ERO1在肿瘤生物学机制和治疗中的研究进展
Research Advances of ERO1 in Tumor Biology: Mechanisms and Therapeutic Target
DOI: 10.12677/wjcr.2025.153017, PDF, HTML, XML,   
作者: 姜东岳, 吴 亮*:中国药科大学多靶标天然药物全国重点实验室,江苏 南京
关键词: ERO1肿瘤内质网免疫药物ERO1 Tumor Endoplasmic Reticulum Immunology Drug
摘要: 内质网氧化还原酶1 (ERO1)家族是一类定位于内质网的黄素氧化还原酶,主要负责接受蛋白质内二硫键成键时所产生的电子,从而维持内质网中氧化还原稳态,在蛋白质氧化折叠、维持钙离子稳态等过程中发挥重要的作用。已有研究发现相较于正常组织,ERO1在多种肿瘤中的表达均发生明显上调,并通过调节内质网应激、细胞死亡和肿瘤微环境等机制,增强肿瘤细胞的应激抗性,促进肿瘤的恶性进展,因此,ERO1有可能成为抗肿瘤药物研发的重要靶点。本文将对近年来ERO1家族相关的结构功能,ERO1在肿瘤发展中的作用和靶向ERO1的抗肿瘤机制等方向的研究进行综述。
Abstract: The endoplasmic reticulum oxidoreductase 1 (ERO1) family represents a class of flavoprotein oxidoreductases localized primarily in the endoplasmic reticulum (ER). These enzymes function as critical electron acceptors during disulfide bond formation in protein folding, thereby maintaining ER redox homeostasis and playing essential roles in oxidative protein folding and calcium ion homeostasis regulation. Emerging studies have demonstrated significant upregulation of ERO1 expression across multiple tumor types compared to normal tissues. Mechanistically, ERO1 enhances tumor cell stress resistance and promotes malignant progression through modulation of ER stress responses, cell death, and tumor microenvironment. Consequently, ERO1 has emerged as a promising therapeutic target for inhibitor development. This article comprehensively reviews recent advances in the structural-functional characteristics of ERO1 family members, their multifaceted roles in tumor progression, and mechanistic insights into ERO1-targeted antitumor strategies.
文章引用:姜东岳, 吴亮. ERO1在肿瘤生物学机制和治疗中的研究进展[J]. 世界肿瘤研究, 2025, 15(3): 132-139. https://doi.org/10.12677/wjcr.2025.153017

1. 引言

肿瘤细胞相较于正常细胞会面临缺氧、营养匮乏、酸中毒等环境压力,并且伴随着癌基因激活和持续增殖,这些因素都会导致肿瘤细胞对蛋白质合成需求的显著增加[1],而过高的蛋白质负荷和肿瘤基因组的不稳定会扰乱蛋白质稳态,导致未折叠或错误折叠的蛋白质在内质网腔积累,造成内质网应激(Endoplasmic Reticulum Stress, ERS),不利于细胞生存[2]。为减弱内质网应激的影响,肿瘤细胞通过整体上调氧化折叠酶系统的表达水平等方式,从而减少未折叠蛋白的积累[3]。内质网氧化还原酶1 (Endoplasmic Reticulum Oxidoreductin 1, ERO1)家族作为蛋白质和蛋白质二硫键异构酶(Protein Disulfide Isomerase, PDI)家族之间的电子中继,直接参与调控蛋白质氧化折叠过程,促进未折叠蛋白的加工[4],因此其表达在多种肿瘤细胞中均有显著上调[5]。除此之外,ERO1也通过多条通路参与内质网(Endoplasmic Reticulum, ER)钙稳态[6],细胞氧化还原稳态和肿瘤微环境等生物学过程[7] [8],增强肿瘤的耐药性和恶性化程度。本文将对近年来ERO1相关的肿瘤生物学机制和抗肿瘤机制研究进行概述,期望能对抗肿瘤药物研发和机制探索有所帮助。

