极早产儿先天性肾上腺皮质增生症21-羟化酶缺乏症1例并文献复习
One Case of Congenital Adrenal Hyperplasia 21-Hydroxylase Deficiency in Very Premature Infants and Literature Review
摘要: 目的:报道1例胎龄28周 + 3天起病、CYP21A2基因变异导致的经典型先天性肾上腺皮质增生症。探讨该病的早期诊断及经验分享。方法:回顾青岛大学附属医院新生儿科收治的胎龄28周 + 3天极早产儿先天性肾上腺皮质增生症21-羟化酶缺乏症1例,并复习相关文献。结果:患儿系胎龄28周 + 3天出生的极早产儿,以全身皮肤色深、外阴肥大、色素沉着为主要临床表现,合并严重低钠血症和高钾血症,足跟血筛查17-羟孕酮244 nmol/L,外送激素示17-羟孕酮29.63 ng/ml,21-脱氧皮质醇17661.1 pg/mL。予氢化可的松、9-α氟氢可的松及口服氯化钠等治疗,好转出院。患儿高通量全外显子组基因检测显示CYP21A2基因突变,家系验证变异分别来自患儿父母。结论:不同于足月新生儿,早产儿因其特殊性,利用17-羟孕酮对21-羟化酶缺乏症进行早期诊断有一定难度,容易漏诊或误诊,21-脱氧皮质醇可能是比17-羟孕酮更特异的21-羟化酶缺乏症标志物。
Abstract: Objective: To report a case of classical congenital adrenal hyperplasia caused by CYP21A2 gene mutation at 28 weeks + 3 days of gestational age. To explore the early diagnosis and experience sharing of the disease. Methods: A case of congenital adrenal hyperplasia 21-hydroxylase deficiency in very premature infants with gestational age of 28 weeks + 3 days admitted to the Department of Neonatology, Affiliated Hospital of Qingdao University was reviewed and related literatures were reviewed. Results: The patient was a very premature infant born at 28 weeks + 3 days of gestational age. The main clinical manifestations were deep skin color, vulval hypertrophy and pigmentation. Severe hyponatremia and hyperkalemia were combined. Heel blood screening showed 244 nmol/L of 17-hydroxyprogesterone, 29.63 ng/ml of 17-hydroxyprogesterone and 17661.1 pg/mL of 21-deoxycorticosteroid. The patient was treated with hydrocortisone, 9-α fludrocortisone and oral sodium chloride, and was discharged after improvement. High-throughput whole exome gene detection showed CYP21A2 gene mutation in the child, and the family verification variation was from the parents of the child. Conclusion: Different from full-term neonates, it is difficult to use 17-hydroxyprogesterone for early diagnosis of 21-hydroxylase deficiency in premature infants due to its particularity, which is easy to be missed or misdiagnosed. 21-deoxycorticosteroid may be a more specific marker of 21-hydroxylase deficiency than 17-hydroxyprogesterone.
文章引用:邵涵, 李向红, 马丽丽. 极早产儿先天性肾上腺皮质增生症21-羟化酶缺乏症1例并文献复习[J]. 临床医学进展, 2025, 15(7): 663-668. https://doi.org/10.12677/acm.2025.1572037

1. 引言

先天性肾上腺皮质增生症是一组常染色体隐性遗传疾病,这其中超过95%的先天性肾上腺增生病例是由于21-羟化酶缺乏所致,其特点是编码该酶的CYP21A2基因突变致使皮质醇和醛固酮生成受损以及雄激素过多,最后导致肾上腺皮质代偿性增生[1]。21-羟化酶缺乏症(21-hydroxylasedeficiency, 21-OHD)存在肾上腺失盐危象的致命风险,并导致患儿生长发育紊乱以及长远并发症。如今,经典型21-OHD已经成为染色体46,XX新生儿外生殖器畸形和儿童期原发性肾上腺皮质功能不全的最常见原因[2]。本文通过介绍1例极早产儿先天性肾上腺皮质增生症21-羟化酶缺乏症,并结合文献复习,探讨先天性肾上腺皮质增生症的早期诊断、治疗及预后,尤其是早产儿,以便加深临床医师对该病的认识,从而提高其早期识别及诊治能力。

