全血细胞计数衍生的炎症指标对急性A型主动脉夹层患者术后发生急性肾损伤的预测价值
Predictive Value of the Complete Blood Counts Derived Inflammatory Indexes for Postoperative Acute Kidney Injury in Patients with Acute Type A Aortic Dissection
摘要: 目的:评估全血细胞计数衍生的炎症指标对急性A型主动脉夹层(ATAAD)患者手术后急性肾损伤(AKI)的预测价值。方法:本研究收集了2021年8月至2024年8月间在青岛大学附属医院接受手术治疗的ATAAD患者的临床资料。通过多因素逻辑回归模型探索术后发生AKI的独立危险因素并构建联合预测因子,采用受试者工作特征曲线(ROC)和曲线下面积(AUC)分析这些危险因素对术后AKI的预测价值。结果:共251例患者被纳入分析,术后AKI的发生率为51.8%。多因素逻辑回归分析显示术前中性粒细胞与淋巴细胞比值(NLR),以及术后1小时内的NLR、全身免疫炎症指数(SII)、全身炎症综合指数(AISI)是ATAAD患者手术后发生AKI的独立危险因素。其中术前NLR对术后发生AKI的预测价值最高(AUC = 0.7011; OR, 1.337; 95% CI: 1.021~1.750),联合预测因子对术后AKI的预测效果优于单项指标(AUC = 0.7845; OR, 1.671; 95% CI: 1.446~1.930)。结论:术前NLR、术后1小时内NLR、SII和AISI等全血细胞计数衍生的炎症指标可用于对术后AKI进行早期预测。
Abstract: Objective: To investigate the predictive value of the Complete Blood Counts (CBC) derived inflammatory indexes for postoperative acute kidney injury (AKI) in patients with Acute Type A Aortic Dissection (ATAAD). Methods: The clinical data of all patients who underwent ATAAD surgery in the Affiliated Hospital of Qingdao University from August 2021 to August 2024 were included. Multivariate logistic regression was used to identify the independent risk factors for postoperative AKI. Receiver Operating Characteristic curve (ROC) and Area under Curve (AUC) were used to analyze the predictive value of these independent risk factors for postoperative AKI. Results: A total of 251 patients were included in the analysis, with a postoperative incidence rate of AKI of 51.8%. Multivariate logistic regression analysis showed that the preoperative Neutrophil-to-Lymphocyte Ratio (NLR), as well as the NLR, Systemic Immune-Inflammation Index (SII), and Aggregate Index of Systemic Inflammation (AISI) within 1 hour after surgery, were independent risk factors for the development of AKI after surgery in patients with ATAAD. Among these, the preoperative NLR had the highest predictive value for postoperative AKI (AUC = 0.7011; OR, 1.337; 95% CI: 1.021~1.750). The combined predictive factors showed better predictive performance for postoperative AKI than individual indicators (AUC = 0.7845; OR, 1.671; 95% CI: 1.446~1.930). Conclusion: Preoperative NLR, as well as NLR, SII, and AISI within 1 hour after surgery, which are derived from complete blood cell counts, can be used for early prediction of postoperative AKI.
文章引用:刘丹, 李宗笑. 全血细胞计数衍生的炎症指标对急性A型主动脉夹层患者术后发生急性肾损伤的预测价值[J]. 临床医学进展, 2025, 15(7): 816-826. https://doi.org/10.12677/acm.2025.1572059

1. 引言

急性肾损伤(Acute Kidney Injury, AKI)是急性A型主动脉夹层(Acute Type A Aortic Dissection, ATAAD)患者术后常见的并发症,既往研究显示其发病率在25%~67%之间[1]-[4],明显高于非心脏手术患者。发生AKI往往提示预后不良,包括住院时间延长、进展为慢性肾病甚至术后死亡等[5]-[7],这将增加社会医疗负担。提前识别ATAAD患者中术后可能发生AKI的高危群体对于指导医疗行为具有重要意义:首先,有助于准确地评估患者病情及围术期出现相关并发症的风险,有利于及时指导临床干预以改善预后;此外,有助于提高医患沟通质量,提高患者的依从性,减少医患矛盾。

研究表明,炎症在ATAAD的发生、发展过程中具有重要作用[8],同时与AKI关系密切[1]。全血细胞计数(Complete Blood Counts, CBC)在临床中被广泛应用,既往研究证实,CBC衍生的炎症指标能够反映全身炎症和免疫情况,并与心脏手术后的长期生存质量相关[9]-[11]。因此,笔者设想CBC衍生的炎症指标可能与ATAAD手术后发生AKI之间存在关联,本研究拟通过观察二者间的相关性,探究CBC衍生的炎症指标对ATAAD术后AKI的预测价值。

