[1]
|
Goldstein, B., Giroir, B. and Randolph, A. (2005) International Pediatric Sepsis Consensus Conference: Definitions for Sepsis and Organ Dysfunction in Pediatrics. Pediatric Critical Care Medicine, 6, 2-8. https://doi.org/10.1097/01.pcc.0000149131.72248.e6
|
[2]
|
Guarino, M., Perna, B., Cesaro, A.E., Maritati, M., Spampinato, M.D., Contini, C., et al. (2023) 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. Journal of Clinical Medicine, 12, Article 3188. https://doi.org/10.3390/jcm12093188
|
[3]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Journal of the American Medical Association, 315, Article 801. https://doi.org/10.1001/jama.2016.0287
|
[4]
|
Fleischmann-Struzek, C., Goldfarb, D.M., Schlattmann, P., Schlapbach, L.J., Reinhart, K. and Kissoon, N. (2018) The Global Burden of Paediatric and Neonatal Sepsis: A Systematic Review. The Lancet Respiratory Medicine, 6, 223-230. https://doi.org/10.1016/s2213-2600(18)30063-8
|
[5]
|
Balamuth, F., Weiss, S.L., Neuman, M.I., Scott, H., Brady, P.W., Paul, R., et al. (2014) Pediatric Severe Sepsis in U.S. Children’s Hospitals. Pediatric Critical Care Medicine, 15, 798-805. https://doi.org/10.1097/pcc.0000000000000225
|
[6]
|
Odetola, F.O., Gebremariam, A. and Freed, G.L. (2007) Patient and Hospital Correlates of Clinical Outcomes and Resource Utilization in Severe Pediatric Sepsis. Pediatrics, 119, 487-494. https://doi.org/10.1542/peds.2006-2353
|
[7]
|
Schlapbach, L.J., MacLaren, G., Festa, M., Alexander, J., Erickson, S., Beca, J., et al. (2017) Prediction of Pediatric Sepsis Mortality within 1 H of Intensive Care Admission. Intensive Care Medicine, 43, 1085-1096. https://doi.org/10.1007/s00134-017-4701-8
|
[8]
|
Weiss, S.L., Balamuth, F., Hensley, J., Fitzgerald, J.C., Bush, J., Nadkarni, V.M., et al. (2017) The Epidemiology of Hospital Death Following Pediatric Severe Sepsis: When, Why, and How Children with Sepsis Die. Pediatric Critical Care Medicine, 18, 823-830. https://doi.org/10.1097/pcc.0000000000001222
|
[9]
|
Cvetkovic, M., Lutman, D., Ramnarayan, P., Pathan, N., Inwald, D.P. and Peters, M.J. (2015) Timing of Death in Children Referred for Intensive Care with Severe Sepsis. Pediatric Critical Care Medicine, 16, 410-417. https://doi.org/10.1097/pcc.0000000000000385
|
[10]
|
Huang, M., Cai, S. and Su, J. (2019) The Pathogenesis of Sepsis and Potential Therapeutic Targets. International Journal of Molecular Sciences, 20, Article 5376. https://doi.org/10.3390/ijms20215376
|
[11]
|
Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820. https://doi.org/10.1016/j.cell.2010.01.022
|
[12]
|
D'Elia, R.V., Harrison, K., Oyston, P.C., Lukaszewski, R.A. and Clark, G.C. (2013) Targeting the “Cytokine Storm” for Therapeutic Benefit. Clinical and Vaccine Immunology, 20, 319-327. https://doi.org/10.1128/cvi.00636-12
|
[13]
|
Efron, P.A., Martins, A., Minnich, D., Tinsley, K., Ungaro, R., Bahjat, F.R., et al. (2004) Characterization of the Systemic Loss of Dendritic Cells in Murine Lymph Nodes during Polymicrobial Sepsis. The Journal of Immunology, 173, 3035-3043. https://doi.org/10.4049/jimmunol.173.5.3035
|
[14]
|