2. ERO1结构和功能概述

2.1. ERO1家族的结构

在人体内,ERO1家族有ERO1α和ERO1β两种由不同基因编码的亚型,分别位于人14号染色体q22.1处和人1号染色体q42.3处,基因相似度约为65.4% [9]。目前仅有ERO1α有详细的结构学研究(见图1),整体上,人ERO1α构象为一个富含α-螺旋的球体,共包含5个分子内二硫键,其催化中心由4个螺旋束组成,N端为一个包含两个二硫键的反向平行β发夹结构[10]。尽管ERO1在多数生物中高度保守[11],但与酵母的Ero1p相比,人ERO1α的环区更长,从氨基酸残基Asp90到Cys131、Cys166到Gln172和Gln212到Glu238的三个环区缺乏电子密度,这可能使其具有较高的灵活性[10]

ERO1α的另一核心结构是可结合黄素腺嘌呤二核苷酸(FAD)的反应中心,其结合机制为亚基Trp200和His255的头部结构堆积于FAD的异咯嗪环与腺嘌呤环之间[10]。其反应核心为通过Cys397依次与黄素形成电子转移复合物和C(4a)加合物,随后Cys394亲核进攻加合物的C-S键,生成Cys394-Cys397分子内二硫键和还原型FAD [10]。由此可见FAD是ERO1α电子传递的必要元件。

Figure 1. Crystal structure of human ERO1 α and its FAD reaction center (from PDB public database: 3AQH, resolution: 2.8 Å)

1. 人类ERO1α晶体结构和其FAD反应中心(来自PDB公开数据库:3AQH,分辨率:2.8 Å)

2.2. ERO1的基本生物学功能

ERO1在所有类型细胞中普遍表达,是二硫键和电子的交换中心,直接协助PDI在新生多肽中形成二硫键。ERO1的酶促反应循环可概括为首先,氧化型PDI催化蛋白质内半胱氨酸形成二硫键后,转为还原型PDI;ERO1的穿梭半胱氨酸直接氧化结合位点的PDI,再次生成氧化型PDI;ERO1通过FAD将上步得到的电子经内部电子穿梭传递给O2,生成H2O2并使自身回到初始状态[5],这一酶促反应对维持内质网蛋白质稳态至关重要。PDI家族,特别是PDIA1作为ERO1α的首选底物[12],其主要功能为促进二硫键向目标蛋白转移,超过30%的蛋白质需要伴侣PDI来促进二硫键的形成,蛋白质中二硫键会确保它们在离开内质网之前处于正确折叠状态,从而具备正常生理功能[13]。PDI也可作为一种分子伴侣,与缺乏二硫键的错误折叠蛋白质结合,以防止蛋白质的聚集[14],这表明它们在ER中不仅作为促二硫键酶发挥作用。

ERO1在氧化PDI的同时也会产生大量H2O2,据报道,ERO1α是H2O2的主要来源之一,在一些细胞中占总H2O2产量的25% [15],H2O2作为第二信使参与细胞信号级联反应,并且也可以通过抗氧化酶系统,如超氧化物歧化酶等还原为O2和H2O,从而调节细胞内氧化还原稳态[16]

内质网是一个多功能的细胞器,其功能还包括Ca2+的储存和释放。在内质网应激时,ERO1α可通过激活肌醇1,4,5-三磷酸受体(IP3R),诱导IP3释放钙离子,诱导细胞发生凋亡[6]。ERO1还可以富集于内质网与线粒体的膜接触位点(MAM),并与蛋白激酶R样内质网激酶(PERK)共价结合,促进接触面上蛋白的氧化激活,改善ER-线粒体间的Ca2+通量,以维持两个细胞器的能量生产[17]

由于结构相似性,ERO1α和ERO1β的功能可以在一定程度上互补,但两者在组织中的分布不同。ERO1α在包括肿瘤在内的所有细胞类型中普遍表达,而ERO1β表达水平低于ERO1α,且选择性地在胰腺和胃细胞中表达,这表明它在胰岛素和葡萄糖代谢过程中起着重要作用[18]。此外,ERO1α的表达水平可受缺氧诱导因子-1α (HIF-1α)及未折叠蛋白反应(UPR)的调控[19],而ERO1β的表达水平主要受UPR的调控[9]。综上,相较于仅特异性表达的ERO1β,ERO1α是细胞内最主要的PDI氧化酶,ERO1相关的肿瘤学研究也因此集中在ERO1α上。