2. 资料和方法

2.1. 研究对象

本研究为一项回顾性病例对照研究,得到了青岛大学附属医院伦理委员会的批准[伦理审查批件号:QYFYWZLL29099],收集了2021年8月至2024年8月间,所有在青岛大学附属医院接受手术治疗的急性A型主动脉夹层(Acute Type A Aortic Dissection, ATAAD)患者的临床资料。纳入标准:① 诊断为ATAAD;② 接受开胸手术治疗;③ 年龄大于18周岁;④ 签署知情同意书。排除标准:① 与本研究相关的临床资料不完整;② 既往存在慢性肾功能不全病史;③ 术前接受肾脏替代治疗;④ 术中或术后24小时内死亡;⑤ 术后24小时内再次行手术治疗;⑥ 术前长期激素应用史;⑦ 罹患血液系统疾病。共有282名患ATAAD并接受手术治疗的患者被纳入本研究。其中,4例因临床数据不完整、6例因术前接受肾脏替代治疗、18例因术中或术后24小时内死亡、3例因术后24小时内再次接受手术而被排除,最终对251名患者的临床数据进行了统计分析。

2.2. 研究方法

2.2.1. 一般资料

一般资料包括患者的基线临床特征和手术资料。基线临床特征包括性别、年龄、体质指数(Body Mass Index, BMI)、既往病史(高血压、糖尿病、主动脉夹层覆膜手术史)、手术前实验室血清学检验结果(尿素氮、肌酐、尿素氮/肌酐、白蛋白、葡萄糖、乳酸)。手术资料包括是否行全主动脉弓置换、手术时长、体外循环时长、升主动脉阻断时长、低流量灌注时长、术中液体入量、术中失血量以及术中尿量。

2.2.2. 术后急性肾损伤的诊断标准

根据KDIGO指南,术后AKI的诊断标准为:1) 血清肌酐在48小时内出现明显升高(≥0.3 mg/dL或26.5 mmol/L);2) 术后第7天的血清肌酐较术前基线值的变化 ≥ 1.5倍;3) 尿量 < 0.5 mL/kg/h持续6小时[12]

2.2.3. CBC衍生的炎症指标计算公式

收集手术前12小时内和手术后1小时内的血常规检验结果并计算:单核细胞与淋巴细胞比值(Monocyte-to-Lymphocyte Ratio, MLR);中性粒细胞与淋巴细胞比值(Neutrophil-to-Lymphocyte Ratio, NLR);中性粒细胞与血小板比值(Neutrophil-Platelet Ratio, NPR);血小板/淋巴细胞比值(Platelet-Lymphocyte Ratio, PLR);全身免疫炎症指数(Systemic Immune-Inflammation Index, SII) = 血小板计数 × 中性粒细胞计数/淋巴细胞计数;全身炎症反应指数(Systemic Inflammatory Response Index, SIRI) = 中性粒细胞计数 × 单核细胞计数/淋巴细胞计数;全身炎症综合指数(The Aggregate Index of Systemic Inflammation, AISI) = 中性粒细胞 × 血小板 × 单核细胞/淋巴细胞。

2.2.4. 手术方案

患者进入手术室后接受上下肢有创动脉血压和脑氧饱和度监护。全身麻醉后行正中胸骨切开术,选择股动脉和上腔静脉进行插管并启动体外循环(Cardiopulmonary Bypass, CPB),如果股动脉不适合插管,则选择右腋动脉进行插管。通过CPB将患者鼻咽温度降至约24℃,并注射心脏停搏液。根据患者病情选择手术类型,完成主动脉远端吻合术后恢复全身血液灌注并逐渐复温。复温期间进行主动脉近端吻合术和其他操作,然后恢复冠状动脉血流。所有患者术后均进入重症监护病房进行监护。

2.3. 统计分析

根据术后是否发生AKI将患者分为无AKI组和AKI组,使用SPSS 27.0软件对数据进行分析。首先对两组进行差异性比较,使用Shapiro-Wilk检验评估连续结果分布的正态性,正态分布计量资料描述为平均值 ± 标准差,使用独立样本t检验比较。偏态分布计量资料描述为中位数(25%分位数,75%分位数),使用Kruskal-Waills检验比较。分类资料以百分比(%)表示,使用Pearson χ2检验进行比较。通过多因素逻辑回归分析术后发生AKI的独立影响因素,并拟合多个独立影响因素构建联合预测因子模型。使用受试者工作特征曲线(Receiver Operating Characteristic curve, ROC)计算原始指标和联合预测因子的ROC曲线下面积(Area under Curve, AUC)以评价模型对术后发生AKI的预测能力。P < 0.05认为差异有统计学意义。

