic or Epigenomic Mechanisms. Scientific Reports, 11, Article No. 1982.
https://doi.org/10.1038/s41598-021-81667-w
[20] Van Der Kraak, L., Goel, G., Ramanan, K., Kaltenmeier, C., Zhang, L., Normolle, D.P., et al. (2016) 5-Fluorouracil Upregulates Cell Surface B7-H1 (PD-L1) Expression in Gastrointestinal Cancers. Journal for ImmunoTherapy of Cancer, 4, Article No. 65.
https://doi.org/10.1186/s40425-016-0163-8
[21] Jia, M., Yuan, Z., Yu, H., Feng, S., Tan, X., Long, Z., et al. (2024) Rapamycin Circumvents Anti PD-1 Therapy Resistance in Colorectal Cancer by Reducing PD-L1 Expression and Optimizing the Tumor Microenvironment. Biomedicine & Pharmacotherapy, 176, Article ID: 116883.
https://doi.org/10.1016/j.biopha.2024.116883
[22] Fuchs, C.S., Özgüroğlu, M., Bang, Y., Di Bartolomeo, M., Mandala, M., Ryu, M., et al. (2021) Pembrolizumab versus Paclitaxel for Previously Treated Pd-L1-Positive Advanced Gastric or Gastroesophageal Junction Cancer: 2-Year Update of the Randomized Phase 3 KEYNOTE-061 Trial. Gastric Cancer, 25, 197-206.
https://doi.org/10.1007/s10120-021-01227-z
[23] Kang, Y., Boku, N., Satoh, T., Ryu, M., Chao, Y., Kato, K., et al. (2017) Nivolumab in Patients with Advanced Gastric or Gastro-Oesophageal Junction Cancer Refractory To, or Intolerant Of, at Least Two Previous Chemotherapy Regimens (ONO-4538-12, ATTRACTION-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 390, 2461-2471.
https://doi.org/10.1016/s0140-6736(17)31827-5
[24] Chen, D.S. and Mellman, I. (2013) Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity, 39, 1-10.
https://doi.org/10.1016/j.immuni.2013.07.012
[25] Bao, Z., Hu, C., Zhang, Y., Yu, P., Wang, Y., Xu, Z., et al. (2024) Safety and Efficacy of a Programmed Cell Death 1 Inhibitor Combined with Oxaliplatin Plus S-1 in Patients with Borrmann Large Type III and IV Gastric Cancers. World Journal of Gastrointestinal Oncology, 16, 1281-1295.
https://doi.org/10.4251/wjgo.v16.i4.1281
[26] Yuan, S., Nie, R., Jin, Y., Liang, C., Li, Y., Jian, R., et al. (2024) Perioperative Toripalimab and Chemotherapy in Locally Advanced Gastric or Gastro-Esophageal Junction Cancer: A Randomized Phase 2 Trial. Nature Medicine, 30, 552-559.
https://doi.org/10.1038/s41591-023-02721-w
[27] Chang, C., Cai, Z., Cheng, K., Shen, C., Zhang, B., Chen, Z., et al. (2024) Efficacy and Safety of S-1 Plus Oxaliplatin Combined with Apatinib and Camrelizumab as Neoadjuvant Therapy for Patients with Locally Advanced Gastric or Gastroesophageal Junction Adenocarcinoma: A Protocol for a Single-Arm Phase II Trial. Updates in Surgery, 77, 165-174.
https://doi.org/10.1007/s13304-024-02052-6
[28] Wu, M., Huang, Q., Xie, Y., Wu, X., Ma, H., Zhang, Y., et al. (2022) Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade via Combination Therapy and PD-L1 Regulation. Journal of Hematology & Oncology, 15, Article No. 24.
https://doi.org/10.1186/s13045-022-01242-2
[29] Zhu, S., Zhang, T., Zheng, L., Liu, H., Song, W., Liu, D., et al. (2021) Combination Strategies to Maximize the Benefits of Cancer Immunotherapy. Journal of Hematology & Oncology, 14, Article No. 156.
https://doi.org/10.1186/s13045-021-01164-5
[30] Tang, Y., Dai, L., Wang, Z., Zhang, M., Xie, H., Yang, Y., et al. (2024) Short Term Efficacy and Safety of PD-1 Inhibitor and Apatinib Plus S-1 and Oxaliplatin as Neoadjuvant Chemotherapy for Patients with Locally Advanced Gastric Cancer. Medicine, 103, e40572.
