[1]
|
Wang, L., Wang, F. and Gershwin, M.E. (2015) Human Autoimmune Diseases: A Comprehensive Update. Journal of Internal Medicine, 278, 369-395. https://doi.org/10.1111/joim.12395
|
[2]
|
Miller, F.W. (2023) The Increasing Prevalence of Autoimmunity and Autoimmune Diseases: An Urgent Call to Action for Improved Understanding, Diagnosis, Treatment, and Prevention. Current Opinion in Immunology, 80, Article ID: 102266. https://doi.org/10.1016/j.coi.2022.102266
|
[3]
|
Chopra, P., Chhillar, H., Kim, Y., Jo, I.H., Kim, S.T. and Gupta, R. (2021) Phytochemistry of Ginsenosides: Recent Advancements and Emerging Roles. Critical Reviews in Food Science and Nutrition, 63, 613-640. https://doi.org/10.1080/10408398.2021.1952159
|
[4]
|
Zheng, M., Xu, F., Li, Y., Xi, X., Cui, X., Han, C., et al. (2017) Study on Transformation of Ginsenosides in Different Methods. BioMed Research International, 2017, Article ID: 8601027. https://doi.org/10.1155/2017/8601027
|
[5]
|
Li, J., Li, F. and Jin, D. (2023) Ginsenosides Are Promising Medicine for Tumor and Inflammation: A Review. The American Journal of Chinese Medicine, 51, 883-908. https://doi.org/10.1142/s0192415x23500416
|
[6]
|
Li, J., Zhao, J., Wang, X., Lin, Z., Lin, H. and Lin, Z. (2024) Ginsenoside—A Promising Natural Active Ingredient with Steroidal Hormone Activity. Food & Function, 15, 1825-1839. https://doi.org/10.1039/d3fo05484e
|
[7]
|
Chen, J. (2020) Advances in Ginsenosides. Biomolecules, 10, Article 681. https://doi.org/10.3390/biom10050681
|
[8]
|
Quinn, M.J. (2009) Organ-Specific “Autoimmune” Disease. Journal of Clinical Gastroenterology, 43, 386-387. https://doi.org/10.1097/mcg.0b013e318173e10e
|
[9]
|
Lesage, S. and Goodnow, C.C. (2001) Organ-Specific Autoimmune Disease: A Deficiency of Tolerogenic Stimulation. The Journal of Experimental Medicine, 194, F31-F36. https://doi.org/10.1084/jem.194.5.f31
|
[10]
|
Höftberger, R. and Lassmann, H. (2018) Immune-Mediated Disorders. Handbook of Clinical Neurology, 145, 285-299. https://doi.org/10.1016/b978-0-12-802395-2.00020-1
|
[11]
|
Ralli, M., Angeletti, D., Fiore, M., D’Aguanno, V., Lambiase, A., Artico, M., et al. (2020) Hashimoto’s Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation. Autoimmunity Reviews, 19, Article ID: 102649. https://doi.org/10.1016/j.autrev.2020.102649
|
[12]
|
冯晓红, 黄琦, 张寅晓, 陈颉, 王东, 袁晓. 人参皂苷对实验性自身免疫性甲状腺炎大鼠TNF-α及IL-6影响的研究[J]. 新中医, 2015, 47(1): 217-219.
|
[13]
|
马成军, 陈明, 张穹, 张金风. 人参皂苷RG3对自身免疫性甲状腺炎小鼠甲状腺功能和辅助型T细胞亚群的影响及相关机制[J]. 临床和实验医学杂志, 2021, 20(14): 1464-1467.
|
[14]
|
黄琦, 冯晓红, 张寅晓, 赵闫丽, 苗青, 林筱洁. 人参皂苷对实验性自身免疫性甲状腺炎大鼠Th1/Th2相关细胞因子的影响[J]. 中医杂志, 2013, 54(24): 2132-2134.
