[1]
|
El-Maouche, D., Arlt, W. and Merke, D.P. (2017) Congenital Adrenal Hyperplasia. The Lancet, 390, 2194-2210. https://doi.org/10.1016/s0140-6736(17)31431-9
|
[2]
|
Merke, D.P. and Auchus, R.J. (2020) Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency. New England Journal of Medicine, 383, 1248-1261. https://doi.org/10.1056/nejmra1909786
|
[3]
|
Claahsen-van der Grinten, H.L., Speiser, P.W., Ahmed, S.F., Arlt, W., Auchus, R.J., Falhammar, H., et al. (2021) Congenital Adrenal Hyperplasia—Current Insights in Pathophysiology, Diagnostics, and Management. Endocrine Reviews, 43, 91-159. https://doi.org/10.1210/endrev/bnab016
|
[4]
|
Speiser, P.W., Azziz, R., Baskin, L.S., Ghizzoni, L., Hensle, T.W., Merke, D.P., et al. (2010) Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 95, 4133-4160. https://doi.org/10.1210/jc.2009-2631
|
[5]
|
Speiser, P.W., Arlt, W., Auchus, R.J., Baskin, L.S., Conway, G.S., Merke, D.P., et al. (2018) Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. The Journal of Clinical Endocrinology & Metabolism, 103, 4043-4088. https://doi.org/10.1210/jc.2018-01865
|
[6]
|
Reisch, N., Taylor, A.E., Nogueira, E.F., Asby, D.J., Dhir, V., Berry, A., et al. (2019) Alternative Pathway Androgen Biosynthesis and Human Fetal Female Virilization. Proceedings of the National Academy of Sciences, 116, 22294-22299. https://doi.org/10.1073/pnas.1906623116
|
[7]
|
Kamrath, C., Hochberg, Z., Hartmann, M.F., Remer, T. and Wudy, S.A. (2012) Increased Activation of the Alternative “Backdoor” Pathway in Patients with 21-Hydroxylase Deficiency: Evidence from Urinary Steroid Hormone Analysis. The Journal of Clinical Endocrinology & Metabolism, 97, E367-E375. https://doi.org/10.1210/jc.2011-1997
|
[8]
|
Miller, W.L. (2019) Congenital Adrenal Hyperplasia: Time to Replace 17OHP with 21-Deoxycortisol. Hormone Research in Paediatrics, 91, 416-420. https://doi.org/10.1159/000501396
|
[9]
|
New, M.I., Abraham, M., Gonzalez, B., Dumic, M., Razzaghy-Azar, M., Chitayat, D., et al. (2013) Genotype-Phenotype Correlation in 1,507 Families with Congenital Adrenal Hyperplasia Owing to 21-Hydroxylase Deficiency. Proceedings of the National Academy of Sciences, 110, 2611-2616. https://doi.org/10.1073/pnas.1300057110
|
[10]
|
Riedl, S., Röhl, F., Bonfig, W., Brämswig, J., Richter-Unruh, A., Fricke-Otto, S., et al. (2019) Genotype/Phenotype Correlations in 538 Congenital Adrenal Hyperplasia Patients from Germany and Austria: Discordances in Milder Genotypes and in Screened versus Prescreening Patients. Endocrine Connections, 8, 86-94. https://doi.org/10.1530/ec-18-0281
|
[11]
|
Krone, N., Rose, I.T., Willis, D.S., Hodson, J., Wild, S.H., Doherty, E.J., et al. (2013) Genotype-Phenotype Correlation in 153 Adult Patients with Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency: Analysis of the United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (Cahase) Cohort. The Journal of Clinical Endocrinology & Metabolism, 98, E346-E354. https://doi.org/10.1210/jc.2012-3343
|
[12]
|