3. 结果

3.1. 一般资料

本研究共分析了251名患者的临床资料,其中130名患者在术后被诊断为AKI,发病率约为51.8%。组间差异性比较显示,与无AKI组患者相比,AKI组患者术前高血压的患病率更低,术前血清学检验中尿素氮、肌酐、葡萄糖和乳酸的水平更高(P < 0.05),见表1。同时,AKI组患者术中接受全主动脉弓置换的比例更高,手术时间、体外循环时间、升主动脉阻断时间和低流量灌注时间更长,术中液体入量和失血量也高于无AKI组患者(P < 0.05),见表2

Table 1. Comparison of baseline clinical characteristics

1. 基线临床特征比较

组别

n

性别(例)

年龄(岁)

BMI (kg/m2)

既往病史(例)

高血压

糖尿病

夹层覆膜 手术史

无AKI组

121

83 (68.6%)

38 (31.4%)

56.60 ± 12.55

29.79 ± 26.88

90 (74.38%)

3 (2.48%)

7 (5.79%)

AKI组

130

102 (78.5%)

28 (21.5%)

55.75 ± 12.99

27.89 ± 16.33

76 (58.46%)χ

2 (1.54%)

2 (1.54%)

组别

n

尿素氮(mmol/L)

肌酐(μmol/L)

尿素氮/肌酐

白蛋白(g/dL)

葡萄糖(mmol/L)

乳酸(mmol/L)

无AKI组

121

7.25 ± 2.69

85.95 ± 42.63

21.68 (17.09, 28.04)

37.30 ± 4.85

7.62 ± 2.57

1.65 ± 1.84

AKI组

130

8.01 ± 2.34*

98.85 ± 44.41*

21.68 (16.50, 26.05)

38.26 ± 4.46

8.55 ± 2.91*

2.39 ± 1.89*

与无AKI组比较,χχ2 = 7.091,*t = −3.155~−2.344,P < 0.05。

Table 2. Comparison of surgical data

2. 手术资料比较

组别

n

行全主动 脉弓置换术

手术时长(min)

体外循环时长(min)

升主动脉 阻断时长(min)

低流量灌注 时长(min)

液体入量(mL)

失血量(mL)

术中尿量(mL)

无AKI组

121

89 (73.5%)

390.00 (345.00, 435.00)

196 (169.00, 228.00)

129.00 (106.00, 145.00)

17.000 (14.00, 20.09)

4237.94 ± 1285.33

1133.88 ± 451.21

1573.72 ± 686.01

AKI组

130

126 (96.9%)χ

475.00 (430.00, 530.00)#

240 (193.00, 295.00)#

144.00 (117.00, 173.00)#

20.00 (17.74, 27.82)#

5008.65 ± 1138.68*

1589.23 ± 660.31*

1412.46 ± 696.51

与无AKI组比较,χχ2 = 27.858,#Z = −7.064~−3.698,*t = −6.416~−5.036,P < 0.001。

3.2. CBC衍生的炎症指标

两组间CBC衍生炎症指标的比较显示,AKI组患者术前的MLR、NLR、NPR、SII、SIRI、AISI以及术后1小时内的NPR等炎症指标明显高于非AKI组患者,而术后1小时内的PLR和SII则低于非AKI组患者(P < 0.05),见表3。两组患者术前及术后炎症指标的变化情况见表4

Table 3. Comparison of the CBC derived inflammatory indexes between the two groups

3. 两组间CBC衍生的炎症指标比较

组别

n

手术前

MLR

NLR

NPR

PLR

SII

SIRI

AISI

无AKI组

121

0.56 (0.38, 0.81)

9.57 (5.02, 13.95)

0.06 (0.03, 0.07)

160.80 (114.40, 228.89)

1541.96 (816.20, 2440.43)

5.07 (2.76, 8.65)

839.86 (447.50, 1578.68)

AKI组

130

0.84 (0.46, 1.13)#

13.61 (10.35, 20.98)#

0.07 (0.06, 0.10)#

163.81 (120.43, 262.82)

2075.01 (1444.41, 3468.50)#

10.34 (4.76, 16.66)#

1369.51 (781.06, 2313.80)#

组别

n

手术后

MLR

NLR

NPR

PLR

SII

SIRI

AISI

无AKI组

121

0.89 (0.64, 1.43)

15.02 (9.88, 21.38)

0.07 (0.05, 0.09)

214.54 (138.61, 345.28)

1690.85 (1018.57, 2986.09)

7.43 (4.88, 12.43)

901.29 (481.21, 1500.69)

AKI组

130

0.98 (0.57, 1.37)

13.80 (8.36, 19.07)

0.11 (0.07, 0.13)#

126.83 (79.66, 174.42)#

1430.23 (866.84, 1812.86)#

8.67 (5.89, 13.62)

751.69 (487.52, 1619.59)

与无AKI组比较,#Z = −6.763~−2.740,P < 0.05。

Table 4. Comparison of the CBC derived inflammatory indexes before and after surgery