3. ERO1在肿瘤中的作用

3.1. ERO1在肿瘤中的表达水平

ERO1α的表达水平在除前列腺癌外的多数癌种中,均发生上调[5]。根据另一项来自Oncomine数据库的泛癌RNA表达分析显示,ERO1α在膀胱癌,结直肠癌,胃癌,肾癌和肺癌等10种癌症类型中发生上调,而在食管癌、头颈癌和白血病中发生下调[8]。并且ERO1α高水平表达与宫颈癌,乳腺癌,胃癌和肝细胞癌等肿瘤不良预后有关[20]-[23]。特别是在肝细胞癌中,ERO1α的高水平表达与肿瘤血管侵犯(P = 0.003)、肿瘤病理分期(P = 0.009)和肿瘤TNM分期(P = 0.034)显著相关,与ERO1α低表达的患者相比,ERO1α高表达的HCC患者的5年总生存期(OS)下降(P = 0.009),且无复发生存期(RFS)缩短(P = 0.005) [23]。以上数据支持ERO1α在肿瘤生物学中发挥潜在作用,肿瘤细胞对ERO1α的高度依赖,使ERO1α成为肿瘤治疗的重要靶点。

3.2. ERO1促进肿瘤细胞存活与增殖

缺氧,营养物质匮乏,药物治疗等不利环境因素会诱导肿瘤细胞产生内质网应激等毒性反应,导致肿瘤细胞增殖停滞或死亡。研究表明,内质网应激可通过三条主要通路PERK,IRE1α和ATF6共同诱导ERO1α的表达,上调的ERO1α一方面可维持氧化蛋白质折叠的活性,以增强细胞的适应能力,以应对大量错误折叠蛋白,另一方面,其副产物H2O2促进肿瘤细胞的有氧糖酵解以获取能量,而肿瘤细胞通过上调谷胱甘肽(GSH)生成,抵消H2O2促凋亡作用,实现UPR和糖酵解的耦联,使细胞快速增殖[24]。当使用Erastin等铁死亡诱导剂诱导肿瘤细胞发生铁死亡时,雷帕霉素靶蛋白复合体1 (mTORC1)可通过激活ERO1α/IL-6/STAT3/SLC7A11通路,减轻脂质过氧化程度,从而增强细胞铁死亡抗性和生长能力[25]。此外,ERO1α可通过调节Wnt2泛素化,并激活Wnt2/β-catenin信号通路来促进肺腺癌细胞的增殖[26]。在结肠癌中,ERO1α可通过激活PI3K/AKT通路,来促进结肠癌细胞的增殖并抑制其凋亡[27]。值得注意的是,在ERO1α敲除的乳腺癌细胞中,氧化磷酸化是受影响最显著的基因集之一[28],表明ERO1α可能通过影响氧化磷酸化参与肿瘤的代谢重构,从而增强肿瘤的侵袭性表型。因此,作为UPR等促存活通路的下游效应器,ERO1可通过多条通路促进肿瘤细胞的增殖与存活。

3.3. ERO1参与重塑肿瘤微环境

血管生成是肿瘤生长,转移和定植的关键因素,它可为肿瘤扩散提供营养和途径,而血管的生成受多种激活因子,如血管内皮生长因子-A (VEGF-A)和抑制因子的调节[29]。ERO1A可通过促进血管增生等多种途径,参与肿瘤微环境重塑(见图2)。在肝癌细胞中,ERO1α可观测到与促血管生成因子S1PR1共定位,过表达ERO1α可显著提高S1PR1的表达水平,并通过激活S1PR1/STAT3/VEGF-A通路,促进肿瘤的迁移,侵袭和血管生成[23]。ERO1α还可以通过NFIB-ERO1α轴,促进HIF1α入核,从而增加VEGF-A的转录水平,促进乳腺癌组织内皮血管增生[30]。此外,ERO1α自身表达水平与肿瘤组织中的血管密度也呈正相关[31]。ERO1α的促血管生长作用可能包含两种主要机制,其一,通过敲除实验发现,ERO1的缺失会明显减缓VEGF-A中关键二硫键的形成[32]。而在缺氧条件下,敲除ERO1α基因会导致VEGF-A分泌显著减少,表明在缺氧条件下,ERO1α氧化PDI等蛋白二硫键氧化酶的功能会失效,也说明在ERO1α缺失的情况下VEGF-A的正确氧化折叠依赖于氧气[32]。即通过上调ERO1α表达或激活ERO1α,来增加VEGF-A氧化折叠效率,提高VEGF-A的蛋白水平。其二,在基因表达水平上,ERO1与其上游UPR因子PERK和ATF4之间的反馈回路即可促进VEGF-A的表达[33]。另一方面,HIF-1α也是公认的VEGF调控介质,ERO1α在内质网氧化折叠过程中产生的H2O2可自由扩散至细胞质中,然后通过抑制脯氨酰羟化酶(PHDs)来稳定HIF-1α,从而调控VEGF-A的表达水平[30] [34]