|
[15]
|
Chen, J., Feng, X. and Huang, Q. (2015) Modulation of T-Bet and GATA-3 Expression in Experimental Autoimmune Thyroiditis Rats through Ginsenoside Treatment. Endocrine Research, 41, 28-33. https://doi.org/10.3109/07435800.2015.1066800
|
[16]
|
Yuan, L., Li, W., Hu, S., Wang, Y., Wang, S., Tian, H., et al. (2024) Protective Effects of Ginsenosides on Ulcerative Colitis: A Meta-Analysis and Systematic Review to Reveal the Mechanisms of Action. Inflammopharmacology, 32, 3079-3098. https://doi.org/10.1007/s10787-024-01516-w
|
[17]
|
Qu, B., Cao, T., Wang, M., Wang, S., Li, W. and Li, H. (2021) Ginsenosides RD Monomer Inhibits Proinflammatory Cytokines Production and Alleviates DSS-Colitis by NF-κB and P38MAPK Pathways in Mice. Immunopharmacology and Immunotoxicology, 44, 110-118. https://doi.org/10.1080/08923973.2021.2012482
|
[18]
|
Zhao, X., Yuan, W., Yang, L., Yan, F. and Cui, D. (2024) Ginsenoside Rh2 Suppresses Ferroptosis in Ulcerative Colitis by Targeting Specific Protein 1 by Upregulating MicroRNA-125a-5p. European Journal of Medical Research, 29, Article No. 450. https://doi.org/10.1186/s40001-024-02025-w
|
[19]
|
Zhong, Y., Xiao, Q., Huang, J., Yu, S., Chen, L., Wan, Q., et al. (2023) Ginsenoside Rg1 Alleviates Ulcerative Colitis in Obese Mice by Regulating the Gut Microbiota-Lipid Metabolism-Th1/Th2/Th17 Cells Axis. Journal of Agricultural and Food Chemistry, 71, 20073-20091. https://doi.org/10.1021/acs.jafc.3c04811
|
[20]
|
Chen, Y., Zhang, Q., Sun, L., Liu, H., Feng, J., Li, J., et al. (2023) Ginsenoside Rg1 Attenuates Dextran Sodium Sulfate-induced Ulcerative Colitis in Mice. Physiological Research, 72, 783-792. https://doi.org/10.33549/physiolres.935182
|
[21]
|
Cheng, H., Liu, J., Zhang, D., Wang, J., Tan, Y., Feng, W., et al. (2022) Ginsenoside Rg1 Alleviates Acute Ulcerative Colitis by Modulating Gut Microbiota and Microbial Tryptophan Metabolism. Frontiers in Immunology, 13, Article 817600. https://doi.org/10.3389/fimmu.2022.817600
|
[22]
|
He, X., Gao, Z., Liang, W. and Sun, Y. (2022) Ameliorative Effect of Ginsenoside Rg1 on Dextran Sulfate Sodium-Induced Colitis: Involvement of Intestinal Barrier Remodeling in Mice. Annals of Translational Medicine, 10, Article 1328. https://doi.org/10.21037/atm-22-5467
|
[23]
|
Long, J., Liu, X., Kang, Z., Wang, M., Zhao, H., Huang, J., et al. (2022) Ginsenoside Rg1 Ameliorated Experimental Colitis by Regulating the Balance of M1/M2 Macrophage Polarization and the Homeostasis of Intestinal Flora. European Journal of Pharmacology, 917, Article ID: 174742. https://doi.org/10.1016/j.ejphar.2022.174742
|
[24]
|
Shen, Y., Cui, X., Jiang, S., Qian, D. and Duan, J. (2019) Comparative Pharmacokinetics of Nine Major Bioactive Components in Normal and Ulcerative Colitis Rats after Oral Administration of Lizhong Decoction Extracts by UPLC-TQ-MS/MS. Biomedical Chromatography, 33, e4521. https://doi.org/10.1002/bmc.4521
|
[25]
|
Wan, Y., Dong, Z., Li, H., Yang, L., Li, W., Zhu, K., et al. (2022) Comparative Pharmacokinetics of the Main Active Components in Normal and Ulcerative Colitis Rats after Oral Administration of Zingiberis Rhizoma-Ginseng Radix Et Rhizoma Herb Pair and Its Single Herb Extracts by LC-MS/MS. Journal of Separation Science, 45, 2228-2238. https://doi.org/10.1002/jssc.202101019
|
[26]
|