4. 手术前后CBC衍生的炎症指标比较

手术前

手术后

Z

P

AKI组患者

MLR

0.84 (0.46, 1.13)

0.98 (0.57, 1.37)

−2.531

0.011#

NLR

13.61 (10.35, 20.98)

13.80 (8.36, 19.07)

−0.495

0.621

NPR

0.07 (0.06, 0.10)

0.11 (0.07, 0.13)

−4.890

<0.001#

PLR

163.81 (120.43, 262.82)

126.83 (79.66, 174.42)

−3.772

<0.001#

SII

2075.01 (1444.41, 3468.50)

1430.23 (866.84, 1812.86)

−5.115

<0.001#

SIRI

10.34 (4.76, 16.66)

8.67 (5.89, 13.63)

−0.191

0.848

AISI

1369.51 (781.06, 2313.80)

751.69 (487.52, 1619.59)

−3.762

<0.001#

非AKI组患者

MLR

0.56 (0.38, 0.82)

0.89 (0.64, 1.43)

−6.490

<0.001#

NLR

9.58 (5.02, 13.95)

15.02 (9.88, 21.38)

−6.212

<0.001#

NPR

0.06 (0.03, 0.07)

0.07 (0.05, 0.09)

−3.931

<0.001#

PLR

160.80 (114.40, 228.89)

214.55 (138.61, 345.28)

−3.391

<0.001#

SII

1541.96 (816.20, 2440.43)

1690.85 (1018.57, 2986.09)

−1.779

0.075

SIRI

5.07 (2.76, 8.65)

7.43 (4.88, 12.43)

−3.615

<0.001#

AISI

839.86 (447.50, 1578.69)

901.29 (481.21, 1500.69)

−0.293

0.770

与无AKI组比较,#P < 0.05。

3.3. 多因素逻辑回归分析

以术后是否发生AKI为因变量,将差异性分析中有统计学意义的一般资料,以及CBC衍生的炎症指标纳入多因素逻辑回归分析。分析结果显示,术前NLR (OR, 1.337; 95% CI: 1.021~1.750; P = 0.035)、术后NLR (OR, 0.861; 95% CI: 0.753~0.985; P = 0.029)、术后SII (OR, 1.002; 95% CI: 1.000~1.003; P = 0.009)以及术后AISI (OR, 0.998; 95% CI: 0.996~1.000; P = 0.037)是ATAAD患者术后发生AKI的独立影响因素,见表5。将术前NLR、术后NLR、术后SII、术后AISI分别作为协变量X1X2X3X4构建联合预测因子模型,联合预测因子方程表达式为logit(p) = −0.459 + 0.107X1 + 0.031X2 − 0.001X3,见表6

Table 5. Multivariate logistic regression analysis of factors influencing the occurrence of AKI after surgery

5. 多因素逻辑回归分析术后发生AKI的影响因素

自变量

B

S.E

Wald χ2

OR

95% CI

P

高血压病史

1.000

(Reference)

0.484

0.390

1.542

1.622

0.756~3.481

0.214

术前尿素氮

0.039

0.091

0.188

1.040

0.871~1.243

0.665

术前肌酐

0.004

0.005

0.624

1.004

0.994~1.014

0.430

术前葡萄糖

0.135

0.092

2.151

1.144

0.956~1.370

0.142

术前乳酸

−0.011

0.140

0.006

0.989

0.751~1.302

0.939

手术时长

−0.002

0.007

0.061

0.998

0.991~1.006

0.665

体外循环时长

0.004

0.008

0.276

1.004

0.989~1.020

0.599

升主动脉阻断时长

−0.002

0.007

0.061

0.998

0.984~1.012

0.805

低流量灌注时长

0.062

0.039

2.493

1.064

0.985~1.150

0.114

液体入量

0.000

0.000

0.772

1.000

1.000~1001

0.380

失血量

0.000

0.001

0.762

1.000

0.999~1.001

0.383

术前MLR

−2.384

2.020

1.393

0.092

0.002~4.832

0.238

术前NLR

0.290

0.138

4.454

1.337

1.021~1.750

0.035*

术前NPR

−22.336

13.409

2.774

0.800

0.615~1.040

0.096

术前PLR

0.002

0.008

0.060

1.002

0.987~1.017

0.807

术前SII

−0.001

0.001

1.670

0.999

0.997~1.001

0.196

术前SIRI

0.176

0.160

1.203

1.192

0.871~1.633

0.273

术前AISI

0.000

0.001

0.064

1.000

0.999~1.002

0.800

术后MLR

0.177

1.076

0.027

1.194

0.145~9.831

0.869

术后NLR

−0.149

0.068

4.762

0.861

0.753~0.985

0.029*

术后NPR

2.865

7.394

0.150

1.029

0.890~1.190

0.698

术后PLR

−0.005

0.004

1.294

0.995

0.987~1.004

0.255

术后SII

0.002

0.001

6.797

1.002

1.000~1.003

0.009*

术后SIRI

0.212

0.158

1.786

1.236

0.906~1.685

0.181

术后AISI

−0.002

0.001

4.344

0.998

0.996~1.000

0.037*

常量

−3.275

1.409

5.403

-

-

-

*P < 0.05.

