[1]
|
Meng, D., Wu, J., Huang, X., Liang, X. and Fang, B. (2024) Prevalence of Parkinson’s Disease among Adults Aged 45 Years and Older in China: A Cross-Sectional Study Based on the China Health and Retirement Longitudinal Study. BMC Public Health, 24, Article No. 1218. https://doi.org/10.1186/s12889-024-18653-0
|
[2]
|
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. https://doi.org/10.1016/s0140-6736(21)00218-x
|
[3]
|
Mirelman, A., Bonato, P., Camicioli, R., Ellis, T.D., Giladi, N., Hamilton, J.L., et al. (2019) Gait Impairments in Parkinson’s Disease. The Lancet Neurology, 18, 697-708. https://doi.org/10.1016/s1474-4422(19)30044-4
|
[4]
|
Zanardi, A.P.J., da Silva, E.S., Costa, R.R., Passos-Monteiro, E., dos Santos, I.O., Kruel, L.F.M., et al. (2021) Gait Parameters of Parkinson’s Disease Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 752. https://doi.org/10.1038/s41598-020-80768-2
|
[5]
|
Maraki, M.I., Stefanis, L., Yannakoulia, M., Kosmidis, M.H., Xiromerisiou, G., Dardiotis, E., et al. (2019) Motor Function and the Probability of Prodromal Parkinson’s Disease in Older Adults. Movement Disorders, 34, 1345-1353. https://doi.org/10.1002/mds.27792
|
[6]
|
Kleiner, A.F.R., Pacifici, I., Vagnini, A., Camerota, F., Celletti, C., Stocchi, F., et al. (2018) Timed up and Go Evaluation with Wearable Devices: Validation in Parkinson’s Disease. Journal of Bodywork and Movement Therapies, 22, 390-395. https://doi.org/10.1016/j.jbmt.2017.07.006
|
[7]
|
Cai, X., Zhao, H., Shan, X., Huang, Y. and Wei, F. (2024) Using Motion Capture Technology in the Instrumented Timed up and Go Test to Detect the Risk of Falling in Aged Adults. Journal of Visualized Experiments, 212, Article 66025. https://doi.org/10.3791/66025
|
[8]
|
Mollinedo, I. and Cancela, J.M. (2020) Evaluation of the Psychometric Properties and Clinical Applications of the Timed up and Go Test in Parkinson Disease: A Systematic Review. Journal of Exercise Rehabilitation, 16, 302-312. https://doi.org/10.12965/jer.2040532.266
|
[9]
|
Yoo, J.E., Jang, W., Shin, D.W., Jeong, S., Jung, H., Youn, J., et al. (2020) Timed up and Go Test and the Risk of Parkinson's Disease: A Nation‐Wide Retrospective Cohort Study. Movement Disorders, 35, 1263-1267. https://doi.org/10.1002/mds.28055
|
[10]
|
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., et al. (2000) Physiobank, Physiotoolkit, and Physionet. Circulation, 101, e215-e220. https://doi.org/10.1161/01.cir.101.23.e215
|
[11]
|
Hausdorff, J.M. (2008) Gait in Parkinson’s Disease. https://physionet.org/content/gaitpdb/
|
[12]
|
Okada, Y., Yorozu, A., Fukumoto, T., Morioka, S., Shomoto, K., Aoyama, T., et al. (2021) Footsteps and Walking Trajectories during the Timed up and Go Test in Young, Older, and Parkinson’s Disease Subjects. Gait & Posture, 89, 54-60. https://doi.org/10.1016/j.gaitpost.2021.06.021
|
[13]
|
Morris, R., Hickey, A., Del Din, S., Godfrey, A., Lord, S. and Rochester, L. (2017) A Model of Free-Living Gait: A Factor Analysis in Parkinson’s Disease. Gait & Posture, 52, 68-71. https://doi.org/10.1016/j.gaitpost.2016.11.024
|
[14]
|
Del Din, S., Galna, B., Godfrey, A., et al. (2019) Analysis of Free-Living Gait in Older Adults with and without Parkinson’s Disease and with and without a History of Falls: Identifying Generic and Disease-Specific Characteristics. The Journals of Gerontology: Series A, 74, 500-506.
