[1]
|
Wang, Z., Xu, J., Zhang, Y., Chen, C., Kong, C., Tang, L., et al. (2023) Prediction of Acute Kidney Injury Incidence Following Acute Type A Aortic Dissection Surgery with Novel Biomarkers: A Prospective Observational Study. BMC Medicine, 21, Article No. 503. https://doi.org/10.1186/s12916-023-03215-9
|
[2]
|
Xu, S., Wu, Z., Liu, Y., Zhu, J., Gong, M., Sun, L., et al. (2023) Influence of Preoperative Serum Albumin on Acute Kidney Injury after Aortic Surgery for Acute Type A Aortic Dissection: A Retrospective Cohort Study. Journal of Clinical Medicine, 12, Article 1581. https://doi.org/10.3390/jcm12041581
|
[3]
|
Amano, K., Takami, Y., Ishikawa, H., et al. (2020) Lower Body Ischaemic Time Is a Risk Factor for Acute Kidney Injury after Surgery for Type A Acute Aortic Dissection. Interactive CardioVascular and Thoracic Surgery, 30, 107-112. https://doi.org/10.1093/icvts/ivz220
|
[4]
|
Yang, C., Hou, P., Wang, D., Wang, Z., Duan, W., Liu, J., et al. (2022) Serum Myoglobin Is Associated with Postoperative Acute Kidney Injury in Stanford Type A Aortic Dissection. Frontiers in Medicine, 9, Article 821418. https://doi.org/10.3389/fmed.2022.821418
|
[5]
|
Bell, S. and Prowle, J. (2018) Postoperative AKI—Prevention Is Better than Cure? Journal of the American Society of Nephrology, 30, 4-6. https://doi.org/10.1681/asn.2018111127
|
[6]
|
Chawla, L.S., Eggers, P.W., Star, R.A. and Kimmel, P.L. (2014) Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. New England Journal of Medicine, 371, 58-66. https://doi.org/10.1056/nejmra1214243
|
[7]
|
Nadim, M.K., Forni, L.G., Bihorac, A., Hobson, C., Koyner, J.L., Shaw, A., et al. (2018) Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. Journal of the American Heart Association, 7, 1-23. https://doi.org/10.1161/jaha.118.008834
|
[8]
|
Del Porto, F., Proietta, M., Tritapepe, L., et al. (2010) Inflammation and Immune Response in Acute Aortic Dissection. Annals of Medicine, 42, 622-629. https://doi.org/10.3109/07853890.2010.518156
|
[9]
|
Urbanowicz, T., Olasińska-Wiśniewska, A., Michalak, M., Rodzki, M., Witkowska, A., Straburzyńska-Migaj, E., et al. (2021) The Prognostic Significance of Neutrophil to Lymphocyte Ratio (NLR), Monocyte to Lymphocyte Ratio (MLR) and Platelet to Lymphocyte Ratio (PLR) on Long-Term Survival in Off-Pump Coronary Artery Bypass Grafting (OPCAB) Procedures. Biology, 11, Article 34. https://doi.org/10.3390/biology11010034
|
[10]
|
Urbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Rodzki, M., Witkowska, A., Gąsecka, A., et al. (2022) Neutrophil Counts, Neutrophil-To-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells, 11, 1124. https://doi.org/10.3390/cells11071124
|
[11]
|
Urbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Witkowska, A., Rodzki, M., Błażejowska, E., et al. (2022) Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report. MEDICINA, 57, Article 1324. https://doi.org/10.3390/medicina57121324
|
[12]
|
Mcilroy, D.R., Bellomo, R., Billings, F.T.T., et al. (2018) Systematic Review and Consensus Definitions for the Stand-Ardised Endpoints in Perioperative Medicine (STEP) Initiative: Renal Endpoints. British Journal of Anaesthesia, 121, 1013-1024. https://doi.org/10.1016/j.bja.2018.08.010