2. 临床资料

患儿,女,13分钟,因“母孕28周 + 1天早产,生后气促,面色紫绀13分钟”入院。患儿系1胎,第1产,因孕母“早产临产、孕28周 + 1天”。在我院顺产出生,出生体重1.35 kg。患儿出生后反应欠佳,哭声低弱,面色发绀,心率89次/分,呻吟吐沫,予以清理呼吸道、正压通气后,心率升至110次/分,Apgar评分1分钟7分(呼吸,心率,皮肤颜色各减1分),5分钟10分,10分钟10分。无宫内窘迫,无胎膜早破,羊水颜色清,脐带正常,胎盘正常。后经由T组合按压正压通气由产科转入。其母孕期定期产检,无明显异常;产前半小时应用地塞米松5 mg × 1次。其父母非近亲结婚,否认遗、残、畸、疾病家族史。

入院查体:反应欠佳,早产儿外貌,哭声低弱,面容无特殊,有呻吟,有吐沫。呼吸稍促,三凹征阳性,双肺呼吸音清,未闻及干湿啰音。心音有力,律齐,各瓣膜听诊区未闻及杂音。腹软,肠鸣音未闻及。女性外阴,阴蒂肥厚,大阴唇不能覆盖小阴唇。四肢肌张力低,原始反射不能引出。生后25日龄出现顽固高血钾、低血钠,血钾为5.40 mmol/L (参考范围为3.5~4.5 mmol/L),血钠103.00 mmol/L (参考范围为135~145 mmol/L),予高张钠补液支持治疗后复查血钠106.60 mmol/L、血钾6.08 mmol/L,立即完善足跟血筛查提示17-羟孕酮(17-hydroxyprogesterone; 17-OHP) 244 nmol/L,外送激素20项检测示11-脱氧皮质醇9798.2 pg/mL (升高),21-脱氧皮质醇(21-deoxycortisol, 21-DF) 1766.1 pg/mL (升高),可的松85.4 ng/mL (升高),硫酸脱氢表雄酮5038.6 ng/mL (升高),褪黑素0.7 pg/mL (下降),盐皮质激素、雌激素、孕激素尚在正常范围内,泌尿系统超声示双肾积水,考虑先天性肾上腺皮质增生症(Congenital adrenal hyperplasia, CAH),失盐型可能性大,予口服氢化可的松8~12 mg/(m2∙d) (0.5 mg × 3次/天),9-α氟氢可的松(0.05 mg × 2次/天),代替盐皮质激素治疗,每天补充1 g氯化钠(随奶服用),住院48 d好转出院。

患儿及其父母外周血高通量全外显子测序结果:患儿第6号染色体编码21-羟化酶的CYP21A2基因chr6:32005393-32007707和chr6:32007203存在复合变异,分别为移码变异exon1-6杂合缺失突变和错义突变c.518T > A (exon4, NM_000500.9),导致氨基酸改变p.Ile173Asn。经Sanger测序验证,患儿母亲为exon1-6杂合缺失携带者,父亲为c.518T > A杂合变异携带者,以上变异均在文献数据库中报告为致病性变异,其中,Clin Var数据库对错义突变c.518T > A的致病性分析为Pathogenic, Classic congenital adrenal hyperplasia due to 21-hydroxylase。本例患儿致病基因变异分别来自于父母,为复合杂合突变,其父母均为单杂合变异且无症状,符合常染色体隐性遗传规律,见表1

Table 1. Congenital adrenocortical hyperplasia gene detection report

1. 先天性肾上腺皮质增生症基因检测报告

基因

染色体位置

转录本外显子

核苷酸氨基酸

纯合/

杂合

正常人 频率

预测

ACMG致病性分析(分值)

疾病/表型 (遗传方式)

变异 来源

CYP21A2

chr6:32005393- 32007707

exonl-6

del

het

0.0104

-

Pathogenic

21-羟化酶缺乏性先天性肾上腺皮质增生症(AR)

