1. 引言
多属性决策是决策科学领域的一种经典决策分析方法,其核心是为决策者从有限个备选方案中遴选出最优的方案提供决策支持。传统决策方法的应用大多是以实数为评价信息背景并结合决策方法开展决策分析。然而,随着决策环境的复杂性日益趋升,决策者在决策的同时会综合考虑决策环境、决策者的心理行为和风险偏好及决策者的不确定认知等因素,以实数为评价信息的决策分析难以为当前复杂的决策问题提供有效的分析。基于此,Zadeh [1]首次提出模糊集理论并通过隶属度函数表征决策者的不确定评价信息,为模糊不确定决策理论的建立奠定了坚实的理论基础。此后。基于模糊集拓展形式如直觉模糊集[2]、区间直觉模糊集[3]、毕达哥拉斯模糊集[4]等拓展相继被提出表征不确定信息。但上述理论不能处理不一致、不精确信息,因此Smarandache [5]从哲学的角度出发提出了中智集理论并应用于决策分析领域[6]-[8]。中智集理论的提出为决策者表征不确定信息提供了更加有效的模型,使得不确定信息的表征更加精确、合理。此后,为更加全面的表征决策者提供不确定信息的认知能力,Du等[9]将中智集与Z数理论融合进而提出中智Z数的概念,允许决策者以中智集刻画不确定信息的同时提供相应信息的可靠性,更加全面、精确地表征决策者的不确定认知观点。Ye [10]提出了中智Z数环境下的一系列相似性测度并构建多属性决策方法。Ye等[11]提出了基于Dombi加权平均算子的中智Z数决策方法应用于供应商评价。Ye等[12]基于Aczel-Alsina三角模提出了一系列中智Z数Aczel-Alsina集成算子并构建决策方法。Kamran等[13]基于中智Z数和粗糙集提出了中智Z数粗糙集理论并提出了基于正弦三角算子的可持续产业评价模型。上述理论的提出为构建中智Z数的决策模型提供了理论基础,但尚未有研究发现Sugeno-Weber三角模被拓展到中智Z数构建决策方法。
WASPAS方法[14]是一种同时考虑属性的补偿性和非补偿性的新型多属性决策方法,其核心是将加权和模型和加权乘积模型的结果进行集成,得到一个鲁棒性和精确性更强的综合评估值以确定备选方案的排序。WASPAS方法的优势在于:1) 因综合考虑两种不同原理的模型而具有更强的稳定性和鲁棒性,避免了单一决策模型确定的排序结果出现歧义性;2) 计算简单直接、易于理解,无需复杂的迭代和计算过程,可以快速的得到决策结果;3) 具有一定的灵活性,其涉及的平衡系数为决策者根据实际情况灵活地调整偏好提供便利。此外,WASPAS方法的适用性高于一般决策方法,能有效地处理各种类型的决策问题。基于上述独特优势,WASPAS方法自提出以来被广泛应用于实际决策分析[15]-[17]。目前关于WASPAS方法的研究主要包括以下三个方面,1) 基于不同模糊集的基本理论提出新的模糊WASPAS决策方法[18] [19];2) 将构建的WASPAS方法应用于不同领域的实际决策问题开展决策分析[20];3) 将WASPAS方法与其他经典多属性决策方法进行融合并提出新的组合决策方法并应用于实际决策问题分析[21] [22]。迄今为止,基于中智Z数理论的WASPAS方法尚未被研究。
基于上述分析,本文的目标是提出属性权重完全未知的基于Sugeno-Weber算子的中智Z数WASPAS多属性决策方法。首先,定义了中智Z数Sugeno-Weber运算法则并提出中智Z数Sugeno-Weber加权平均和几何算子,同时讨论所提算子的性质。其次,提出了基于中智Z数得分函数的常数变异系数法权重模型确定属性的权重。再次,提出基于中智Z数Sugeno-Weber集成算子的WASPAS的多属性决策方法并应用于绿色供应商评价,基于敏感性分析和对比分析讨论所提方法的稳定性及有效性。
2. 预备知识
定义1 [9]设
为给定论域,则论域上中智Z数(NZN)子集
表示为:
, (1)
其中
,和
分别表示真隶属Z数,不确定隶属Z数和假隶属Z数且
,初始部分
表示
上的中智值,第二部分
表
示
的中智可靠性。中智Z数满足条件
和
。为简便起见,中智Z数可表示为
。
定义2 [9]设
为两个中智Z数。则
;
;
;
。
定义3 [23] 设
是一组中智Z数。则其得分函数定义为:
, (2)
其中
。对任意两个中智Z数
和
,若
,则