https://doi.org/10.1097/md.0000000000040572
[31] Qiu, M., Oh, D., Kato, K., Arkenau, T., Tabernero, J., Correa, M.C., et al. (2024) Tislelizumab Plus Chemotherapy versus Placebo Plus Chemotherapy as First Line Treatment for Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma: RATIONALE-305 Randomised, Double Blind, Phase 3 Trial. BMJ, 385, e078876.
https://doi.org/10.1136/bmj-2023-078876
[32] Zhang, Z., Liu, X., Chen, D. and Yu, J. (2022) Radiotherapy Combined with Immunotherapy: The Dawn of Cancer Treatment. Signal Transduction and Targeted Therapy, 7, Article No. 258.
https://doi.org/10.1038/s41392-022-01102-y
[33] Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R., et al. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. Journal of Clinical Investigation, 124, 687-695.
https://doi.org/10.1172/jci67313
[34] Yang, W., Zhou, M., Li, G., Zhou, C., Wang, L., Xia, F., et al. (2024) Adjuvant Chemoradiotherapy Plus PD-1 Inhibitor for PN3 Gastric Cancer: A Randomized, Multicenter, Phase III Trial. Future Oncology, 20, 3389-3396.
https://doi.org/10.1080/14796694.2024.2421156
[35] Yi, M., Jiao, D., Qin, S., Chu, Q., Wu, K. and Li, A. (2019) Synergistic Effect of Immune Checkpoint Blockade and Anti-Angiogenesis in Cancer Treatment. Molecular Cancer, 18, Article No. 60.
https://doi.org/10.1186/s12943-019-0974-6
[36] Janjigian, Y.Y., Kawazoe, A., Bai, Y., Xu, J., Lonardi, S., Metges, J.P., et al. (2023) Pembrolizumab Plus Trastuzumab and Chemotherapy for Her2-Positive Gastric or Gastro-Oesophageal Junction Adenocarcinoma: Interim Analyses from the Phase 3 KEYNOTE-811 Randomised Placebo-Controlled Trial. The Lancet, 402, 2197-2208.
https://doi.org/10.1016/s0140-6736(23)02033-0
[37] Chaganty, B.K.R., Qiu, S., Gest, A., Lu, Y., Ivan, C., Calin, G.A., et al. (2018) Trastuzumab Upregulates PD-L1 as a Potential Mechanism of Trastuzumab Resistance through Engagement of Immune Effector Cells and Stimulation of IFNγ Secretion. Cancer Letters, 430, 47-56.
https://doi.org/10.1016/j.canlet.2018.05.009
[38] Lee, C., Rha, S.Y., Kim, H.S., Jung, M., Kang, B., Che, J., et al. (2022) A Single Arm Phase Ib/II Trial of First-Line Pembrolizumab, Trastuzumab and Chemotherapy for Advanced HER2-Positive Gastric Cancer. Nature Communications, 13, Article No. 6002.
https://doi.org/10.1038/s41467-022-33267-z
[39] Rowshanravan, B., Halliday, N. and Sansom, D.M. (2018) CTLA-4: A Moving Target in Immunotherapy. Blood, 131, 58-67.
https://doi.org/10.1182/blood-2017-06-741033
[40] Janjigian, Y.Y., Bendell, J., Calvo, E., Kim, J.W., Ascierto, P.A., Sharma, P., et al. (2018) Checkmate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients with Metastatic Esophagogastric Cancer. Journal of Clinical Oncology, 36, 2836-2844.
https://doi.org/10.1200/jco.2017.76.6212
[41] Shitara, K., Ajani, J.A., Moehler, M., Garrido, M., Gallardo, C., Shen, L., et al. (2022) Nivolumab Plus Chemotherapy or Ipilimumab in Gastro-Oesophageal Cancer. Nature, 603, 942-948.
https://doi.org/10.1038/s41586-022-04508-4
[42] Johnson, D.B., Manouchehri, A., Haugh, A.M., Quach, H.T., Balko, J.M., Lebrun-Vignes, B., et al. (2019) Neurologic Toxicity Associated with Immune Checkpoint Inhibitors: A Pharmacovigilance Study. Journal for ImmunoTherapy of Cancer, 7, Article No. 134.