Cheng, S., Scicluna, B.P., Arts, R.J.W., Gresnigt, M.S., Lachmandas, E., Giamarellos-Bourboulis, E.J., et al. (2016) Broad Defects in the Energy Metabolism of Leukocytes Underlie Immunoparalysis in Sepsis. Nature Immunology, 17, 406-413. https://doi.org/10.1038/ni.3398
|
[15]
|
Quoilin, C., Mouithys-Mickalad, A., Lécart, S., Fontaine-Aupart, M. and Hoebeke, M. (2014) Evidence of Oxidative Stress and Mitochondrial Respiratory Chain Dysfunction in an in Vitro Model of Sepsis-Induced Kidney Injury. Biochimica et Biophysica Acta—Bioenergetics, 1837, 1790-1800. https://doi.org/10.1016/j.bbabio.2014.07.005
|
[16]
|
Blackburn, R.M., Muller-Pebody, B., Planche, T., Johnson, A., Hopkins, S., Sharland, M., et al. (2012) Neonatal Sepsis – Many Blood Samples, Few Positive Cultures: Implications for Improving Antibiotic Prescribing. Archives of Disease in Childhood—Fetal and Neonatal Edition, 97, 487-488. https://doi.org/10.1136/archdischild-2012-302261
|
[17]
|
Ottolini, M.C., Lundgren, K., Mirkinson, L.J., Cason, S. and Ottolini, M.G. (2003) Utility of Complete Blood Count and Blood Culture Screening to Diagnose Neonatal Sepsis in the Asymptomatic at Risk Newborn. Pediatric Infectious Disease Journal, 22, 430-434. https://doi.org/10.1097/01.inf.0000068206.11303.dd
|
[18]
|
Weiss, S.L., Fitzgerald, J.C., Balamuth, F., Alpern, E.R., Lavelle, J., Chilutti, M., et al. (2014) Delayed Antimicrobial Therapy Increases Mortality and Organ Dysfunction Duration in Pediatric Sepsis. Critical Care Medicine, 42, 2409-2417. https://doi.org/10.1097/ccm.0000000000000509
|
[19]
|
Kumar, A., Ellis, P., Arabi, Y., Roberts, D., Light, B., Parrillo, J.E., et al. (2009) Initiation of Inappropriate Antimicrobial Therapy Results in a Fivefold Reduction of Survival in Human Septic Shock. Chest, 136, 1237-1248. https://doi.org/10.1378/chest.09-0087
|
[20]
|
Opota, O., Jaton, K. and Greub, G. (2015) Microbial Diagnosis of Bloodstream Infection: Towards Molecular Diagnosis Directly from Blood. Clinical Microbiology and Infection, 21, 323-331. https://doi.org/10.1016/j.cmi.2015.02.005
|
[21]
|
Jordana-Lluch, E., Giménez, M., Quesada, M.D., Rivaya, B., Marcó, C., Domínguez, M.J., et al. (2015) Evaluation of the Broad-Range PCR/ESI-MS Technology in Blood Specimens for the Molecular Diagnosis of Bloodstream Infections. PLOS ONE, 10, e0140865. https://doi.org/10.1371/journal.pone.0140865
|
[22]
|
Vincent, J., Brealey, D., Libert, N., Abidi, N.E., O’Dwyer, M., Zacharowski, K., et al. (2015) Rapid Diagnosis of Infection in the Critically Ill, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections. Critical Care Medicine, 43, 2283-2291. https://doi.org/10.1097/ccm.0000000000001249
|
[23]
|
Dien Bard, J. and Mc-Elvania TeKippe, E. (2016) Diagnosis of Bloodstream Infections in Children. Journal of Clinical Microbiology, 54, 1418-1424. https://doi.org/10.1128/jcm.02919-15
|
[24]
|
Lehmann, L.E., Hunfeld, K., Emrich, T., Haberhausen, G., Wissing, H., Hoeft, A., et al. (2007) A Multiplex Real-Time PCR Assay for Rapid Detection and Differentiation of 25 Bacterial and Fungal Pathogens from Whole Blood Samples. Medical Microbiology and Immunology, 197, 313-324. https://doi.org/10.1007/s00430-007-0063-0
|
[25]
|