Xu, X., Wang, W., Chen, Y., Zhang, Q., Li, B., Zhong, Y., et al. (2021) Simultaneous Determination of Ten Bioactive Components from Shenling Baizhu San in Rat Plasma by UHPLC-MS/MS: Application to a Comparative Pharmacokinetic Study in Normal and Two Models of Ulcerative Colitis Rats. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 3518241. https://doi.org/10.1155/2021/3518241
|
[27]
|
Zhang, R., Zhang, Q., Chen, Y., Zhao, Q., Zhang, B., Wang, L., et al. (2022) Combined Treatment with Rg1 and Adipose-Derived Stem Cells Alleviates DSS-Induced Colitis in a Mouse Model. Stem Cell Research & Therapy, 13, Article No. 272. https://doi.org/10.1186/s13287-022-02940-x
|
[28]
|
Zhang, Y., Li, W., Wang, Y., Fan, Y., Wang, Q., Liu, C., et al. (2024) Investigation of the Material Basis and Mechanism of Lizhong Decoction in Ameliorating Ulcerative Colitis Based on Spectrum-Effect Relationship and Network Pharmacology. Journal of Ethnopharmacology, 323, Article ID: 117666. https://doi.org/10.1016/j.jep.2023.117666
|
[29]
|
Chen, J., Lu, P., Liu, J., Yang, L., Li, Y., Chen, Y., et al. (2023) 20(S)‐ Protopanaxadiol Saponins Isolated from Panax notoginseng Target the Binding of HMGB1 to TLR4 against Inflammation in Experimental Ulcerative Colitis. Phytotherapy Research, 37, 4690-4705. https://doi.org/10.1002/ptr.7938
|
[30]
|
Ullah, H.M.A., Saba, E., Lee, Y.Y., Hong, S., Hyun, S., Kwak, Y., et al. (2022) Restorative Effects of Rg3-Enriched Korean Red Ginseng and Persicaria tinctoria Extract on Oxazolone-Induced Ulcerative Colitis in Mice. Journal of Ginseng Research, 46, 628-635. https://doi.org/10.1016/j.jgr.2021.07.001
|
[31]
|
Tian, M., Ma, P., Zhang, Y., Mi, Y. and Fan, D. (2020) Ginsenoside RK3 Alleviated DSS-Induced Ulcerative Colitis by Protecting Colon Barrier and Inhibiting NLRP3 Inflammasome Pathway. International Immunopharmacology, 85, Article ID: 106645. https://doi.org/10.1016/j.intimp.2020.106645
|
[32]
|
Huang, X., Xiao, J., Wen, M. and Liang, J. (2022) Ginsenoside Rk2 Protects against Ulcerative Colitis via Inactivating ERK/MEK Pathway by Sirt1. Journal of Environmental Pathology, Toxicology and Oncology, 41, 89-98. https://doi.org/10.1615/jenvironpatholtoxicoloncol.2021039648
|
[33]
|
Goel, A. and Kwo, P. (2024) Treatment of Autoimmune Hepatitis. Clinics in Liver Disease, 28, 51-61. https://doi.org/10.1016/j.cld.2023.07.001
|
[34]
|
Liu, X., Mi, X., Wang, Z., Zhang, M., Hou, J., Jiang, S., et al. (2020) Ginsenoside Rg3 Promotes Regression from Hepatic Fibrosis through Reducing Inflammation-Mediated Autophagy Signaling Pathway. Cell Death & Disease, 11, Article No. 454. https://doi.org/10.1038/s41419-020-2597-7
|
[35]
|
Zhou, Y., Hou, J., Liu, W., Ren, S., Wang, Y., Zhang, R., et al. (2018) 20(r)-Ginsenoside Rg3, a Rare Saponin from Red Ginseng, Ameliorates Acetaminophen-Induced Hepatotoxicity by Suppressing PI3K/AKT Pathway-Mediated Inflammation and Apoptosis. International Immunopharmacology, 59, 21-30. https://doi.org/10.1016/j.intimp.2018.03.030
|
[36]
|
Zhou, H., Liu, Y., Su, Y., Ji, P., Kong, L., Sun, R., et al. (2024) Ginsenoside Rg1 Attenuates Lipopolysaccharide-Induced Chronic Liver Damage by Activating NRF2 Signaling and Inhibiting Inflammasomes in Hepatic Cells. Journal of Ethnopharmacology, 324, Article ID: 117794. https://doi.org/10.1016/j.jep.2024.117794
|
[37]
|