母亲

CYP21A2

chr6:32007203

NM_000500.9; exon4

c.518T > A (p.Ile173Asn)

hemi

0.0013432

LD

Pathogenic

21-羟化酶缺乏性先天性肾上腺皮质增生症(AR)

父亲

注:预测:蛋白功能预测软件REVEL;D:有害;LD:可能有害;U:不确定;LB:可能良性;B:良性。splice AI:T:影响剪接;F:不影响剪接。-:未知;分值:贝叶斯框架Uncertain位点分值及对应的致病性概率:<0 (0.1%);0 (10%);1 (18.8%);2 (32.5%);3 (50%);4 (67.5%);5 (81.2%);≥6 (≥90%);CYP21A2基因有一个高度同源的假基因CYP21A1P,本次检测采用long PCR扩增去除假基因后高通量测序检测变异。

3. 讨论

CAH是最常见的常染色体隐性遗传疾病之一,而临床上最常见的CAH类型是21-羟化酶(一种细胞色素P-450酶)缺乏症,约占本病90%~99% [3] [4],国内外报道发病率为1:14,000~1:18,000 [5]。其发病机理是CYP21A2基因突变导致21-羟化酶缺乏,使得肾上腺类固醇生成途径受阻,导致皮质醇生物合成受损。从而增加了下丘脑–垂体中促肾上腺皮质激素释放激素–促肾上腺皮质激素的代偿性分泌,并导致肾上腺皮质增生、雄激素和一些中间代谢产物增加[2]

编码21-羟化酶的CYP21A2基因位于人类第6号染色体的短臂(6p21.3)的人类白细胞抗原III型基因区域,21-羟化酶一种由495个氨基酸组成的蛋白质[1],其作用是负责将17-OHP转化为11-脱氧皮质醇,将孕酮转化为11-脱氧皮质酮,进而分别合成皮质醇和醛固酮。如果缺乏21-羟化酶,皮质醇前体会被分流以产生雄激素前体,过量的17-OHP可以直接转化为雄烯二酮,也可以通过多个步骤转化为5α-二氢睾酮,绕过脱氢表雄酮和睾酮[6]。这一途径被称为替代途径或后门途径[7],主要在产前活跃。与17-OHP不同的是,21-DF拥有唯一的肾上腺来源,并不在性腺中产生,因此,21-DF是比17-OHP更特异的21-OHD生物标志物,现已被纳入一些新生儿筛查方案中[8]

21-OHD具有良好的基因型–表型相关性,疾病的严重程度与突变位点对酶活性的损害程度有关,即:根据不同类型的经典型和非经典型的基因型,一般可以预测疾病的严重程度[9]-[11]。典型的21OH缺乏症又分为最严重的失盐型和单纯的盐化型。失盐型由于酶的活性 < 2%,醛固酮和皮质醇合成绝对不足,新生儿出生后不久可出现失盐危象(如严重低血糖、低血钠、高血钾、脱水等)而危及生命。单纯男化型的严重程度低于失盐型,在很大程度上不会损害盐皮质激素的合成,在严重的身体应激情况下,如并发疾病伴发热、创伤和手术,盐流失的风险约为10% [12]。单纯男化型患儿在儿童期出现雄激素过多的迹象(例如油性皮肤、痤疮和阴毛初长或早熟的假青春期) [13]。此外,典型CAH与长期合并症相关,包括心脏代谢危险因素、认知功能受损、肾上腺静息瘤和骨骼健康影响[14]。自从20世纪50年代糖皮质激素替代疗法引入以来,先天性肾上腺皮质增生症已成为可治疗的遗传性疾病的模型。因此,早期识别并明确诊断可使患儿在发生失盐危象前得到规范治疗以降低病死率。总体而言,CAH的早期识别和治疗对儿科患者很重要。