|
[13]
|
Chen, W., Song, X., Hong, L., Xu, H., Qian, Y., Zhang, W., et al. (2022) The Association between Lymphocyte-Monocyte Ratio and Postoperative Acute Kidney Injury in Patients with Acute Type A Aortic Dissection. Journal of Cardiothoracic Surgery, 17, Article No. 60. https://doi.org/10.1186/s13019-022-01813-x
|
[14]
|
Chen, Y., Dong, K., Fang, C., et al. (2023) The Predictive Values of Monocyte-Lymphocyte Ratio in Postoperative Acute Kidney Injury and Prognosis of Patients with Stanford Type A Aortic Dissection. Frontiers in Immunology, 14, Article 1195421. https://doi.org/10.3389/fimmu.2023.1195421
|
[15]
|
Ma, X., Chen, S., Yun, Y., Zhao, D., Li, J., Wu, Z., et al. (2021) The Predictive Role of Lymphocyte-to-Monocyte Ratio in Acute Kidney Injury in Acute Debakey Type I Aortic Dissection. Frontiers in Surgery, 8, Article 704345. https://doi.org/10.3389/fsurg.2021.704345
|
[16]
|
Zhang, K., Shang, J., Chen, Y., Huo, Y., Li, B. and Hu, Z. (2021) The Prognosis and Risk Factors for Acute Kidney Injury in High-Risk Patients after Surgery for Type A Aortic Dissection in the ICU. Journal of Thoracic Disease, 13, 4427-4437. https://doi.org/10.21037/jtd-21-823
|
[17]
|
Milne, B., Gilbey, T., De Somer, F. and Kunst, G. (2023) Adverse Renal Effects Associated with Cardiopulmonary Bypass. Perfusion, 39, 452-468. https://doi.org/10.1177/02676591231157055
|
[18]
|
Lankadeva, Y.R., Okazaki, N., Evans, R.G., Bellomo, R. and May, C.N. (2019) Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Seminars in Nephrology, 39, 543-553. https://doi.org/10.1016/j.semnephrol.2019.10.004
|
[19]
|
O’Neal, J.B., Shaw, A.D. and Billings, F.T. (2016) Acute Kidney Injury Following Cardiac Surgery: Current Understanding and Future Directions. Critical Care, 20, Article No. 187. https://doi.org/10.1186/s13054-016-1352-z
|
[20]
|
Gomez, H., Ince, C., De Backer, D., Pickkers, P., Payen, D., Hotchkiss, J., et al. (2014) A Unified Theory of Sepsis-Induced Acute Kidney Injury. Inflammation, Microcirculatory Dysfunction, Bioenergetics, and the Tubular Cell Adaptation to Injury. Shock, 41, 3-11. https://doi.org/10.1097/shk.0000000000000052
|
[21]
|
Urbanowicz, T., Olasińska-Wiśniewska, A., Gładki, M. and Jemielity, M. (2022) The Significance of Simple Inflammatory Markers in off Pump Surgery—Review. Reviews in Cardiovascular Medicine, 23, Article 400. https://doi.org/10.31083/j.rcm2312400
|
[22]
|
Chew, S.T.H. and Hwang, N.C. (2019) Acute Kidney Injury after Cardiac Surgery: A Narrative Review of the Literature. Journal of Cardiothoracic and Vascular Anesthesia, 33, 1122-1138. https://doi.org/10.1053/j.jvca.2018.08.003
|
[23]
|
Liu, H., Luo, Z., Liu, L., Yang, X., Zhuang, Y., Tu, G., et al. (2019) Inflammatory Biomarkers to Predict Adverse Outcomes in Postoperative Patients with Acute Type A Aortic Dissection. Scandinavian Cardiovascular Journal, 54, 37-46. https://doi.org/10.1080/14017431.2019.1689289
|
[24]
|
Grigoryev, D.N., Liu, M., Hassoun, H.T., Cheadle, C., Barnes, K.C. and Rabb, H. (2008) The Local and Systemic Inflammatory Transcriptome after Acute Kidney Injury. Journal of the American Society of Nephrology, 19, 547-558. https://doi.org/10.1681/asn.2007040469