https://doi.org/10.1186/s40425-019-0617-x
[43] Zhuo, N., Liu, C., Zhang, Q., Li, J., Zhang, X., Gong, J., et al. (2022) Characteristics and Prognosis of Acquired Resistance to Immune Checkpoint Inhibitors in Gastrointestinal Cancer. JAMA Network Open, 5, e224637.
https://doi.org/10.1001/jamanetworkopen.2022.4637
[44] Shin, D.S., Zaretsky, J.M., Escuin-Ordinas, H., Garcia-Diaz, A., Hu-Lieskovan, S., Kalbasi, A., et al. (2017) Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. Cancer Discovery, 7, 188-201.
https://doi.org/10.1158/2159-8290.cd-16-1223
[45] Gong, J., Wang, C., Lee, P.P., Chu, P. and Fakih, M. (2017) Response to PD-1 Blockade in Microsatellite Stable Metastatic Colorectal Cancer Harboring a Pole Mutation. Journal of the National Comprehensive Cancer Network, 15, 142-147.
https://doi.org/10.6004/jnccn.2017.0016
[46] Sharma, P., Hu-Lieskovan, S., Wargo, J.A. and Ribas, A. (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 168, 707-723.
https://doi.org/10.1016/j.cell.2017.01.017
[47] Coelho, M.A., de Carné Trécesson, S., Rana, S., Zecchin, D., Moore, C., Molina-Arcas, M., et al. (2017) Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 47, 1083-1099.e6.
https://doi.org/10.1016/j.immuni.2017.11.016
[48] Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R., et al. (2017) Impaired HLA Class I Antigen Processing and Presentation as a Mechanism of Acquired Resistance to Immune Checkpoint Inhibitors in Lung Cancer. Cancer Discovery, 7, 1420-1435.
https://doi.org/10.1158/2159-8290.cd-17-0593
[49] Koyama, S., Akbay, E.A., Li, Y.Y., et al. (2016) Adaptive Resistance to Therapeutic PD-1 Blockade Is Associated with Upregulation of Alternative Immune Checkpoints. Nature Communications, 7, Article No. 10501.
[50] Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., et al. (2007) Inhibitory Effect of Tumor Cell-Derived Lactic Acid on Human T Cells. Blood, 109, 3812-3819.
https://doi.org/10.1182/blood-2006-07-035972
[51] Chen, L., Diao, L., Yang, Y., Yi, X., Rodriguez, B.L., Li, Y., et al. (2018) CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade. Cancer Discovery, 8, 1156-1175.
https://doi.org/10.1158/2159-8290.cd-17-1033
[52] Kim, T.K., Herbst, R.S. and Chen, L. (2018) Defining and Understanding Adaptive Resistance in Cancer Immunotherapy. Trends in Immunology, 39, 624-631.
https://doi.org/10.1016/j.it.2018.05.001
[53] Bergholz, J.S., Wang, Q., Wang, Q., Ramseier, M., Prakadan, S., Wang, W., et al. (2023) PI3Kβ Controls Immune Evasion in PTEN-Deficient Breast Tumours. Nature, 617, 139-146.
https://doi.org/10.1038/s41586-023-05940-w
[54] Spranger, S., Bao, R. and Gajewski, T.F. (2015) Melanoma-Intrinsic β-Catenin Signalling Prevents Anti-Tumour Immunity. Nature, 523, 231-235.
https://doi.org/10.1038/nature14404
[55] Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[56] Sharma, P. and Allison, J.P. (2015) The Future of Immune Checkpoint Therapy. Science, 348, 56-61.
https://doi.org/10.1126/science.aaa8172
[57] Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K. and Anderson, A.C. (2010) Targeting Tim-3 and PD-1 Pathways to Reverse T Cell Exhaustion and Restore Anti-Tumor Immunity. Journal of Experimental Medicine, 207, 2187-2194.
https://doi.org/10.1084/jem.20100643
[58] Klapholz, M., Drage, M.G., Srivastava, A. and Anderson, A.C. (2022) Presence of Tim3+ and PD‐1+CD8+T Cells Identifies Microsatellite Stable Colorectal Carcinomas with Immune Exhaustion and Distinct Clinicopathological Features. The Journal of Pathology, 257, 186-197.