;若
,则
;若
,则
。
定义4 [24] Sugeno-Weber T模
和T余模
定义如下:
其中
和
表示drastic T模和S模,
和
表示product T模和S模。
3. 新的中智Z数聚合算子
本节定义基于对数函数的单值中智数运算法则并基于该法则提出了新的中智Z数加权平均算子和几
何算子。在本文
表示中智Z数集合,
是中智Z数
的权重且满足
。
3.1. 基于Sugeno-Weber模的中智Z数运算法则
定义5 设
为两个中智Z数,则
;
;
。
3.2. 中智Z数Sugeno-Weber加权平均算子
定义6 设
是一组中智Z数。NZNSWWA算子是一个映射
且
, (3)
定理1 设
是一组中智Z数。利用NZNSWWA算子集成后的结果仍是中智Z数且聚合结果可表示为
(4)
证明:定理1可有数学归纳法证明,过程如下。
首先,当
时,由于
和
均为单值中智Z数,则
是中智Z数,基于定义6可得,
因此,当
时,公式(4)成立。假设当
时,公式(4)成立。当
,

因此,当
时,公式(4)成立且聚合值仍为中智Z数。因此,公式(4)成立。
接下来,我们将探讨NZNSWWA算子的特殊性质。
性质1 (幂等性)设
是一组中智Z数。若
,则。
证明:
性质2 (单调性)设
和
是两组中智Z数 若
,
,
,
,
和
。则。
证明:因为
,则
。因此
。
。
此外,因为
,则
。因此
,
,
。
基于上述结果可得。
性质3 (有界性)设
是一组中智Z数。则。
证明:与性质2类似。
定义7 设
是一组中智Z数NZNSWOWA算子是一个映射
定义如下
(5)
其中
是
的置换使得
,
。
定理2 设
是一组中智Z数。利用NZNSWOWA算子集成后的结果仍是中智Z数,且
(6)
3.3. 中智Z数Sugeno-Weber加权几何算子
定义8 设
是一组中智Z数。NZNSWWG算子是一个映射
且
, (7)
定理3 设
是一组中智Z数。利用NZNSWWG算子集成后的结果仍是中智Z数且聚合结果可表示为
(8)
证明:与定理2相似。
NZNSWWG算子与NZNSWWA算子相似,同样具有幂等性、单调性和有界性,不再赘述。
定义9 设
是一组中智Z数,NZNSWOWG算子是一个映射
定义如下
(9)
其中
是
的置换使得
,
。
定理4 设
是一组中智Z数。利用NZNSWOWG算子集成后的结果仍是中智Z数,且
(10)
4. 基于Sugeno-Weber算子的中智Z数WASPAS多属性决策方法
本章基于中智Z数理论和所提的NZNSWWA算子,NZNSWOWA算子,NZNSWWG算子,NZNSWOWG算子和变异系数法,提出属性权重信息完全未知的WASPAS多属性决策方法。在所提方法中,评价信息由中智Z数表示,以表征评价信息的不确定性及可靠性。为确定权重信息,提出基于中智Z数得分函数的变异系数法。为获得更加可靠的决策结果,提出基于NZNSWWA算子和NZNSWWG算子的WASPAS多属性决策方法确定备选方案的优先级。
中智Z数多属性决策问题可以描述如下:设
为一组备选方案
为属性集合,其权重向量为
且满足
。专家对备选方案
在准则
下的评价值用中智Z数表示且决策矩阵表示为
。基于上述定义,所提基于
NZNSWWA和 NZNSWWG算子的中智Z数WASPAS决策方法描述如下:
步骤1:决策矩阵归一化。
在多属性决策分析过程中,为了消除原始决策矩阵中不同评价指标的量纲差异和数量级差异进而统一评价尺度,需要对原始决策矩阵进行归一化处理,将成本型属性转化为效益型属性。因此,归一化决
策矩阵
可由如下公式确定:
(11)
步骤2:确定属性权重。
属性权重是决策分析过程中的关键步骤,本文基于中智Z数变异系数法确定属性的客观权重,该方法是通过评价信息的离散程度确定属性的重要性,评价信息的变异性越大,则对备选方案的区分能力越强,应当给予更高的重要性。因此,基于中智Z数得分函数的变异系数法步骤描述如下:
步骤2.1:计算归一化中智Z数评价矩阵的得分函数矩阵
,其中
可由公式(12)计算:
(12)
步骤2.2:基于得分矩阵,计算第属性
的均值
,
可由如下公式计算:
(13)
步骤2.3:计算属性
均方差
:
(14)
步骤2.4:计算属性
的变异系数
:
(15)