Table 6. Combined predictive model

6. 联合预测因子模型

自变量

B

S.E

Wald χ2

OR

95% CI

P

术前NLR

0.107

0.022

23.858

1.113

1.066~1.162

<0.001

术后NLR

0.031

0.022

2.036

1.031

0.988~1.076

0.154

术后SII

−0.001

0.000

11.978

0.999

0.999~1.000

0.001

术后AISI

0.000

0.000

0.006

0.940

1.000~1.000

0.940

常量

−0.459

0.305

2.270

-

-

-

3.4. 联合预测因子对ATTAAD患者术后发生AKI的预测价值

通过绘制ROC曲线,计算了联合预测因子及各独立影响因素诊断术后发生AKI的AUC、最佳截断值、灵敏度、特异度分别为:联合预测因子(0.7845, 0.5196, 0.7385, 0.7603)、术前NLR (0.7011, 17.04, 0.4615, 0.9008)、术后NLR (0.5473, 14.5, 0.6308, 0.5289)、术后SII (0.6001, 1820, 0.7538, 0.4876)、术后AISI (0.5044, 1332, 0.4, 0.7355),使用联合预测因子对术后发生AKI进行预测的效果优于单项指标,见图1

Figure 1. ROC curves of combined predictors and single-indicator prediction of postoperative AKI

1. 联合预测因子和单指标预测术后AKI的ROC曲线

3.5. 不同ATAAD术式中联合预测因子对术后AKI的预测价值

术中是否行全主动脉弓置换对肾功能的影响较大,AKI组中接受全主动脉弓置换术的患者的比例明显高于非AKI组(96.9% vs 73.5%, χ2 = 27.858, P < 0.001),见表2。为分析联合预测因子在不同术式患者中预测效果的差异,根据术中是否行全主动脉弓置换将患者分入不同亚组进行单因素分析。结果显示在术中接受了全主动脉弓置换的患者群体中,联合预测因子与术后发生AKI之间存在显著相关性(OR, 1.609; 95% CI: 1.383~1.872; P < 0.001),见图2,诊断术后发生AKI的AUC、最佳截断值、灵敏度、特异度分别为0.7719、0.5195、0.7619、0.7303,见图3。但在未接受全主动脉弓置换的患者群体中,联合预测因子与术后AKI无明显相关(P > 0.05)。

Figure 2. Univariate analysis of combined predictors for postoperative AKI in different surgical procedures for type A acute aortic dissection

2. 不同ATAAD术式中联合预测因子对术后AKI的单因素分析

Figure 3. ROC curves of combined predictors for postoperative AKI in patients with different surgical procedures

3. 不同术式患者中联合预测因子预测术后AKI的ROC曲线

4. 讨论

既往研究发现围术期的炎症指标与术后AKI之间可能存在相关性[13]-[15]。本研究分析了251名接受手术治疗的ATAAD患者的临床资料,结果显示术前NLR、术后1小时内NLR、SII和AISI是ATAAD患者术后发生AKI的独立影响因素,其中术前NLR与术后AKI的关联最显著,术前NLR每增加1个单位,术后发生AKI的风险增加1.337倍。进一步的分析显示,使用逻辑回归模型拟合这4个独立指标构建新的联合预测因子,对术后发生AKI的预测效果更加良好,联合预测因子每增加1个单位,术后发生AKI的风险增加1.671倍,且灵敏度和特异度好于单项指标。

ATAAD患者大多需要接受手术治疗,并在术中根据主动脉的受损情况选择相应的手术方式,而术中接受全主动脉弓置换的患者,由于术中深低温体外循环对肾功能的影响更大[16] [17],术后发生AKI的风险高于其他术式。本研究发现术后发生AKI的患者中接受了全主动脉弓置换的比例更高,可能的原因是术中肾的缺血和再灌注损伤更加严重,引起了更剧烈的氧化应激从而加重了肾组织的炎症和损伤[18]-[20]。同时,基于4个独立炎症指标构建的联合预测因子对于全主动脉置换患者术后是否发生AKI同样有预测价值。

