|
[1]
|
Meng, D., Wu, J., Huang, X., Liang, X. and Fang, B. (2024) Prevalence of Parkinson’s Disease among Adults Aged 45 Years and Older in China: A Cross-Sectional Study Based on the China Health and Retirement Longitudinal Study. BMC Public Health, 24, Article No. 1218. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mirelman, A., Bonato, P., Camicioli, R., Ellis, T.D., Giladi, N., Hamilton, J.L., et al. (2019) Gait Impairments in Parkinson’s Disease. The Lancet Neurology, 18, 697-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zanardi, A.P.J., da Silva, E.S., Costa, R.R., Passos-Monteiro, E., dos Santos, I.O., Kruel, L.F.M., et al. (2021) Gait Parameters of Parkinson’s Disease Compared with Healthy Controls: A Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 752. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Maraki, M.I., Stefanis, L., Yannakoulia, M., Kosmidis, M.H., Xiromerisiou, G., Dardiotis, E., et al. (2019) Motor Function and the Probability of Prodromal Parkinson’s Disease in Older Adults. Movement Disorders, 34, 1345-1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kleiner, A.F.R., Pacifici, I., Vagnini, A., Camerota, F., Celletti, C., Stocchi, F., et al. (2018) Timed up and Go Evaluation with Wearable Devices: Validation in Parkinson’s Disease. Journal of Bodywork and Movement Therapies, 22, 390-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cai, X., Zhao, H., Shan, X., Huang, Y. and Wei, F. (2024) Using Motion Capture Technology in the Instrumented Timed up and Go Test to Detect the Risk of Falling in Aged Adults. Journal of Visualized Experiments, 212, Article 66025. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mollinedo, I. and Cancela, J.M. (2020) Evaluation of the Psychometric Properties and Clinical Applications of the Timed up and Go Test in Parkinson Disease: A Systematic Review. Journal of Exercise Rehabilitation, 16, 302-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yoo, J.E., Jang, W., Shin, D.W., Jeong, S., Jung, H., Youn, J., et al. (2020) Timed up and Go Test and the Risk of Parkinson's Disease: A Nation‐Wide Retrospective Cohort Study. Movement Disorders, 35, 1263-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., et al. (2000) Physiobank, Physiotoolkit, and Physionet. Circulation, 101, e215-e220. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hausdorff, J.M. (2008) Gait in Parkinson’s Disease. https://physionet.org/content/gaitpdb/
|
|
[12]
|
Okada, Y., Yorozu, A., Fukumoto, T., Morioka, S., Shomoto, K., Aoyama, T., et al. (2021) Footsteps and Walking Trajectories during the Timed up and Go Test in Young, Older, and Parkinson’s Disease Subjects. Gait & Posture, 89, 54-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Morris, R., Hickey, A., Del Din, S., Godfrey, A., Lord, S. and Rochester, L. (2017) A Model of Free-Living Gait: A Factor Analysis in Parkinson’s Disease. Gait & Posture, 52, 68-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Del Din, S., Galna, B., Godfrey, A., et al. (2019) Analysis of Free-Living Gait in Older Adults with and without Parkinson’s Disease and with and without a History of Falls: Identifying Generic and Disease-Specific Characteristics. The Journals of Gerontology: Series A, 74, 500-506.
|
|
[15]
|
Sidoroff, V., Raccagni, C., Kaindlstorfer, C., Eschlboeck, S., Fanciulli, A., Granata, R., et al. (2020) Characterization of Gait Variability in Multiple System Atrophy and Parkinson’s Disease. Journal of Neurology, 268, 1770-1779. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bouça-Machado, R., Jalles, C., Guerreiro, D., Pona-Ferreira, F., Branco, D., Guerreiro, T., et al. (2020) Gait Kinematic Parameters in Parkinson’s Disease: A Systematic Review. Journal of Parkinson’s Disease, 10, 843-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Del Din, S., Godfrey, A., Galna, B., Lord, S. and Rochester, L. (2016) Free-Living Gait Characteristics in Ageing and Parkinson’s Disease: Impact of Environment and Ambulatory Bout Length. Journal of Neuro Engineering and Rehabilitation, 13, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Combs, S.A., Diehl, M.D., Filip, J. and Long, E. (2014) Short-Distance Walking Speed Tests in People with Parkinson Disease: Reliability, Responsiveness, and Validity. Gait & Posture, 39, 784-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Luque-Casado, A., Novo-Ponte, S., Sánchez-Molina, J.A., Sevilla-Sánchez, M., Santos-García, D. and Fernández-del-Olmo, M. (2021) Test-Retest Reliability of the Timed up and Go Test in Subjects with Parkinson’s Disease: Implications for Longitudinal Assessments. Journal of Parkinson’s Disease, 11, 2047-2055. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Olanow, C.W., Factor, S.A., Espay, A.J., Hauser, R.A., Shill, H.A., Isaacson, S., et al. (2020) Apomorphine Sublingual Film for off Episodes in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Phase 3 Study. The Lancet Neurology, 19, 135-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, W., Ling, Y., Chen, Z., Ren, K., Chen, S., Huang, P., et al. (2024) Wearable Sensor-Based Quantitative Gait Analysis in Parkinson’s Disease Patients with Different Motor Subtypes. npj Digital Medicine, 7, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Olanow, C.W. and Obeso, J.A. (2012) The Significance of Defining Preclinical or Prodromal Parkinson’s Disease. Movement Disorders, 27, 666-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kim, J., Porciuncula, F., Yang, H.D., Wendel, N., Baker, T., Chin, A., et al. (2024) Soft Robotic Apparel to Avert Freezing of Gait in Parkinson’s Disease. Nature Medicine, 30, 177-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bao, W., Li, P., Yang, Y., Chen, K. and Liu, J. (2023) Dynamic Postural Balance Indices Can Help Discriminate between Patients with Multiple System Atrophy and Parkinson’s Disease. Frontiers in Neurology, 13, Article 1089439. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
van Midden, V., Simončič, U., Pirtošek, Z. and Kojović, M. (2024) The Effect of Tavns at 25 Hz and 100 Hz on Parkinson’s Disease Gait—A Randomized Motion Sensor Study. Movement Disorders, 39, 1375-1385. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Makarious, M.B., Leonard, H.L., Vitale, D., Iwaki, H., Sargent, L., Dadu, A., et al. (2022) Multi-Modality Machine Learning Predicting Parkinson’s Disease. npj Parkinson’s Disease, 8, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, A. and Li, C. (2022) Detecting Parkinson’s Disease through Gait Measures Using Machine Learning. Diagnostics, 12, Article 2404. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lai, H., Li, X., Xu, F., Zhu, J., Li, X., Song, Y., et al. (2023) Applications of Machine Learning to Diagnosis of Parkinson’s Disease. Brain Sciences, 13, Article 1546. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Vaish, A. (2024) A Machine Learning Approach for Early Identification of Prodromal Parkinson’s Disease. Cureus, 16, e63240. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, J., Zhou, W., Yu, H., Wang, T., Wang, X., Liu, L., et al. (2023) Prediction of Parkinson’s Disease Using Machine Learning Methods. Biomolecules, 13, Article 1761. [Google Scholar] [CrossRef] [PubMed]
|