Jin, B., Zhang, C., Geng, Y. and Liu, M. (2020) Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and TREG/Th17 Cell Balance. Mediators of Inflammation, 2020, Article ID: 8827527. https://doi.org/10.1155/2020/8827527
|
[38]
|
Zhu, D., Liu, M., Yang, Y., Ma, L., Jiang, Y., Zhou, L., et al. (2014) Ginsenoside Rd Ameliorates Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Journal of Neuroscience Research, 92, 1217-1226. https://doi.org/10.1002/jnr.23397
|
[39]
|
Lee, M.J., Jang, M., Choi, J., Chang, B.S., Kim, D.Y., Kim, S., et al. (2015) Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells. Molecular Neurobiology, 53, 1977-2002. https://doi.org/10.1007/s12035-015-9131-4
|
[40]
|
Oh, J., Kwon, T.W., Choi, J.H., Kim, Y., Moon, S., Nah, S., et al. (2024) Ginsenoside-Re Inhibits Experimental Autoimmune Encephalomyelitis as a Mouse Model of Multiple Sclerosis by Downregulating TLR4/MyD88/NF-κB Signaling Pathways. Phytomedicine, 122, Article ID: 155065. https://doi.org/10.1016/j.phymed.2023.155065
|
[41]
|
Lee, M.J., Choi, J.H., Oh, J., Lee, Y.H., In, J., Chang, B., et al. (2021) Rg3-Enriched Korean Red Ginseng Extract Inhibits Blood-Brain Barrier Disruption in an Animal Model of Multiple Sclerosis by Modulating Expression of NADPH Oxidase 2 and 4. Journal of Ginseng Research, 45, 433-441. https://doi.org/10.1016/j.jgr.2020.09.001
|
[42]
|
Wahren-Herlenius, M. and Dörner, T. (2013) Immunopathogenic Mechanisms of Systemic Autoimmune Disease. The Lancet, 382, 819-831. https://doi.org/10.1016/s0140-6736(13)60954-x
|
[43]
|
Yi, Y. (2019) Ameliorative Effects of Ginseng and Ginsenosides on Rheumatic Diseases. Journal of Ginseng Research, 43, 335-341. https://doi.org/10.1016/j.jgr.2018.04.004
|
[44]
|
Li, Z., Gan, H., Ji, K., Yang, M., Pan, T., Meng, X., et al. (2024) Protopanaxadiol Improves Lupus Nephritis by Regulating the PTX3/MAPK/ERK1/2 Pathway. Journal of Natural Medicines, 78, 474-487. https://doi.org/10.1007/s11418-023-01777-9
|
[45]
|
赵伟刚. 人参皂苷(GS)联合泼尼松治疗系统性红斑狼疮随机平行对照研究[J]. 实用中医内科杂志, 2013, 27(2S): 93-95.
|
[46]
|
尤艳利, 封颖璐, 蔡青, 管剑龙, 张兰玲, 徐美娟, 徐霞, 凌昌全. 人参皂苷联合强的松治疗系统性红斑狼疮的前瞻性随机双盲对照试验[J]. 中西医结合学报, 2010, 8(8): 762-766.
|
[47]
|
杨帆, 沈俊逸, 蔡辉. 人参皂苷Rb1对系统性红斑狼疮患者外周血T淋巴细胞体外活化的影响[J]. 实用药物与临床, 2021, 24(5): 418-422.
|
[48]
|
Liu, X., Wang, Z., Qian, H., Tao, W., Zhang, Y., Hu, C., et al. (2022) Natural Medicines of Targeted Rheumatoid Arthritis and Its Action Mechanism. Frontiers in Immunology, 13, Article 945129. https://doi.org/10.3389/fimmu.2022.945129
|
[49]
|
Chen, J., Wu, H., Wang, Q., Chang, Y., Liu, K., Song, S., et al. (2014) Ginsenoside Metabolite Compound K Alleviates Adjuvant-Induced Arthritis by Suppressing T Cell Activation. Inflammation, 37, 1608-1615. https://doi.org/10.1007/s10753-014-9887-0
|
[50]
|
Choi, S. and Kim, T. (2023) Compound K—An Immunomodulator of Macrophages in Inflammation. Life Sciences, 323, Article ID: 121700. https://doi.org/10.1016/j.lfs.2023.121700
|
[51]
|
Choi, Y.S., Kang, E.H., Lee, E.Y., Gong, H.S., Kang, H.S., Shin, K., et al. (2013) Joint-Protective Effects of Compound K, a Major Ginsenoside Metabolite, in Rheumatoid Arthritis: In Vitro Evidence. Rheumatology International, 33, 1981-1990. https://doi.org/10.1007/s00296-013-2664-9
|
[52]
|
Li, Z., Han, S., Cui, G., Xue, B., Li, J., Man, Y., et al. (2023) Oral Liposomes Encapsulating Ginsenoside Compound K for Rheumatoid Arthritis Therapy. International Journal of Pharmaceutics, 643, 123247. https://doi.org/10.1016/j.ijpharm.2023.123247