由于新生儿筛查的普及,以及随着人们对CAH的研究和认识增多,越来越多的CAH能被早期识别,17-OHP作为新生儿CAH筛查的传统指标,在早产儿中的应用存在显著局限性。早产儿由于其特殊性,生后多因各器官系统不成熟入住新生儿科,未能常规完善新生儿CAH筛查,无法通过以17-OHP为指标的肾上腺皮质增生症筛查进行早期诊断,容易漏诊或误诊。再者,由于早产儿出生应激、肾上腺功能不成熟,包括21-羟化酶成熟延迟,其17-OHP浓度往往高于足月婴儿[15] [16]。这种“肾上腺早产儿”的筛查可能会有较高的假阳性率。例如,在瑞典筛查计划实施的26年中,对足月儿的阳性预测值为25%,而对早产儿的阳性预测值仅为1.4% [17],此外,产前使用糖皮质激素已经成为促进早产儿肺成熟的常规手段,而Frédérique Gatelais [18]等人发现产前使用多疗程糖皮质激素可使血液中的17-OHP降低约30%,增加CAH筛查的假阴性风险。且早产儿17-OHP浓度与胎龄、出生体重、采样年龄等多种因素密切相关[16] [19],国外一项针对健康早产儿和健康足月儿纵向研究表明,胎龄小于34周的早产儿出生第一周17-OHP值远高于足月儿,之后随着早产儿胎龄增长至37周,17-OHP浓度逐渐下降并稳定,但仍高于健康足月儿,其中,33.6%的早产儿样本17-OHP > 30 ng/mL,足月儿无一例17-OHP > 30 ng/mL [20];而以色列一项2008~2017年的全国性横断面研究发现,相比于调整单一参数,联合胎龄和出生体重调整的截断值能更精准反映早产儿生理特点,可将阳性预测值从传统方法下的4.5%提高至16.5%。因而目前对于早产儿CAH的筛查截断值,没有一个普遍接受的标准。同时,新生儿17-OHP可能在其他形式的CAH中升高,包括11-羟化酶缺乏症,3β-羟类固醇脱氢酶缺乏症和P450氧化还原酶缺乏[8],这都进一步增加了结果解读的复杂性,降低了17-OHP诊断21-OHD的特异性,使得利用17-OHP早期诊断早产儿21-OHD愈加困难。因此,目前国内外对于极早产儿CAH病例报道很少。

在21-OHD的患儿中,一些累积的17-OHP会通过11β-羟化酶转化为21-DF使得21-DF升高,21-DF是21-OHD的直接代谢产物,几乎仅在21-OHD中升高,而在生理状态下、早产儿或其他形式的CAH (如11-OHD、3β-HSSD)中水平极低(健康新生儿通常<0.1 ng/mL),且与17-OHP不同的是,21-DF浓度受新生儿胎龄的影响程度很小,且不受采样时间影响[21],国外的一项研究显示,仅使用21-DF (临界值,0.85 ng/mL)的简化决策对21-OHD的筛查产生了91.7%的阳性预测值[21]。Kazuhiro Watanabe [22]等人发现通过比较多种类固醇标志物发现,21-DF的AUC值为0.999显著优于17-OHP (AUC = 0.970)。当21-DF截断值取1.0 ng/mL时,对CAH的阳性预测值达100%。对早产儿来说,相比于17-OHP,21-DF与21-OHD有高度相关性,在假阳性病例中几乎不可检测,特异性极高,是诊断21-OHD的更特异性标志物[22]。因此,临床医生、商业参考实验室和新生儿筛查项目可以尝试用21-DF取代17-OHP作为21-OHD研究的首选分析指标。

本例患儿为28 + 1周早产儿,临床表现为皮肤色素沉着,外阴色素沉着、外阴肥大似阴茎,实验室检查为难以纠正的高钾血症、低钠血症,足跟血筛查示17-羟孕酮升高,激素检测提示17-羟孕酮升高,21-脱氧皮质醇明显升高,硫酸脱氢表雄酮升高,使得临床医生高度警惕CAH,并进行多次相关检验,最后基因检测出CYP21A2基因exonl-6杂合缺失以及c.518T > A半合子突变,突变分别导致了外显子缺失和第173号氨基酸由异亮氨酸变为天冬氨酸。经REVEL、SIFT、Polyphen-2、Mutation Taster、GERP + 软件预测,结果均为有害突变。根据ACMG指南,以上变异均属于致病性变异。确诊为21-OHD经典型中的失盐型。本例患儿起病凶险,经治疗后病情迅速缓解,定期补充激素,住院48 d好转出院。