手术创伤引起的全身无菌性炎症与术后AKI的发生发展关系密切[21]。首先,全身炎症可导致肾血管功能失调,从而影响肾灌注并损害肾功能。此外,全身炎症使得肾组织中的肿瘤坏死因子-α (TNF-α)、白细胞介素-6 (IL-6)等细胞因子和趋化因子水平升高,引起中性粒细胞、单核细胞和淋巴细胞等免疫细胞在肾实质中浸润并激活,直接损伤肾组织细胞和肾功能[17] [22]。研究发现,ATAAD术后PCT、IL-2R和IL-6等全身炎症因子的水平高与肾损伤和不良结局明显相关[23]。而受到炎症损伤的肾组织也会向外释放促炎细胞因子/趋化因子,且肾脏清除率降低使得对炎症因子的处理能力下降,使得肾组织的炎症发生渗漏并激活远处器官的炎症通路,加剧肾外器官的炎症和损伤,从而导致预后不良[24]

免疫细胞在主动脉夹层的发展过程中发挥了重要作用[8]。中性粒细胞通过吸引单核细胞迁移和刺激巨噬细胞产生IL-1β,引起主动脉中层变性从而降低了主动脉壁的稳定性[25]-[29]。同时,中性粒细胞通过调节血小板和内皮细胞功能,影响了血栓的形成和炎性细胞对主动脉壁的浸润[30] [31]。血小板则与血栓形成与血管内皮损伤相关[32] [33]。内皮细胞损伤后会不断生成并释放趋化因子,引起持续的内皮炎症[34]。淋巴细胞的减少与不良心血管事件之间存在明显关联[35]。CBC衍生的炎症指标可以较为综合、全面地反映患者的全身免疫和炎症反应情况[36],这可能是其与心脏手术后的死亡率和不良结局发生率相关的原因[10] [23] [37]

ATAAD患者术后发生AKI往往提示预后不良。全血细胞计数检验在临床上被广泛应用,检验结果获取便捷且价格低廉,使用CBC衍生的炎症指标能够方便、快速地评估术后发生AKI的风险,有利于指导临床诊疗以期改善患者预后。然而本研究也存在一些局限性。首先,我们的研究仅纳入了来自单个临床中心的患者,后续的研究中应扩大招募患者的来源。其次,本研究排除了既往慢性肾功能不全的患者,这造成了数据缺失,使得研究结果不适用于此类患者手术前后肾功能的评估。此外,术中是否行全主动脉弓置换对肾功能结局存在影响,进一步的研究中需要更大的样本量以研究探索未接受全主动脉弓置换的患者群体术后发生AKI的预测指标。另外,本研究仅在单一数据集上进行了模型构建和内部验证,缺乏外部独立数据集的验证,后续应在其他的主动脉夹层手术患者群体中评估该模型的实际预测价值。