|
[25]
|
Ionita, M.G., van den Borne, P., Catanzariti, L.M., Moll, F.L., de Vries, J.P.M., Pasterkamp, G., et al. (2010) High Neutrophil Numbers in Human Carotid Atherosclerotic Plaques Are Associated with Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1842-1848. https://doi.org/10.1161/atvbaha.110.209296
|
[26]
|
Winter, C., Silvestre-Roig, C., Ortega-Gomez, A., Lemnitzer, P., Poelman, H., Schumski, A., et al. (2018) Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 28, 175-182.E5. https://doi.org/10.1016/j.cmet.2018.05.002
|
[27]
|
Warnatsch, A., Ioannou, M., Wang, Q. and Papayannopoulos, V. (2015) Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science, 349, 316-320. https://doi.org/10.1126/science.aaa8064
|
[28]
|
Fernández-Ruiz, I. (2019) Neutrophil-Driven SMC Death Destabilizes Atherosclerotic Plaques. Nature Reviews Cardiology, 16, Article 455. https://doi.org/10.1038/s41569-019-0214-1
|
[29]
|
Shah, A.D., Denaxas, S., Nicholas, O., Hingorani, A.D. and Hemingway, H. (2017) Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. Journal of the American College of Cardiology, 69, 1160-1169. https://doi.org/10.1016/j.jacc.2016.12.022
|
[30]
|
Sheridan, F.M., Cole, P.G. and Ramage, D. (1996) Leukocyte Adhesion to the Coronary Microvasculature during Ischemia and Reperfusion in an in Vivo Canine Model. Circulation, 93, 1784-1787. https://doi.org/10.1161/01.cir.93.10.1784
|
[31]
|
Musher, D.M., Abers, M.S. and Corrales-Medina, V.F. (2019) Acute Infection and Myocardial Infarction. New England Journal of Medicine, 380, 171-176. https://doi.org/10.1056/nejmra1808137
|
[32]
|
Wang, Z., Wang, Z. and Hu, Y. (2016) Possible Roles of Platelet-Derived Microparticles in Atherosclerosis. Atherosclerosis, 248, 10-16. https://doi.org/10.1016/j.atherosclerosis.2016.03.004
|
[33]
|
Wang, S., Chen, V. and Pasalic, L. (2016) Platelets as Biomarkers of Coronary Artery Disease. Seminars in Thrombosis and Hemostasis, 42, 223-233. https://doi.org/10.1055/s-0036-1572328
|
[34]
|
Bakogiannis, C., Sachse, M., Stamatelopoulos, K. and Stellos, K. (2019) Platelet-Derived Chemokines in Inflammation and Atherosclerosis. Cytokine, 122, Article 154157. https://doi.org/10.1016/j.cyto.2017.09.013
|
[35]
|
Núñez, J., Núñez, E., Bodí, V., Sanchis, J., Mainar, L., Miñana, G., et al. (2010) Low Lymphocyte Count in Acute Phase of ST-Segment Elevation Myocardial Infarction Predicts Long-Term Recurrent Myocardial Infarction. Coronary Artery Disease, 21, 1-7. https://doi.org/10.1097/mca.0b013e328332ee15
|
[36]
|
Dziedzic, E.A., Gąsior, J.S., Tuzimek, A. and Kochman, W. (2023) Blood Count-Derived Inflammatory Markers and Acute Complications of Ischemic Heart Disease in Elderly Women. Journal of Clinical Medicine, 12, Article 1369. https://doi.org/10.3390/jcm12041369
|
[37]
|
Bedel, C. and Selvi, F. (2019) Association of Platelet to Lymphocyte and Neutrophil to Lymphocyte Ratios with In-Hospital Mortality in Patients with Type a Acute Aortic Dissection. Brazilian Journal of Cardiovascular Surgery, 34, 694-698. https://doi.org/10.21470/1678-9741-2018-0343
|