https://doi.org/10.1002/path.5877
[59] Andrews, L.P., Marciscano, A.E., Drake, C.G. and Vignali, D.A.A. (2017) LAG3 (CD223) as a Cancer Immunotherapy Target. Immunological Reviews, 276, 80-96.
https://doi.org/10.1111/imr.12519
[60] Tie, Y., Tang, F., Wei, Y. and Wei, X. (2022) Immunosuppressive Cells in Cancer: Mechanisms and Potential Therapeutic Targets. Journal of Hematology & Oncology, 15, Article No. 61.
https://doi.org/10.1186/s13045-022-01282-8
[61] Di Pilato, M., Kim, E.Y., Cadilha, B.L., Prüßmann, J.N., Nasrallah, M.N., Seruggia, D., et al. (2019) Targeting the CBM Complex Causes Treg Cells to Prime Tumours for Immune Checkpoint Therapy. Nature, 570, 112-116.
https://doi.org/10.1038/s41586-019-1215-2
[62] Zhang, A.Z., Yuan, X., Liang, W.H., Zhang, H.J., Li, Y., Xie, Y.F., et al. (2022) Immune Infiltration in Gastric Cancer Microenvironment and Its Clinical Significance. Frontiers in Cell and Developmental Biology, 9, Article 762029.
https://doi.org/10.3389/fcell.2021.762029
[63] Chakravarthy, A., Khan, L., Bensler, N.P., Bose, P. and De Carvalho, D.D. (2018) TGF-β-Associated Extracellular Matrix Genes Link Cancer-Associated Fibroblasts to Immune Evasion and Immunotherapy Failure. Nature Communications, 9, Article No. 4692.
https://doi.org/10.1038/s41467-018-06654-8
[64] Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu, X.S. and Ahringer, J. (2009) Differential Chromatin Marking of Introns and Expressed Exons by H3k36me3. Nature Genetics, 41, 376-381.
https://doi.org/10.1038/ng.322
[65] Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., et al. (2014) PD-L1 Is a Novel Direct Target of HIF-1α, and Its Blockade under Hypoxia Enhanced MDSC-Mediated T Cell Activation. Journal of Experimental Medicine, 211, 781-790.
https://doi.org/10.1084/jem.20131916
[66] Xia, L., Oyang, L., Lin, J., Tan, S., Han, Y., Wu, N., et al. (2021) The Cancer Metabolic Reprogramming and Immune Response. Molecular Cancer, 20, Article No. 28.
https://doi.org/10.1186/s12943-021-01316-8
[67] Chang, C., Qiu, J., O’Sullivan, D., Buck, M.D., Noguchi, T., Curtis, J.D., et al. (2015) Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 162, 1229-1241.
https://doi.org/10.1016/j.cell.2015.08.016
[68] Guo, D., Tong, Y., Jiang, X., Meng, Y., Jiang, H., Du, L., et al. (2022) Aerobic Glycolysis Promotes Tumor Immune Evasion by Hexokinase2-Mediated Phosphorylation of IκBα. Cell Metabolism, 34, 1312-1324.e6.
https://doi.org/10.1016/j.cmet.2022.08.002
[69] Wu, W., Shi, X. and Xu, C. (2018) Erratum: Regulation of T Cell Signalling by Membrane Lipids. Nature Reviews Immunology, 18, Article No. 219.
https://doi.org/10.1038/nri.2018.9
[70] Byun, J., Park, M., Lee, S., Yun, J.W., Lee, J., Kim, J.S., et al. (2020) Inhibition of Glutamine Utilization Synergizes with Immune Checkpoint Inhibitor to Promote Antitumor Immunity. Molecular Cell, 80, 592-606.e8.
https://doi.org/10.1016/j.molcel.2020.10.015
[71] Han, Y., Zhang, Y., Pan, Y., Zheng, X., Liao, K., Mo, H., et al. (2023) Il-1β-Associated NNT Acetylation Orchestrates Iron-Sulfur Cluster Maintenance and Cancer Immunotherapy Resistance. Molecular Cell, 83, 1887-1902.e8.
https://doi.org/10.1016/j.molcel.2023.05.011
[72] Yang, W., Feng, Y., Zhou, J., Cheung, O.K., Cao, J., Wang, J., et al. (2021) A Selective HDAC8 Inhibitor Potentiates Antitumor Immunity and Efficacy of Immune Checkpoint Blockade in Hepatocellular Carcinoma. Science Translational Medicine, 13, eaaz6804.
