[1]
|
Urra, H., Dufey, E., Avril, T., Chevet, E. and Hetz, C. (2016) Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends in Cancer, 2, 252-262. https://doi.org/10.1016/j.trecan.2016.03.007
|
[2]
|
Wang, W., Groenendyk, J. and Michalak, M. (2014) Endoplasmic Reticulum Stress Associated Responses in Cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843, 2143-2149. https://doi.org/10.1016/j.bbamcr.2014.01.012
|
[3]
|
Zito, E., Guarrera, L. and Janssen-Heininger, Y.M.W. (2024) Fingerprint of the Oxido-Reductase ERO1: A Protein Disulfide Bond Producer and Supporter of Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article 189027. https://doi.org/10.1016/j.bbcan.2023.189027
|
[4]
|
Sevier, C.S. and Kaiser, C.A. (2008) Ero1 and Redox Homeostasis in the Endoplasmic Reticulum. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783, 549-556. https://doi.org/10.1016/j.bbamcr.2007.12.011
|
[5]
|
Chen, P., Sharma, A., Weiher, H. and Schmidt-Wolf, I.G.H. (2024) Biological Mechanisms and Clinical Significance of Endoplasmic Reticulum Oxidoreductase 1 Alpha (ERO1α) in Human Cancer. Journal of Experimental & Clinical Cancer Research, 43, Article No. 71. https://doi.org/10.1186/s13046-024-02990-4
|
[6]
|
Li, G., Mongillo, M., Chin, K., Harding, H., Ron, D., Marks, A.R., et al. (2009) Role of ERO1-Α-Mediated Stimulation of Inositol 1,4,5-Triphosphate Receptor Activity in Endoplasmic Reticulum Stress-Induced Apoptosis. Journal of Cell Biology, 186, 783-792. https://doi.org/10.1083/jcb.200904060
|
[7]
|
Spina, A., Guidarelli, A., Fiorani, M., Varone, E., Catalani, A., Zito, E., et al. (2022) Crosstalk between ERO1α and Ryanodine Receptor in Arsenite-Dependent Mitochondrial ROS Formation. Biochemical Pharmacology, 198, Article 114973. https://doi.org/10.1016/j.bcp.2022.114973
|
[8]
|
Liu, L., Wang, C., Li, S., Qu, Y., Xue, P., Ma, Z., et al. (2021) ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment. Frontiers in Immunology, 12, Article 677169. https://doi.org/10.3389/fimmu.2021.677169
|
[9]
|
Pagani, M., Fabbri, M., Benedetti, C., Fassio, A., Pilati, S., Bulleid, N.J., et al. (2000) Endoplasmic Reticulum Oxidoreductin 1-Lβ (ERO1-Lβ), a Human Gene Induced in the Course of the Unfolded Protein Response. Journal of Biological Chemistry, 275, 23685-23692. https://doi.org/10.1074/jbc.m003061200
|
[10]
|
Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R. and Suzuki, M. (2010) Crystal Structures of Human Ero1α Reveal the Mechanisms of Regulated and Targeted Oxidation of PDI. The EMBO Journal, 29, 3330-3343. https://doi.org/10.1038/emboj.2010.222
|
[11]
|
Araki, K. and Inaba, K. (2012) Structure, Mechanism, and Evolution of Ero1 Family Enzymes. Antioxidants & Redox Signaling, 16, 790-799. https://doi.org/10.1089/ars.2011.4418
|
[12]
|
Benham, A.M. (2000) The CXXCXXC Motif Determines the Folding, Structure and Stability of Human Ero1-lα. The EMBO Journal, 19, 4493-4502. https://doi.org/10.1093/emboj/19.17.4493
|
[13]
|
Shergalis, A.G., Hu, S., Bankhead, A. and Neamati, N. (2020) Role of the ERO1-PDI Interaction in Oxidative Protein Folding and Disease. Pharmacology & Therapeutics, 210, Article 107525. https://doi.org/10.1016/j.pharmthera.2020.107525
|
[14]
|
Puig, A. and Gilbert, H.F. (1994) Protein Disulfide Isomerase Exhibits Chaperone and Anti-Chaperone Activity in the Oxidative Refolding of Lysozyme. Journal of Biological Chemistry, 269, 7764-7771. https://doi.org/10.1016/s0021-9258(17)37352-0
|
[15]
|
Malhotra, J.D. and Kaufman, R.J. (2007) Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxidants & Redox Signaling, 9, 2277-2294. https://doi.org/10.1089/ars.2007.1782
|
[16]
|
Reth, M. (2002) Hydrogen Peroxide as Second Messenger in Lymphocyte Activation. Nature Immunology, 3, 1129-1134. https://doi.org/10.1038/ni1202-1129
|
[17]
|