综上,术前NLR、术后1小时内NLR、SII和AISI等CBC衍生的炎症指标是ATAAD患者术后发生AKI的独立影响因素,基于上述单指标构建的联合预测因子对于预测ATAAD术后的AKI有一定的价值。临床上对术后发生AKI的高危患者应加强围术期管理,采取减轻全身炎症反应、改善肾灌注等措施,以减少AKI发生,提高患者术后恢复质量。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Wang, Z., Xu, J., Zhang, Y., Chen, C., Kong, C., Tang, L., et al. (2023) Prediction of Acute Kidney Injury Incidence Following Acute Type A Aortic Dissection Surgery with Novel Biomarkers: A Prospective Observational Study. BMC Medicine, 21, Article No. 503.
https://doi.org/10.1186/s12916-023-03215-9
[2] Xu, S., Wu, Z., Liu, Y., Zhu, J., Gong, M., Sun, L., et al. (2023) Influence of Preoperative Serum Albumin on Acute Kidney Injury after Aortic Surgery for Acute Type A Aortic Dissection: A Retrospective Cohort Study. Journal of Clinical Medicine, 12, Article 1581.
https://doi.org/10.3390/jcm12041581
[3] Amano, K., Takami, Y., Ishikawa, H., et al. (2020) Lower Body Ischaemic Time Is a Risk Factor for Acute Kidney Injury after Surgery for Type A Acute Aortic Dissection. Interactive CardioVascular and Thoracic Surgery, 30, 107-112.
https://doi.org/10.1093/icvts/ivz220
[4] Yang, C., Hou, P., Wang, D., Wang, Z., Duan, W., Liu, J., et al. (2022) Serum Myoglobin Is Associated with Postoperative Acute Kidney Injury in Stanford Type A Aortic Dissection. Frontiers in Medicine, 9, Article 821418.
https://doi.org/10.3389/fmed.2022.821418
[5] Bell, S. and Prowle, J. (2018) Postoperative AKI—Prevention Is Better than Cure? Journal of the American Society of Nephrology, 30, 4-6.
https://doi.org/10.1681/asn.2018111127
[6] Chawla, L.S., Eggers, P.W., Star, R.A. and Kimmel, P.L. (2014) Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. New England Journal of Medicine, 371, 58-66.
https://doi.org/10.1056/nejmra1214243
[7] Nadim, M.K., Forni, L.G., Bihorac, A., Hobson, C., Koyner, J.L., Shaw, A., et al. (2018) Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. Journal of the American Heart Association, 7, 1-23.
https://doi.org/10.1161/jaha.118.008834
[8] Del Porto, F., Proietta, M., Tritapepe, L., et al. (2010) Inflammation and Immune Response in Acute Aortic Dissection. Annals of Medicine, 42, 622-629.
https://doi.org/10.3109/07853890.2010.518156
[9] Urbanowicz, T., Olasińska-Wiśniewska, A., Michalak, M., Rodzki, M., Witkowska, A., Straburzyńska-Migaj, E., et al. (2021) The Prognostic Significance of Neutrophil to Lymphocyte Ratio (NLR), Monocyte to Lymphocyte Ratio (MLR) and Platelet to Lymphocyte Ratio (PLR) on Long-Term Survival in Off-Pump Coronary Artery Bypass Grafting (OPCAB) Procedures. Biology, 11, Article 34.
https://doi.org/10.3390/biology11010034
[10] Urbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Rodzki, M., Witkowska, A., Gąsecka, A., et al. (2022) Neutrophil Counts, Neutrophil-To-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells, 11, 1124.
https://doi.org/10.3390/cells11071124
[11] Urbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Witkowska, A., Rodzki, M., Błażejowska, E., et al. (2022) Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report. MEDICINA, 57, Article 1324.
https://doi.org/10.3390/medicina57121324
[12] Mcilroy, D.R., Bellomo, R., Billings, F.T.T., et al. (2018) Systematic Review and Consensus Definitions for the Stand-Ardised Endpoints in Perioperative Medicine (STEP) Initiative: Renal Endpoints. British Journal of Anaesthesia, 121, 1013-1024.
https://doi.org/10.1016/j.bja.2018.08.010
[13] Chen, W., Song, X., Hong, L., Xu, H., Qian, Y., Zhang, W., et al. (2022) The Association between Lymphocyte-Monocyte Ratio and Postoperative Acute Kidney Injury in Patients with Acute Type A Aortic Dissection. Journal of Cardiothoracic Surgery, 17, Article No. 60.
https://doi.org/10.1186/s13019-022-01813-x
[14] Chen, Y., Dong, K., Fang, C., et al. (2023) The Predictive Values of Monocyte-Lymphocyte Ratio in Postoperative Acute Kidney Injury and Prognosis of Patients with Stanford Type A Aortic Dissection. Frontiers in Immunology, 14, Article 1195421.
https://doi.org/10.3389/fimmu.2023.1195421
[15] Ma, X., Chen, S., Yun, Y., Zhao, D., Li, J., Wu, Z., et al. (2021) The Predictive Role of Lymphocyte-to-Monocyte Ratio in Acute Kidney Injury in Acute Debakey Type I Aortic Dissection. Frontiers in Surgery, 8, Article 704345.
https://doi.org/10.3389/fsurg.2021.704345
[16] Zhang, K., Shang, J., Chen, Y., Huo, Y., Li, B. and Hu, Z. (2021) The Prognosis and Risk Factors for Acute Kidney Injury in High-Risk Patients after Surgery for Type A Aortic Dissection in the ICU. Journal of Thoracic Disease, 13, 4427-4437.
https://doi.org/10.21037/jtd-21-823
[17] Milne, B., Gilbey, T., De Somer, F. and Kunst, G. (2023) Adverse Renal Effects Associated with Cardiopulmonary Bypass. Perfusion, 39, 452-468.
https://doi.org/10.1177/02676591231157055