步骤2.5:对各评估指标的变异系数进行归一化,计算属性
的客观权重
:
(16)
步骤3:基于NZNSWWA算子计算每个备选方案在准则下的加权和测度,公式如下:
(17)
步骤4:基于NZNSWWG算子计算每个备选方案在准则下的加权积测度,公式如下:
(18)
步骤5:计算每个备选方案的中智Z数综合测度,公式如下
(19)
其中
和
表示加权和测度和加权积测度的中智Z数得分函数,
为策略系数。
5. 实例分析
为验证本文所提方法的优良性能,本章通过案例分析、灵敏度分析和比较分析讨论所提基于中智Z数WASPAS多属性决策方法的实用性,稳定性和优越性。
5.1. 决策实施过程
绿色经济模式以资源、环境和资源再利用的闭环循环为核心,旨在通过高效利用资源并提升环境保护强度,最大程度减少资源消耗和环境成本,实现经济效益和社会效益的最大化。 因此,在绿色经济卓越发展的同时,基于资源回收再循环构建的供应链经济模式已成为重要绿色经济发展的重要趋势,其中最为关键的是如何在绿色供应链环境下科学地选择优质的绿色供应商,本研究考虑从五家候选绿色供应商(
)中遴选最优者。为评估这些供应商,决策者主要关注四个属性:交货因素(
)、成本因素(
)、产品质量因素(
)和环境因素(
)。五家供应商在这四个属性下的评价值由决策专家以中智Z数的形式给出,评价矩阵见表1。
Table 1. Neutrosophic Z-number evaluation matrix
表1. 中智Z数评价矩阵
|
|
|
|
|
|
{(0.7,0.4), (0.5,0.4), (0.4,0.3)} |
{(0.4,0.3), (0.3,0.4), (0.7,0.3)} |
{(0.8,0.2), (0.4,0.3), (0.4,0.2)} |
{(0.6,0.5), (0.7,0.4), (0.3,0.2)} |
|
{(0.6,0.45), (0.4,0.3), (0.5,0.2)} |
{(0.5,0.45), (0.5,0.3), (0.6,0.3)} |
{(0.7,0.5), (0.6,0.3), (0.3,0.2)} |
{(0.5,0.4), (0.6,0.3), (0.6,0.3)} |
|
{(0.65,0.4), (0.5,0.3), (0.7,0.4)} |
{(0. 5,0.4), (0.5,0.3), (0.7,0.4)} |
{(0.6,0.4), (0.7,0.4), (0.3,0.2)} |
{(0.8,0.45), (0.7,0.35), (0.5,0.2)} |
|
{(0.6,0.3), (0.5,0.5), (0.5,0.2)} |
{(0.3,0.3), (0.5,0.5), (0.8,0.4)} |
{(0.7,0.3), (0.8,0.3), (0.3,0.2)} |
{(0.8,0.3), (0.6,0.3), (0.7,0.3)} |
|
{(0.5,0.4), (0.5,0.3), (0.4,0.2)} |
{(0.4,0.45), (0.7,0.4), (0.7,0.3)} |
{(0.6,0.4), (0.9,0.5), (0.6,0.4)} |
{(0.6,0.3), (0.6,0.3), (0.4,0.2)} |
步骤1:通过公式(11)计算归一化的中智Z数评价矩阵,如表2所示。
Table 2. Normalized neutrosophic Z-number evaluation matrix
表2. 归一化的中智Z数评价矩阵
|
|
|
|
|
|
{(0.7,0.4), (0.5,0.4), (0.4,0.3)} |
{(0.7,0.3), (0.7,0.6), (0.4,0.3)} |
{(0.8,0.2), (0.4,0.3), (0.4,0.2)} |
{(0.6,0.5), (0.7,0.4), (0.3,0.2)} |
|
{(0.6,0.45), (0.4,0.3), (0.5,0.2)} |
{(0.6,0.3), (0.5,0.7), (0.5,0.45)} |
{(0.7,0.5), (0.6,0.3), (0.3,0.2)} |
{(0.5,0.4), (0.6,0.3), (0.6,0.3)} |
|