Bassot, A., Chen, J., Takahashi-Yamashiro, K., Yap, M.C., Gibhardt, C.S., Le, G.N.T., et al. (2023) The Endoplasmic Reticulum Kinase PERK Interacts with the Oxidoreductase ERO1 to Metabolically Adapt Mitochondria. Cell Reports, 42, Article 111899. https://doi.org/10.1016/j.celrep.2022.111899
|
[18]
|
Dias-Gunasekara, S., Gubbens, J., van Lith, M., Dunne, C., Williams, J.A.G., Kataky, R., et al. (2005) Tissue-Specific Expression and Dimerization of the Endoplasmic Reticulum Oxidoreductase Ero1β. Journal of Biological Chemistry, 280, 33066-33075. https://doi.org/10.1074/jbc.m505023200
|
[19]
|
May, D., Itin, A., Gal, O., Kalinski, H., Feinstein, E. and Keshet, E. (2004) Ero1-lα Plays a Key Role in a HIF-1-Mediated Pathway to Improve Disulfide Bond Formation and VEGF Secretion under Hypoxia: Implication for Cancer. Oncogene, 24, 1011-1020. https://doi.org/10.1038/sj.onc.1208325
|
[20]
|
Zhang, Y., Li, T., Zhang, L., Shangguan, F., Shi, G., Wu, X., et al. (2019) Targeting the Functional Interplay between Endoplasmic Reticulum Oxidoreductin-1α and Protein Disulfide Isomerase Suppresses the Progression of Cervical Cancer. EBioMedicine, 41, 408-419. https://doi.org/10.1016/j.ebiom.2019.02.041
|
[21]
|
Kutomi, G., Tamura, Y., Tanaka, T., Kajiwara, T., Kukita, K., Ohmura, T., et al. (2013) Human Endoplasmic Reticulum Oxidoreductin 1‐α Is a Novel Predictor for Poor Prognosis of Breast Cancer. Cancer Science, 104, 1091-1096. https://doi.org/10.1111/cas.12177
|
[22]
|
Seol, S., Kim, C., Lim, J.Y., Yoon, S.O., Hong, S.W., Kim, J.W., et al. (2016) Overexpression of Endoplasmic Reticulum Oxidoreductin 1-α (ERO1L) Is Associated with Poor Prognosis of Gastric Cancer. Cancer Research and Treatment, 48, 1196-1209. https://doi.org/10.4143/crt.2015.189
|
[23]
|
Yang, S., Yang, C., Yu, F., Ding, W., Hu, Y., Cheng, F., et al. (2018) Endoplasmic Reticulum Resident Oxidase ERO1-Lalpha Promotes Hepatocellular Carcinoma Metastasis and Angiogenesis through the S1PR1/STAT3/VEGF-A Pathway. Cell Death & Disease, 9, Article No. 1105. https://doi.org/10.1038/s41419-018-1134-4
|
[24]
|
Zhang, J., Yang, J., Lin, C., Liu, W., Huo, Y., Yang, M., et al. (2020) Endoplasmic Reticulum Stress-Dependent Expression of ERO1L Promotes Aerobic Glycolysis in Pancreatic Cancer. Theranostics, 10, 8400-8414. https://doi.org/10.7150/thno.45124
|
[25]
|
Wang, Z., Zong, H., Liu, W., Lin, W., Sun, A., Ding, Z., et al. (2024) Augmented ERO1α Upon mTORC1 Activation Induces Ferroptosis Resistance and Tumor Progression via Upregulation of SLC7A11. Journal of Experimental & Clinical Cancer Research, 43, Article No. 112. https://doi.org/10.1186/s13046-024-03039-2
|
[26]
|
Xie, J., Liao, G., Feng, Z., Liu, B., Li, X. and Qiu, M. (2022) ERO1L Promotes the Proliferation and Metastasis of Lung Adenocarcinoma via the Wnt2/β-Catenin Signaling Pathway. Molecular Carcinogenesis, 61, 897-909. https://doi.org/10.1002/mc.23441
|
[27]
|
Wu, M., Li, R., Qin, J., Wang, Z., Guo, J., Lv, F., et al. (2023) ERO1α Promotes the Proliferation and Inhibits Apoptosis of Colorectal Cancer Cells by Regulating the PI3K/AKT Pathway. Journal of Molecular Histology, 54, 621-631. https://doi.org/10.1007/s10735-023-10149-2
|
[28]
|
Varone, E., Decio, A., Barbera, M.C., Bolis, M., Di Rito, L., Pisati, F., et al. (2022) Endoplasmic Reticulum Oxidoreductin 1-Alpha Deficiency and Activation of Protein Translation Synergistically Impair Breast Tumour Resilience. British Journal of Pharmacology, 179, 5180-5195. https://doi.org/10.1111/bph.15927
|
[29]
|
Nishida, N., Yano, H., Nishida, T., Kamura, T. and Kojiro, M. (2006) Angiogenesis in Cancer. Vascular Health and Risk Management, 2, 213-219. https://doi.org/10.2147/vhrm.2006.2.3.213
|
[30]
|
Zilli, F., Marques Ramos, P., Auf der Maur, P., Jehanno, C., Sethi, A., Coissieux, M., et al. (2021) The NFIB‐ERO1A Axis Promotes Breast Cancer Metastatic Colonization of Disseminated Tumour Cells. EMBO Molecular Medicine, 13, e13162. https://doi.org/10.15252/emmm.202013162
|
[31]
|
Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., et al. (2016) Cancer-Associated Oxidoreductase ERO1-α Drives the Production of VEGF via Oxidative Protein Folding and Regulating the mRNA Level. British Journal of Cancer, 114, 1227-1234. https://doi.org/10.1038/bjc.2016.105
|
[32]
|
Varone, E., Decio, A., Chernorudskiy, A., Minoli, L., Brunelli, L., Ioli, F., et al. (2021) The ER Stress Response Mediator ERO1 Triggers Cancer Metastasis by Favoring the Angiogenic Switch in Hypoxic Conditions. Oncogene, 40, 1721-1736. https://doi.org/10.1038/s41388-021-01659-y
|
[33]
|
Wang, Y., Alam, G.N., Ning, Y., Visioli, F., Dong, Z., Nör, J.E., et al. (2012) The Unfolded Protein Response Induces the Angiogenic Switch in Human Tumor Cells through the PERK/ATF4 Pathway. Cancer Research, 72, 5396-5406. https://doi.org/10.1158/0008-5472.can-12-0474
|
[34]
|
Waypa, G.B., Marks, J.D., Guzy, R., Mungai, P.T., Schriewer, J., Dokic, D., et al. (2010) Hypoxia Triggers Subcellular Compartmental Redox Signaling in Vascular Smooth Muscle Cells. Circulation Research, 106, 526-535. https://doi.org/10.1161/circresaha.109.206334
|
[35]
|
Pitt, J.M., Marabelle, A., Eggermont, A., Soria, J.-., Kroemer, G. and Zitvogel, L. (2016) Targeting the Tumor Microenvironment: Removing Obstruction to Anticancer Immune Responses and Immunotherapy. Annals of Oncology, 27, 1482-1492. https://doi.org/10.1093/annonc/mdw168
|
[36]
|
Liu, L., Li, S., Qu, Y., Bai, H., Pan, X., Wang, J., et al. (2023) Ablation of ERO1A Induces Lethal Endoplasmic Reticulum Stress Responses and Immunogenic Cell Death to Activate Anti-Tumor Immunity. Cell Reports Medicine, 4, Article 101206. https://doi.org/10.1016/j.xcrm.2023.101206
|
[37]
|
Tanaka, T., Kajiwara, T., Torigoe, T., Okamoto, Y., Sato, N. and Tamura, Y. (2015) Cancer-Associated Oxidoreductase Ero1-α Drives the Production of Tumor-Promoting Myeloid-Derived Suppressor Cells via Oxidative Protein Folding. The Journal of Immunology, 194, 2004-2010. https://doi.org/10.4049/jimmunol.1402538
|
[38]
|
Tay, A.H.M., Cinotti, R., Sze, N.S.K. and Lundqvist, A. (2023) Inhibition of Ero1a and IDO1 Improves Dendritic Cell Infiltration into Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 14, Article 1264012. https://doi.org/10.3389/fimmu.2023.1264012
|
[39]
|
Hurst, K.E., Lawrence, K.A., Essman, M.T., Walton, Z.J., Leddy, L.R. and Thaxton, J.E. (2019) Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8+ T Cells. Cancer Immunology Research, 7, 476-486. https://doi.org/10.1158/2326-6066.cir-18-0182
|
[40]
|
Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., et al. (2017) Cancer-Associated Oxidoreductase ERO1-α Promotes Immune Escape through Up-Regulation of PD-L1 in Human Breast Cancer. Oncotarget, 8, 24706-24718. https://doi.org/10.18632/oncotarget.14960
|
[41]
|
Liu, L., Li, S., Qu, Y., Wang, J., Fei, K., Wang, C., et al. (2022) Tumour ERO1A Instigates T Cell Dysfunction by Transmission of Endoplasmic Reticulum Stress. Journal of Clinical Oncology, 40, e14533-e14533. https://doi.org/10.1200/jco.2022.40.16_suppl.e14533
|
[42]
|
Wang, G., Han, J., Wang, G., Wu, X., Huang, Y., Wu, M., et al. (2021) ERO1α Mediates Endoplasmic Reticulum Stress-Induced Apoptosis via microRNA-101/EZH2 Axis in Colon Cancer RKO and HT-29 Cells. Human Cell, 34, 932-944. https://doi.org/10.1007/s13577-021-00494-3
|
[43]
|
Blais, J.D., Chin, K., Zito, E., Zhang, Y., Heldman, N., Harding, H.P., et al. (2010) A Small Molecule Inhibitor of Endoplasmic Reticulum Oxidation 1 (ERO1) with Selectively Reversible Thiol Reactivity. Journal of Biological Chemistry, 285, 20993-21003. https://doi.org/10.1074/jbc.m110.126599
|
[44]
|
Johnson, B.D., Kaulagari, S.R., Chen, W., Hayes, K., Geldenhuys, W.J. and Hazlehurst, L.A. (2022) Identification of Natural Product Sulfuretin Derivatives as Inhibitors for the Endoplasmic Reticulum Redox Protein Ero1α. ACS Bio & Med Chem Au, 2, 161-170. https://doi.org/10.1021/acsbiomedchemau.1c00062
|