免疫微环境是肿瘤微环境的重要组成部分,包括基质细胞、免疫细胞、血管和细胞外基质(ECM),然而抗癌免疫反应会被髓源性抑制细胞(MDSC),调节性T细胞(Tregs)和2型巨噬细胞(M2)等免疫抑制细胞阻碍,因此肿瘤细胞会生成免疫抑制性微环境[35]。目前已有研究表明,ERO1α的mRNA水平与抗肿瘤免疫细胞如CD8 + T细胞、B细胞和自然杀伤(NK)细胞的数量呈负相关,而与免疫抑制细胞如癌症相关成纤维细胞(CAFs)、MDSCs和肿瘤相关巨噬细胞(TAMs)呈正相关,有助于形成免疫抑制微环境[36]。对于骨髓来源细胞,过表达肿瘤细胞的ERO1α可通过增强粒细胞集落刺激因子(G-CSF)和CXC趋化因子配体1/2 (CXCL1/2)的氧化折叠,促进其表达,从而促进MDSCs招募[37]。沉默胰腺癌(PDAC)细胞中的ERO1α和IDO1可通过下调缺氧和PDAC相关通路,上调抗原呈递通路,促进胰腺癌中单核细胞的浸润及其向树突状细胞(DC)的分化[38]。对于巨噬细胞,有分析表明肿瘤细胞中ERO1α的表达与M2巨噬细胞呈正相关,而与M1巨噬细胞呈负相关[8]。ERO1α敲除小鼠模型的scRNA-seq分析也表明ERO1α促进TAMs从M1向M2的表型转变[36]。当肿瘤抗原提交给T细胞时,T细胞也会产生内质网应激,导致PERK轴激活和其下游靶点ERO1α表达上调,过度增强二硫键氧化折叠相关的耗能过程,耗竭T细胞能量,并导致ROS诱导的线粒体衰竭,造成T细胞抗肿瘤免疫效果下降[39]。值得注意的是,ERO1α不仅能通过增强肿瘤细胞PD-L1的氧化折叠直接促进其表达,还能通过HIF-1α间接促进其表达,从而抑制T细胞抗肿瘤免疫[40]。同样,敲除肿瘤细胞中的ERO1α也可促进CD8 + T细胞的浸润,并增强抗PD-1治疗的效果[41]

Figure 2. Regulatory effect of ERO1α on tumors and their microenvironment

2. ERO1α对肿瘤及其微环境的调节作用

4. 靶向ERO1可有效抑制肿瘤的进展

ERO1α能够通过增强细胞应激抗性,避免肿瘤细胞死亡。机制上,敲除ERO1α会过度激活PERK,破坏IRE1α和PERK信号间的平衡,造成致死性的内质网应激,通过激活CHOP和Caspase-12通路诱导细胞发生凋亡,同时,在体内ERO1α的敲除可以通过激活肿瘤细胞免疫原性细胞死亡(ICD),增强患者抗肿瘤免疫[36]。另外,一项结肠癌研究表明,敲除ERO1α可通过激活miR-101,抑制EZH2,调节Wnt/β-catenin通路促进肿瘤凋亡[42]。在胃癌中,使用shRNAs敲低ERO1α可有效抑制胃癌细胞株的生长和增殖,并且当ERO1α被沉默后会使肿瘤细胞对5-氟尿嘧啶(5-FU)和紫杉醇更加敏感[22]。ERO1α敲除也可和eIF2α抑制剂ISRIB产生协同作用,通过增加内质网蛋白负荷,破坏蛋白质稳态,抑制肿瘤血管增生抑制三阴性乳腺癌的生长,同时通过干扰UPR反应,减弱肿瘤细胞对紫杉醇的耐药性[28]