[18] Lankadeva, Y.R., Okazaki, N., Evans, R.G., Bellomo, R. and May, C.N. (2019) Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Seminars in Nephrology, 39, 543-553.
https://doi.org/10.1016/j.semnephrol.2019.10.004
[19] O’Neal, J.B., Shaw, A.D. and Billings, F.T. (2016) Acute Kidney Injury Following Cardiac Surgery: Current Understanding and Future Directions. Critical Care, 20, Article No. 187.
https://doi.org/10.1186/s13054-016-1352-z
[20] Gomez, H., Ince, C., De Backer, D., Pickkers, P., Payen, D., Hotchkiss, J., et al. (2014) A Unified Theory of Sepsis-Induced Acute Kidney Injury. Inflammation, Microcirculatory Dysfunction, Bioenergetics, and the Tubular Cell Adaptation to Injury. Shock, 41, 3-11.
https://doi.org/10.1097/shk.0000000000000052
[21] Urbanowicz, T., Olasińska-Wiśniewska, A., Gładki, M. and Jemielity, M. (2022) The Significance of Simple Inflammatory Markers in off Pump Surgery—Review. Reviews in Cardiovascular Medicine, 23, Article 400.
https://doi.org/10.31083/j.rcm2312400
[22] Chew, S.T.H. and Hwang, N.C. (2019) Acute Kidney Injury after Cardiac Surgery: A Narrative Review of the Literature. Journal of Cardiothoracic and Vascular Anesthesia, 33, 1122-1138.
https://doi.org/10.1053/j.jvca.2018.08.003
[23] Liu, H., Luo, Z., Liu, L., Yang, X., Zhuang, Y., Tu, G., et al. (2019) Inflammatory Biomarkers to Predict Adverse Outcomes in Postoperative Patients with Acute Type A Aortic Dissection. Scandinavian Cardiovascular Journal, 54, 37-46.
https://doi.org/10.1080/14017431.2019.1689289
[24] Grigoryev, D.N., Liu, M., Hassoun, H.T., Cheadle, C., Barnes, K.C. and Rabb, H. (2008) The Local and Systemic Inflammatory Transcriptome after Acute Kidney Injury. Journal of the American Society of Nephrology, 19, 547-558.
https://doi.org/10.1681/asn.2007040469
[25] Ionita, M.G., van den Borne, P., Catanzariti, L.M., Moll, F.L., de Vries, J.P.M., Pasterkamp, G., et al. (2010) High Neutrophil Numbers in Human Carotid Atherosclerotic Plaques Are Associated with Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1842-1848.
https://doi.org/10.1161/atvbaha.110.209296
[26] Winter, C., Silvestre-Roig, C., Ortega-Gomez, A., Lemnitzer, P., Poelman, H., Schumski, A., et al. (2018) Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 28, 175-182.E5.
https://doi.org/10.1016/j.cmet.2018.05.002
[27] Warnatsch, A., Ioannou, M., Wang, Q. and Papayannopoulos, V. (2015) Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science, 349, 316-320.
https://doi.org/10.1126/science.aaa8064
[28] Fernández-Ruiz, I. (2019) Neutrophil-Driven SMC Death Destabilizes Atherosclerotic Plaques. Nature Reviews Cardiology, 16, Article 455.
https://doi.org/10.1038/s41569-019-0214-1
[29] Shah, A.D., Denaxas, S., Nicholas, O., Hingorani, A.D. and Hemingway, H. (2017) Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. Journal of the American College of Cardiology, 69, 1160-1169.
https://doi.org/10.1016/j.jacc.2016.12.022
[30] Sheridan, F.M., Cole, P.G. and Ramage, D. (1996) Leukocyte Adhesion to the Coronary Microvasculature during Ischemia and Reperfusion in an in Vivo Canine Model. Circulation, 93, 1784-1787.
https://doi.org/10.1161/01.cir.93.10.1784
[31] Musher, D.M., Abers, M.S. and Corrales-Medina, V.F. (2019) Acute Infection and Myocardial Infarction. New England Journal of Medicine, 380, 171-176.
https://doi.org/10.1056/nejmra1808137
[32] Wang, Z., Wang, Z. and Hu, Y. (2016) Possible Roles of Platelet-Derived Microparticles in Atherosclerosis. Atherosclerosis, 248, 10-16.
https://doi.org/10.1016/j.atherosclerosis.2016.03.004
[33] Wang, S., Chen, V. and Pasalic, L. (2016) Platelets as Biomarkers of Coronary Artery Disease. Seminars in Thrombosis and Hemostasis, 42, 223-233.
https://doi.org/10.1055/s-0036-1572328
[34] Bakogiannis, C., Sachse, M., Stamatelopoulos, K. and Stellos, K. (2019) Platelet-Derived Chemokines in Inflammation and Atherosclerosis. Cytokine, 122, Article 154157.
https://doi.org/10.1016/j.cyto.2017.09.013
[35] Núñez, J., Núñez, E., Bodí, V., Sanchis, J., Mainar, L., Miñana, G., et al. (2010) Low Lymphocyte Count in Acute Phase of ST-Segment Elevation Myocardial Infarction Predicts Long-Term Recurrent Myocardial Infarction. Coronary Artery Disease, 21, 1-7.
https://doi.org/10.1097/mca.0b013e328332ee15
[36] Dziedzic, E.A., Gąsior, J.S., Tuzimek, A. and Kochman, W. (2023) Blood Count-Derived Inflammatory Markers and Acute Complications of Ischemic Heart Disease in Elderly Women. Journal of Clinical Medicine, 12, Article 1369.
https://doi.org/10.3390/jcm12041369
[37] Bedel, C. and Selvi, F. (2019) Association of Platelet to Lymphocyte and Neutrophil to Lymphocyte Ratios with In-Hospital Mortality in Patients with Type a Acute Aortic Dissection. Brazilian Journal of Cardiovascular Surgery, 34, 694-698.
https://doi.org/10.21470/1678-9741-2018-0343