{(0.65,0.4), (0.5,0.3), (0.7,0.4)} |
{(0. 7,0.4), (0.5,0.7), (0.5,0.4)} |
{(0.6,0.4), (0.7,0.4), (0.3,0.2)} |
{(0.8,0.45), (0.7,0.35), (0.5,0.2)} |
|
{(0.6,0.3), (0.5,0.5), (0.5,0.2)} |
{(0.8,0.4), (0.5,0.5), (0.3,0.3)} |
{(0.7,0.3), (0.8,0.3), (0.3,0.2)} |
{(0.8,0.3), (0.6,0.3), (0.7,0.3)} |
|
{(0.5,0.4), (0.5,0.3), (0.4,0.2)} |
{(0.7,0.3), (0.3,0.6), (0.4,0.45)} |
{(0.6,0.4), (0.9,0.5), (0.6,0.4)} |
{(0.6,0.3), (0.6,0.3), (0.4,0.2)} |
步骤2:确定属性权重。
步骤2.1:通过公式(12)计算归一化中智Z数评价矩阵的得分函数矩阵,如表3所示。
Table 3. The score function matrix of the normalized neutrosophic Z-number evaluation matrix
表3. 归一化中智Z数评价矩阵的得分函数矩阵
|
|
|
|
|
|
0.6640 |
0.5872 |
0.6608 |
0.6613 |
|
0.6831 |
0.5774 |
0.6994 |
0.6359 |
|
0.6328 |
0.6077 |
0.6459 |
0.6791 |
|
0.6317 |
0.6686 |
0.6488 |
0.6385 |
|
0.6635 |
0.6382 |
0.5579 |
0.6523 |
步骤2.2:通过公式(13)计算属性
的均值
如下:
。
步骤2.3:通过公式(14)计算属性
均方差
如下:
。
步骤2.4:通过公式(15)计算属性
的变异系数
如下:
。
步骤2.5:通过公式(16)计算属性
的客观权重
如下:
。
步骤3:通过公式(17) (
)计算每个备选方案在准则下的加权和测度:
,
,
,
,
。
步骤4:通过公式(18) (
)计算每个备选方案在准则下的加权积测度:
,
,
,
,
。
步骤5:通过公式(19)计算每个备选方案的中智Z数综合测度
,计算结果如表4所示,从表可得备选绿色供应商的排序为
。
Table 4. Neutrosophic Z-number comprehensive measures
表4. 中智Z数综合测度
|
|
排序 |
|
排序 |
|
排序 |
|
0.6483 |
3 |
0.6435 |
3 |
0.6459 |
3 |
|
0.6565 |
1 |
0.6479 |
1 |
0.6522 |
1 |
|
0.6422 |
4 |
0.6342 |
4 |
0.6382 |
4 |
|
0.6499 |
2 |
0.6443 |
2 |
0.6471 |
2 |
|
0.6224 |
5 |
0.6090 |
5 |
0.6157 |
5 |
5.2. 灵敏度分析
本节将对所提中智Z数决策方法中涉及的参数进行讨论进而分析所提方法的鲁棒性和稳定性。
1) 关于参数
的分析。本节选取NZNSWWA算子和NZNSWWG算子中不同的参数
值,应用所提决策方法得到不同参数值下的绿色供应商综合测度和排序结果如表5所示。从表中可发现无论
值如何变化,绿色供应商的排序结果均为
,说明所提方法是稳定的。
Table 5. Green supplier evaluation and prioritization results under varying parameter
values
表5. 基于不同参数
值的绿色供应商综合测度和排序结果
|
|
|
|
|
|
排序 |
1 |
0.6463 |
0.6522 |
0.6382 |
0.6472 |
0.6160 |
|
2 |
0.6459 |
0.6522 |
0.6382 |
0.6471 |
0.6157 |
|
3 |
0.6456 |