|
[53]
|
Li, Z., Li, Y., Liu, C., Gu, Y. and Han, G. (2024) Research Progress of the Mechanisms and Applications of Ginsenosides in Promoting Bone Formation. Phytomedicine, 129, Article ID: 155604. https://doi.org/10.1016/j.phymed.2024.155604
|
[54]
|
Tang, M., Xie, X., Yang, Y. and Li, F. (2021) Ginsenoside Compound K-A Potential Drug for Rheumatoid Arthritis. Pharmacological Research, 166, Article ID: 105498. https://doi.org/10.1016/j.phrs.2021.105498
|
[55]
|
Wang, Y., Bao, X., Xian, H., Wei, F., Song, Y., Zhao, S., et al. (2023) Glucocorticoid Receptors Involved in Ginsenoside Compound K Ameliorate Adjuvant Arthritis by Inhibiting the Glycolysis of Fibroblast-Like Synoviocytes via the NF-κB/HIF-1α Pathway. Pharmaceutical Biology, 61, 1162-1174. https://doi.org/10.1080/13880209.2023.2241512
|
[56]
|
Yang, M., Mao, L., Yang, X., Xu, X., Tang, C., Wei, W., et al. (2023) Ginsenoside Compound K Exerts Anti-Inflammatory Effects through Transcriptional Activation and Transcriptional Inhibition of Glucocorticoid Receptor in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. International Immunopharmacology, 125, Article ID: 111080. https://doi.org/10.1016/j.intimp.2023.111080
|
[57]
|
Zhang, M., Ren, H., Li, K., Xie, S., Zhang, R., Zhang, L., et al. (2021) Therapeutic Effect of Various Ginsenosides on Rheumatoid Arthritis. BMC Complementary Medicine and Therapies, 21, Article No. 149. https://doi.org/10.1186/s12906-021-03302-5
|
[58]
|
Zhang, L., Zhu, M., Li, M., Du, Y., Duan, S., Huang, Y., et al. (2017) Ginsenoside Rg1 Attenuates Adjuvant-Induced Arthritis in Rats via Modulation of PPAR-γ/NF-κB Signal Pathway. Oncotarget, 8, 55384-55393. https://doi.org/10.18632/oncotarget.19526
|
[59]
|
Zhang, Y., Wang, S., Song, S., Yang, X. and Jin, G. (2020) Ginsenoside Rg3 Alleviates Complete Freund’s Adjuvant-Induced Rheumatoid Arthritis in Mice by Regulating CD4+CD25+Foxp3+Treg Cells. Journal of Agricultural and Food Chemistry, 68, 4893-4902. https://doi.org/10.1021/acs.jafc.0c01473
|
[60]
|
Chen, W., Meng, Q., Sui, J., Wang, Y., Li, X., Liu, S., et al. (2016) Ginsenoside Rb1: The New Treatment Measure of Myasthenia Gravis. International Immunopharmacology, 41, 136-143. https://doi.org/10.1016/j.intimp.2016.08.028
|
[61]
|
Zong, Y., Yu, W., Hong, H., Zhu, Z., Xiao, W., Wang, K., et al. (2023) Ginsenoside Rg1 Improves Inflammation and Autophagy of the Pancreas and Spleen in Streptozotocin-Induced Type 1 Diabetic Mice. International Journal of Endocrinology, 2023, Article ID: 3595992. https://doi.org/10.1155/2023/3595992
|
[62]
|
Kim, H.Y. and Kim, K. (2007) Protective Effect of Ginseng on Cytokine-Induced Apoptosis in Pancreatic β-Cells. Journal of Agricultural and Food Chemistry, 55, 2816-2823. https://doi.org/10.1021/jf062577r
|
[63]
|
Gao, Y., Li, J., Chu, S., Zhang, Z., Chen, N., Li, L., et al. (2020) Ginsenoside Rg1 Protects Mice against Streptozotocin-Induced Type 1 Diabetic by Modulating the NLRP3 and Keap1/Nrf2/Ho-1 Pathways. European Journal of Pharmacology, 866, Article ID: 172801. https://doi.org/10.1016/j.ejphar.2019.172801
|
[64]
|
Ren, K., Li, S., Ding, J., Zhao, S., Liang, S., Cao, X., et al. (2021) Ginsenoside Rd Attenuates Mouse Experimental Autoimmune Neuritis by Modulating Monocyte Subsets Conversion. Biomedicine & Pharmacotherapy, 138, Article ID: 111489. https://doi.org/10.1016/j.biopha.2021.111489
|