Lucignano, B., Ranno, S., Liesenfeld, O., Pizzorno, B., Putignani, L., Bernaschi, P., et al. (2011) Multiplex PCR Allows Rapid and Accurate Diagnosis of Bloodstream Infections in Newborns and Children with Suspected Sepsis. Journal of Clinical Microbiology, 49, 2252-2258. https://doi.org/10.1128/jcm.02460-10
|
[26]
|
Tuerk, C. and Gold, L. (1990) Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science, 249, 505-510. https://doi.org/10.1126/science.2200121
|
[27]
|
Ellington, A.D. and Szostak, J.W. (1990) In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature, 346, 818-822. https://doi.org/10.1038/346818a0
|
[28]
|
Meek, K.N., Rangel, A.E. and Heemstra, J.M. (2016) Enhancing Aptamer Function and Stability via in Vitro Selection Using Modified Nucleic Acids. Methods, 106, 29-36. https://doi.org/10.1016/j.ymeth.2016.03.008
|
[29]
|
Xu, L., Dai, Q., Shi, Z., Liu, X., Gao, L., Wang, Z., et al. (2020) Accurate MRSA Identification through Dual-Functional Aptamer and Crispr-Cas12a Assisted Rolling Circle Amplification. Journal of Microbiological Methods, 173, Article 105917. https://doi.org/10.1016/j.mimet.2020.105917
|
[30]
|
Fohner, A.E., Greene, J.D., Lawson, B.L., Chen, J.H., Kipnis, P., Escobar, G.J., et al. (2019) Assessing Clinical Heterogeneity in Sepsis through Treatment Patterns and Machine Learning. Journal of the American Medical Informatics Association, 26, 1466-1477. https://doi.org/10.1093/jamia/ocz106
|
[31]
|
Williams, M.D., Braun, L.A., Cooper, L.M., Johnston, J., Weiss, R.V., Qualy, R.L., et al. (2004) Hospitalized Cancer Patients with Severe Sepsis: Analysis of Incidence, Mortality, and Associated Costs of Care. Critical Care, 8, R291. https://doi.org/10.1186/cc2893
|
[32]
|
Protti, A., Fortunato, F., Artoni, A., Lecchi, A., Motta, G., Mistraletti, G., et al. (2015) Platelet Mitochondrial Dysfunction in Critically Ill Patients: Comparison between Sepsis and Cardiogenic Shock. Critical Care, 19, Article No. 39. https://doi.org/10.1186/s13054-015-0762-7
|
[33]
|
Tranca, S.D., Petrisor, C.L. and Hagau, N. (2014) Biomarkers in Polytrauma Induced Systemic Inflammatory Response Syndrome and Sepsis—A Narrative Review. Romanian Journal of Anaesthesia and Intensive Care, 21, 118-122.
|
[34]
|
Liu, Y., Hou, J., Li, Q., Chen, K., Wang, S. and Wang, J. (2016) Biomarkers for Diagnosis of Sepsis in Patients with Systemic Inflammatory Response Syndrome: A Systematic Review and Meta-Analysis. SpringerPlus, 5, Article No. 2091. https://doi.org/10.1186/s40064-016-3591-5
|
[35]
|
Hedegaard, S.S., Wisborg, K. and Hvas, A. (2014) Diagnostic Utility of Biomarkers for Neonatal Sepsis—A Systematic Review. Infectious Diseases, 47, 117-124. https://doi.org/10.3109/00365548.2014.971053
|
[36]
|
Hédou, J., Marić, I., Bellan, G., Einhaus, J., Gaudillière, D.K., Ladant, F., et al. (2024) Discovery of Sparse, Reliable Omic Biomarkers with Stabl. Nature Biotechnology, 42, 1581-1593. https://doi.org/10.1038/s41587-023-02033-x
|
[37]
|
Persson, I., Macura, A., Becedas, D. and Sjövall, F. (2024) Early Prediction of Sepsis in Intensive Care Patients Using the Machine Learning Algorithm NAVOY Sepsis, a Prospective Randomized Clinical Validation Study. Journal of Critical Care, 80, Article 154400. https://doi.org/10.1016/j.jcrc.2023.154400
|