0.6522 |
0.6382 |
0.6471 |
0.6155 |
|
4 |
0.6455 |
0.6522 |
0.6382 |
0.6471 |
0.6153 |
|
5 |
0.6453 |
0.6522 |
0.6382 |
0.6471 |
0.6151 |
|
6 |
0.6452 |
0.6522 |
0.6382 |
0.6470 |
0.6150 |
|
7 |
0.6452 |
0.6522 |
0.6382 |
0.6470 |
0.6149 |
|
8 |
0.6451 |
0.6522 |
0.6382 |
0.6470 |
0.6148 |
|
9 |
0.6451 |
0.6522 |
0.6382 |
0.6470 |
0.6147 |
|
2) 关于参数
的分析。本节选取WASPAS方法中不同的参数
值,应用所提中智Z数WASPAS决策方法得到不同参数值下的绿色供应商综合测度和排序变化如图1所示。从图中可发现随着
值的不断增大,绿色供应商的综合测度随之增大,但是不同参数下的绿色供应商排序结果仍然是
,说明所提方法是稳定的。决策者可通过选取不同参数分析加权和测度和加权积测度在整体决策结果的比重来综合确定绿色供应商的排序。
Figure 1. Comprehensive evaluation and ranking results of suppliers based on different parameter
values
图1. 基于不同参数
值的供应商综合测度和排序结果
为验证本文所提方法的合理性和优越性,将所提方法与文献中基于中智Z数加权平均(NZNWA)算子[9]、基于中智Z数加权几何(NZNWG)算子[9]、中智Z数Dombi加权平均(NZNDWA)算子[11]和中智Z数Aczel-Alsina加权平均(NZNAAWA)算子[12]进行对比分析。基于本文的决策矩阵和准则权重,备选的绿色供应商排序如表6所示。从表6可知,所提方法得到的排序与现有方法得到的供应商排序有细微差异,但是最优选项是一致的,说明了所提方法的有效性,其原因在于所提方法综合考虑了属性的补偿性和非补偿性,使得所得结果鲁棒性和精确性更强。
Table 6. Decision-making outcomes across various methodologies
表6. 不同方法的决策结果
|
绿色供应商综合测度 |
排序 |
|
|
|
|
|
NZNWA算子[9] |
0.6536 |
0.6612 |
0.6467 |
0.6530 |
0.6289 |
|
NZNWG算子[9] |
0.6393 |
0.6433 |
0.6297 |
0.6407 |
0.5978 |
|
NZNDWA算子[11] |
0.6805 |
0.6840 |
0.6713 |
0.6714 |
0.6660 |
|
NZNAAWA算子[12] |
0.6710 |
0.6760 |
0.6620 |
0.6649 |
0.6537 |
|
所提方法 |
0.6459 |
0.6522 |
0.6382 |
0.6471 |
0.6157 |
|
6. 结论
本文针对评估信息兼具不确定性与可靠性、属性权重完全未知的复杂决策场景,提出了一种基于中智Z数与WASPAS框架的多属性决策方法。首先,基于Sugeno-Weber三角模构建了中智Z数的新型运算法则,提出四种加权聚合算子(算术平均与几何平均形式),并严格证明了幂等性、有界性等数学性质,为信息融合提供了更灵活的工具。其次,提出了基于中智Z数得分函数的常数变异系数法,有效解决了属性权重完全未知的情形。此外,通过集成所提算子,构建了改进的WASPAS决策模型。最后通过绿色供应商评价验证了所提中智Z数WASPAS决策模型的适用性。未来的研究将聚焦于动态群决策,大群体决策模型构建及语言Z数决策理论与方法的深入研究,同时在属性权重确定方面考虑主观权重方法(SWARA、BWM、FUCOM等)确定权重信息或考虑组合权重方法确定属性的权重信息,提升权重信息合理性的同时提高决策结果的准确性。
基金项目
数值仿真四川省高等学校重点实验室开放研究项目(Grant. 2024SZFZ002)。
NOTES
*通讯作者。