|
[15]
|
Sidoroff, V., Raccagni, C., Kaindlstorfer, C., Eschlboeck, S., Fanciulli, A., Granata, R., et al. (2020) Characterization of Gait Variability in Multiple System Atrophy and Parkinson’s Disease. Journal of Neurology, 268, 1770-1779. https://doi.org/10.1007/s00415-020-10355-y
|
[16]
|
Bouça-Machado, R., Jalles, C., Guerreiro, D., Pona-Ferreira, F., Branco, D., Guerreiro, T., et al. (2020) Gait Kinematic Parameters in Parkinson’s Disease: A Systematic Review. Journal of Parkinson’s Disease, 10, 843-853. https://doi.org/10.3233/jpd-201969
|
[17]
|
Del Din, S., Godfrey, A., Galna, B., Lord, S. and Rochester, L. (2016) Free-Living Gait Characteristics in Ageing and Parkinson’s Disease: Impact of Environment and Ambulatory Bout Length. Journal of Neuro Engineering and Rehabilitation, 13, Article No. 46. https://doi.org/10.1186/s12984-016-0154-5
|
[18]
|
Combs, S.A., Diehl, M.D., Filip, J. and Long, E. (2014) Short-Distance Walking Speed Tests in People with Parkinson Disease: Reliability, Responsiveness, and Validity. Gait & Posture, 39, 784-788. https://doi.org/10.1016/j.gaitpost.2013.10.019
|
[19]
|
Luque-Casado, A., Novo-Ponte, S., Sánchez-Molina, J.A., Sevilla-Sánchez, M., Santos-García, D. and Fernández-del-Olmo, M. (2021) Test-Retest Reliability of the Timed up and Go Test in Subjects with Parkinson’s Disease: Implications for Longitudinal Assessments. Journal of Parkinson’s Disease, 11, 2047-2055. https://doi.org/10.3233/jpd-212687
|
[20]
|
Olanow, C.W., Factor, S.A., Espay, A.J., Hauser, R.A., Shill, H.A., Isaacson, S., et al. (2020) Apomorphine Sublingual Film for off Episodes in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Phase 3 Study. The Lancet Neurology, 19, 135-144. https://doi.org/10.1016/s1474-4422(19)30396-5
|
[21]
|
Zhang, W., Ling, Y., Chen, Z., Ren, K., Chen, S., Huang, P., et al. (2024) Wearable Sensor-Based Quantitative Gait Analysis in Parkinson’s Disease Patients with Different Motor Subtypes. npj Digital Medicine, 7, Article No. 169. https://doi.org/10.1038/s41746-024-01163-z
|
[22]
|
Olanow, C.W. and Obeso, J.A. (2012) The Significance of Defining Preclinical or Prodromal Parkinson’s Disease. Movement Disorders, 27, 666-669. https://doi.org/10.1002/mds.25019
|
[23]
|
Kim, J., Porciuncula, F., Yang, H.D., Wendel, N., Baker, T., Chin, A., et al. (2024) Soft Robotic Apparel to Avert Freezing of Gait in Parkinson’s Disease. Nature Medicine, 30, 177-185. https://doi.org/10.1038/s41591-023-02731-8
|
[24]
|
Bao, W., Li, P., Yang, Y., Chen, K. and Liu, J. (2023) Dynamic Postural Balance Indices Can Help Discriminate between Patients with Multiple System Atrophy and Parkinson’s Disease. Frontiers in Neurology, 13, Article 1089439. https://doi.org/10.3389/fneur.2022.1089439
|
[25]
|
van Midden, V., Simončič, U., Pirtošek, Z. and Kojović, M. (2024) The Effect of Tavns at 25 Hz and 100 Hz on Parkinson’s Disease Gait—A Randomized Motion Sensor Study. Movement Disorders, 39, 1375-1385. https://doi.org/10.1002/mds.29826
|
[26]
|
Makarious, M.B., Leonard, H.L., Vitale, D., Iwaki, H., Sargent, L., Dadu, A., et al. (2022) Multi-Modality Machine Learning Predicting Parkinson’s Disease. npj Parkinson’s Disease, 8, Article No. 35. https://doi.org/10.1038/s41531-022-00288-w
|
[27]
|
Li, A. and Li, C. (2022) Detecting Parkinson’s Disease through Gait Measures Using Machine Learning. Diagnostics, 12, Article 2404. https://doi.org/10.3390/diagnostics12102404
|
[28]
|
Lai, H., Li, X., Xu, F., Zhu, J., Li, X., Song, Y., et al. (2023) Applications of Machine Learning to Diagnosis of Parkinson’s Disease. Brain Sciences, 13, Article 1546. https://doi.org/10.3390/brainsci13111546
|
[29]
|
Vaish, A. (2024) A Machine Learning Approach for Early Identification of Prodromal Parkinson’s Disease. Cureus, 16, e63240. https://doi.org/10.7759/cureus.63240
|
[30]
|
Zhang, J., Zhou, W., Yu, H., Wang, T., Wang, X., Liu, L., et al. (2023) Prediction of Parkinson’s Disease Using Machine Learning Methods. Biomolecules, 13, Article 1761. https://doi.org/10.3390/biom13121761
|