https://doi.org/10.1126/scitranslmed.aaz6804
[73] Kulis, M. and Esteller, M. (2010) DNA Methylation and Cancer. Advances in Genetics, 70, 27-56.
https://doi.org/10.1016/b978-0-12-380866-0.60002-2
[74] Hong, Y.K., Li, Y., Pandit, H., Li, S., Pulliam, Z., Zheng, Q., et al. (2019) Epigenetic Modulation Enhances Immunotherapy for Hepatocellular Carcinoma. Cellular Immunology, 336, 66-74.
https://doi.org/10.1016/j.cellimm.2018.12.010
[75] Yeong, J., Lum, H.Y.J., Teo, C.B., Tan, B.K.J., Chan, Y.H., Tay, R.Y.K., et al. (2022) Choice of PD-L1 Immunohistochemistry Assay Influences Clinical Eligibility for Gastric Cancer Immunotherapy. Gastric Cancer, 25, 741-750.
https://doi.org/10.1007/s10120-022-01301-0
[76] Shitara, K., Van Cutsem, E., Bang, Y., Fuchs, C., Wyrwicz, L., Lee, K., et al. (2020) Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients with First-Line, Advanced Gastric Cancer. JAMA Oncology, 6, 1571-1580.
https://doi.org/10.1001/jamaoncol.2020.3370
[77] Schoemig-Markiefka, B., Eschbach, J., Scheel, A.H., Pamuk, A., Rueschoff, J., Zander, T., et al. (2021) Optimized PD-L1 Scoring of Gastric Cancer. Gastric Cancer, 24, 1115-1122.
https://doi.org/10.1007/s10120-021-01195-4
[78] Chao, J., Fuchs, C.S., Shitara, K., Tabernero, J., Muro, K., Van Cutsem, E., et al. (2021) Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncology, 7, 895-902.
https://doi.org/10.1001/jamaoncol.2021.0275
[79] Marabelle, A., Le, D.T., Ascierto, P.A., et al. (2020) Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 38, 1-10.
[80] Samstein, R.M., Lee, C., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., et al. (2019) Tumor Mutational Load Predicts Survival after Immunotherapy across Multiple Cancer Types. Nature Genetics, 51, 202-206.
https://doi.org/10.1038/s41588-018-0312-8
[81] Kim, K., Yang, H.K., Kim, W.H. and Kang, G.H. (2017) Combined Prognostic Effect of PD-L1 Expression and Immunoscore in Microsatellite-Unstable Advanced Gastric Cancers. Oncotarget, 8, 58887-58902.
https://doi.org/10.18632/oncotarget.19439
[82] Peng, Z., Cheng, S., Kou, Y., Wang, Z., Jin, R., Hu, H., et al. (2020) The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer. Cancer Immunology Research, 8, 1251-1261.
https://doi.org/10.1158/2326-6066.cir-19-1014
[83] Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458.
https://doi.org/10.1038/s41591-018-0101-z
[84] Sun, Y.T., Guan, W.L., Zhao, Q., et al. (2021) PD-1 Antibody Camrelizumab for Epstein-Barr Virus-Positive Metastatic Gastric Cancer: A Single-Arm, Open-Label, Phase 2 Trial. American Journal of Cancer Research, 11, 5006-5015.
[85] Jin, Y., Chen, D., Wang, F., Yang, C., Chen, X., You, J., et al. (2020) The Predicting Role of Circulating Tumor DNA Landscape in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors. Molecular Cancer, 19, Article No. 154.
https://doi.org/10.1186/s12943-020-01274-7
[86] Yue, C., Jiang, Y., Li, P., Wang, Y., Xue, J., Li, N., et al. (2018) Dynamic Change of PD-L1 Expression on Circulating Tumor Cells in Advanced Solid Tumor Patients Undergoing PD-1 Blockade Therapy. OncoImmunology, 7, e1438111.
https://doi.org/10.1080/2162402x.2018.1438111
[87] Chong, X., Li, Y., Lu, J., Feng, X., Li, Y. and Zhang, X. (2023) Tracking Circulating Pd-L1-Positive Cells to Monitor the Outcome of Patients with Gastric Cancer Receiving Anti-HER2 Plus Anti-PD-1 Therapy. Human Cell, 37, 258-270.
https://doi.org/10.1007/s13577-023-00990-8