长远来看,CAH患儿的生长发育、心血管、代谢、肌肉骨骼和生殖等均会受到不良影响[1]。因此,CAH患儿的长期管理应强调从儿科医疗顺利过渡到成人医疗的重要性,选择合适的治疗时机、制定个体化的治疗方案以提高患儿生活质量。同时,对于基因诊断明确的患儿家庭,建议进行遗传咨询和产前诊断,可以预防疾病再发风险。

声 明

本研究获得青岛大学附属医院医学伦理委员会批准(审批号:QYFY WZLL 30224)。

NOTES

*通讯作者。

参考文献

[1] El-Maouche, D., Arlt, W. and Merke, D.P. (2017) Congenital Adrenal Hyperplasia. The Lancet, 390, 2194-2210.
https://doi.org/10.1016/s0140-6736(17)31431-9
[2] Merke, D.P. and Auchus, R.J. (2020) Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. New England Journal of Medicine, 383, 1248-1261.
https://doi.org/10.1056/nejmra1909786
[3] Claahsen-van der Grinten, H.L., Speiser, P.W., Ahmed, S.F., Arlt, W., Auchus, R.J., Falhammar, H., et al. (2021) Congenital Adrenal Hyperplasia—Current Insights in Pathophysiology, Diagnostics, and Management. Endocrine Reviews, 43, 91-159.
https://doi.org/10.1210/endrev/bnab016
[4] Speiser, P.W., Azziz, R., Baskin, L.S., Ghizzoni, L., Hensle, T.W., Merke, D.P., et al. (2010) Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 95, 4133-4160.
https://doi.org/10.1210/jc.2009-2631
[5] Speiser, P.W., Arlt, W., Auchus, R.J., Baskin, L.S., Conway, G.S., Merke, D.P., et al. (2018) Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 103, 4043-4088.
https://doi.org/10.1210/jc.2018-01865
[6] Reisch, N., Taylor, A.E., Nogueira, E.F., Asby, D.J., Dhir, V., Berry, A., et al. (2019) Alternative Pathway Androgen Biosynthesis and Human Fetal Female Virilization. Proceedings of the National Academy of Sciences, 116, 22294-22299.
https://doi.org/10.1073/pnas.1906623116
[7] Kamrath, C., Hochberg, Z., Hartmann, M.F., Remer, T. and Wudy, S.A. (2012) Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis. The Journal of Clinical Endocrinology & Metabolism, 97, E367-E375.
https://doi.org/10.1210/jc.2011-1997
[8] Miller, W.L. (2019) Congenital Adrenal Hyperplasia: Time to Replace 17OHP with 21-Deoxycortisol. Hormone Research in Paediatrics, 91, 416-420.
https://doi.org/10.1159/000501396
[9] New, M.I., Abraham, M., Gonzalez, B., Dumic, M., Razzaghy-Azar, M., Chitayat, D., et al. (2013) Genotype-Phenotype Correlation in 1,507 Families with Congenital Adrenal Hyperplasia Owing to 21-Hydroxylase Deficiency. Proceedings of the National Academy of Sciences, 110, 2611-2616.
https://doi.org/10.1073/pnas.1300057110
[10] Riedl, S., Röhl, F., Bonfig, W., Brämswig, J., Richter-Unruh, A., Fricke-Otto, S., et al. (2019) Genotype/Phenotype Correlations in 538 Congenital Adrenal Hyperplasia Patients from Germany and Austria: Discordances in Milder Genotypes and in Screened versus Prescreening Patients. Endocrine Connections, 8, 86-94.
https://doi.org/10.1530/ec-18-0281
[11] Krone, N., Rose, I.T., Willis, D.S., Hodson, J., Wild, S.H., Doherty, E.J., et al. (2013) Genotype-Phenotype Correlation in 153 Adult Patients with Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency: Analysis of the United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (Cahase) Cohort. The Journal of Clinical Endocrinology & Metabolism, 98, E346-E354.
https://doi.org/10.1210/jc.2012-3343