Odenwald, B., Nennstiel-Ratzel, U., Dörr, H., Schmidt, H., Wildner, M. and Bonfig, W. (2016) Children with Classic Congenital Adrenal Hyperplasia Experience Salt Loss and Hypoglycemia: Evaluation of Adrenal Crises during the First 6 Years of Life. European Journal of Endocrinology, 174, 177-186. https://doi.org/10.1530/eje-15-0775
|
[13]
|
Bonfig, W. (2017) Growth and Development in Children with Classic Congenital Adrenal Hyperplasia. Current Opinion in Endocrinology, Diabetes & Obesity, 24, 39-42. https://doi.org/10.1097/med.0000000000000308
|
[14]
|
Fraga, N.R., Minaeian, N. and Kim, M.S. (2024) Congenital Adrenal Hyperplasia. Pediatrics in Review, 45, 74-84. https://doi.org/10.1542/pir.2022-005617
|
[15]
|
Witchel, S.F. (2019) Newborn Screening for Congenital Adrenal Hyperplasia: Beyond 17-Hydroxyprogesterone Concentrations. Jornal de Pediatria, 95, 257-259. https://doi.org/10.1016/j.jped.2018.06.003
|
[16]
|
Jiang, X., Tang, F., Feng, Y., Li, B., Jia, X., Tang, C., et al. (2019) The Adjustment of 17-Hydroxyprogesterone Cut-Off Values for Congenital Adrenal Hyperplasia Neonatal Screening by GSP According to Gestational Age and Age at Sampling. Journal of Pediatric Endocrinology and Metabolism, 32, 1253-1258. https://doi.org/10.1515/jpem-2019-0140
|
[17]
|
Gidlöf, S., Wedell, A., Guthenberg, C., von Döbeln, U. and Nordenström, A. (2014) Nationwide Neonatal Screening for Congenital Adrenal Hyperplasia in Sweden: A 26-Year Longitudinal Prospective Population-Based Study. JAMA Pediatrics, 168, Article No. 567. https://doi.org/10.1001/jamapediatrics.2013.5321
|
[18]
|
Gatelais, F., Berthelot, J., Beringue, F., Descamps, P., Bonneau, D., Limal, J., et al. (2004) Effect of Single and Multiple Courses of Prenatal Corticosteroids on 17-Hydroxyprogesterone Levels: Implication for Neonatal Screening of Congenital Adrenal Hyperplasia. Pediatric Research, 56, 701-705. https://doi.org/10.1203/01.pdr.0000142733.50918.6e
|
[19]
|
Hayashi, G.Y., Carvalho, D.F., de Miranda, M.C., Faure, C., Vallejos, C., Brito, V.N., et al. (2017) Neonatal 17‐Hydroxyprogesterone Levels Adjusted According to Age at Sample Collection and Birthweight Improve the Efficacy of Congenital Adrenal Hyperplasia Newborn Screening. Clinical Endocrinology, 86, 480-487. https://doi.org/10.1111/cen.13292
|
[20]
|
Mendoza-Rojas, V.C., Díaz-Martínez, L.A., Mantilla-Mora, G., Contreras-García, G.A., Mora-Bautista, V.M., Martínez-Paredes, J.F., et al. (2017) Valores de 17-hidroxiprogesterona en recién nacidos prematuros sanos. Colombia Medica, 48, 161-166. https://doi.org/10.25100/cm.v48i4.2893
|
[21]
|
Held, P.K., Bialk, E.R., Lasarev, M.R. and Allen, D.B. (2022) 21-Deoxycortisol Is a Key Screening Marker for 21-Hydroxylase Deficiency. The Journal of Pediatrics, 242, 213-219.e1. https://doi.org/10.1016/j.jpeds.2021.10.063
|
[22]
|
Watanabe, K., Tsuji-Hosokawa, A., Hashimoto, A., Konishi, K., Ishige, N., Yajima, H., et al. (2022) The High Relevance of 21-Deoxycortisol, (Androstenedione + 17α-Hydroxyprogesterone)/Cortisol, and 11-Deoxycortisol/17α-Hydroxyprogesterone for Newborn Screening of 21-Hydroxylase Deficiency. The Journal of Clinical Endocrinology & Metabolism, 107, 3341-3352. https://doi.org/10.1210/clinem/dgac521
|