[12] Odenwald, B., Nennstiel-Ratzel, U., Dörr, H., Schmidt, H., Wildner, M. and Bonfig, W. (2016) Children with Classic Congenital Adrenal Hyperplasia Experience Salt Loss and Hypoglycemia: Evaluation of Adrenal Crises during the First 6 Years of Life. European Journal of Endocrinology, 174, 177-186.
https://doi.org/10.1530/eje-15-0775
[13] Bonfig, W. (2017) Growth and Development in Children with Classic Congenital Adrenal Hyperplasia. Current Opinion in Endocrinology, Diabetes & Obesity, 24, 39-42.
https://doi.org/10.1097/med.0000000000000308
[14] Fraga, N.R., Minaeian, N. and Kim, M.S. (2024) Congenital Adrenal Hyperplasia. Pediatrics in Review, 45, 74-84.
https://doi.org/10.1542/pir.2022-005617
[15] Witchel, S.F. (2019) Newborn Screening for Congenital Adrenal Hyperplasia: Beyond 17-Hydroxyprogesterone Concentrations. Jornal de Pediatria, 95, 257-259.
https://doi.org/10.1016/j.jped.2018.06.003
[16] Jiang, X., Tang, F., Feng, Y., Li, B., Jia, X., Tang, C., et al. (2019) The Adjustment of 17-Hydroxyprogesterone Cut-Off Values for Congenital Adrenal Hyperplasia Neonatal Screening by GSP According to Gestational Age and Age at Sampling. Journal of Pediatric Endocrinology and Metabolism, 32, 1253-1258.
https://doi.org/10.1515/jpem-2019-0140
[17] Gidlöf, S., Wedell, A., Guthenberg, C., von Döbeln, U. and Nordenström, A. (2014) Nationwide Neonatal Screening for Congenital Adrenal Hyperplasia in Sweden: A 26-Year Longitudinal Prospective Population-Based Study. JAMA Pediatrics, 168, Article No. 567.
https://doi.org/10.1001/jamapediatrics.2013.5321
[18] Gatelais, F., Berthelot, J., Beringue, F., Descamps, P., Bonneau, D., Limal, J., et al. (2004) Effect of Single and Multiple Courses of Prenatal Corticosteroids on 17-Hydroxyprogesterone Levels: Implication for Neonatal Screening of Congenital Adrenal Hyperplasia. Pediatric Research, 56, 701-705.
https://doi.org/10.1203/01.pdr.0000142733.50918.6e
[19] Hayashi, G.Y., Carvalho, D.F., de Miranda, M.C., Faure, C., Vallejos, C., Brito, V.N., et al. (2017) Neonatal 17‐Hydroxyprogesterone Levels Adjusted According to Age at Sample Collection and Birthweight Improve the Efficacy of Congenital Adrenal Hyperplasia Newborn Screening. Clinical Endocrinology, 86, 480-487.
https://doi.org/10.1111/cen.13292
[20] Mendoza-Rojas, V.C., Díaz-Martínez, L.A., Mantilla-Mora, G., Contreras-García, G.A., Mora-Bautista, V.M., Martínez-Paredes, J.F., et al. (2017) Valores de 17-hidroxiprogesterona en recién nacidos prematuros sanos. Colombia Medica, 48, 161-166.
https://doi.org/10.25100/cm.v48i4.2893
[21] Held, P.K., Bialk, E.R., Lasarev, M.R. and Allen, D.B. (2022) 21-Deoxycortisol Is a Key Screening Marker for 21-Hydroxylase Deficiency. The Journal of Pediatrics, 242, 213-219.e1.
https://doi.org/10.1016/j.jpeds.2021.10.063
[22] Watanabe, K., Tsuji-Hosokawa, A., Hashimoto, A., Konishi, K., Ishige, N., Yajima, H., et al. (2022) The High Relevance of 21-Deoxycortisol, (Androstenedione + 17α-Hydroxyprogesterone)/Cortisol, and 11-Deoxycortisol/17α-Hydroxyprogesterone for Newborn Screening of 21-Hydroxylase Deficiency. The Journal of Clinical Endocrinology & Metabolism, 107, 3341-3352.
https://doi.org/10.1210/clinem/dgac521