尽管上述证据已经能证明ERO1α在肿瘤生物学中重要作用,然而目前发现和开发ERO1靶向抑制剂仍处于起步阶段。EN460是一种通过高通量生化筛选得到的ERO1α抑制剂,可通过与还原型ERO1α结合,防止其再次氧化[43]。T151742是一种由磺脲类化合物衍生的ERO1α抑制剂,与EN460相比,显示出更高的抑制活性,而且对于ERO1β和ERO1α两种同工酶,T151742对ERO1α具有选择性抑制活性[44]

5. 总结

ERO1α作为内质网氧化折叠系统的核心酶,在维持肿瘤细胞应激适应和免疫逃逸中发挥关键作用。其高表达与多种癌症的不良预后相关,且靶向ERO1α可有效抑制肿瘤进展。然而,ERO1α在肿瘤细胞中调节内质网应激的具体机制和其下游的促生存效应还有待进一步阐明。当前抑制剂的选择性和体内有效性仍需优化,联合治疗策略的探索亦处于起步阶段,仍需要深度探索。

NOTES

*通讯作者。

参考文献

[1] Urra, H., Dufey, E., Avril, T., Chevet, E. and Hetz, C. (2016) Endoplasmic Reticulum Stress and the Hallmarks of Cancer. Trends in Cancer, 2, 252-262.
https://doi.org/10.1016/j.trecan.2016.03.007
[2] Wang, W., Groenendyk, J. and Michalak, M. (2014) Endoplasmic Reticulum Stress Associated Responses in Cancer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843, 2143-2149.
https://doi.org/10.1016/j.bbamcr.2014.01.012
[3] Zito, E., Guarrera, L. and Janssen-Heininger, Y.M.W. (2024) Fingerprint of the Oxido-Reductase ERO1: A Protein Disulfide Bond Producer and Supporter of Cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1879, Article 189027.
https://doi.org/10.1016/j.bbcan.2023.189027
[4] Sevier, C.S. and Kaiser, C.A. (2008) Ero1 and Redox Homeostasis in the Endoplasmic Reticulum. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783, 549-556.
https://doi.org/10.1016/j.bbamcr.2007.12.011
[5] Chen, P., Sharma, A., Weiher, H. and Schmidt-Wolf, I.G.H. (2024) Biological Mechanisms and Clinical Significance of Endoplasmic Reticulum Oxidoreductase 1 Alpha (ERO1α) in Human Cancer. Journal of Experimental & Clinical Cancer Research, 43, Article No. 71.
https://doi.org/10.1186/s13046-024-02990-4
[6] Li, G., Mongillo, M., Chin, K., Harding, H., Ron, D., Marks, A.R., et al. (2009) Role of ERO1-Α-Mediated Stimulation of Inositol 1,4,5-Triphosphate Receptor Activity in Endoplasmic Reticulum Stress-Induced Apoptosis. Journal of Cell Biology, 186, 783-792.
https://doi.org/10.1083/jcb.200904060
[7] Spina, A., Guidarelli, A., Fiorani, M., Varone, E., Catalani, A., Zito, E., et al. (2022) Crosstalk between ERO1α and Ryanodine Receptor in Arsenite-Dependent Mitochondrial ROS Formation. Biochemical Pharmacology, 198, Article 114973.
https://doi.org/10.1016/j.bcp.2022.114973
[8] Liu, L., Wang, C., Li, S., Qu, Y., Xue, P., Ma, Z., et al. (2021) ERO1L Is a Novel and Potential Biomarker in Lung Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment. Frontiers in Immunology, 12, Article 677169.
https://doi.org/10.3389/fimmu.2021.677169
[9] Pagani, M., Fabbri, M., Benedetti, C., Fassio, A., Pilati, S., Bulleid, N.J., et al. (2000) Endoplasmic Reticulum Oxidoreductin 1-Lβ (ERO1-Lβ), a Human Gene Induced in the Course of the Unfolded Protein Response. Journal of Biological Chemistry, 275, 23685-23692.
https://doi.org/10.1074/jbc.m003061200
[10] Inaba, K., Masui, S., Iida, H., Vavassori, S., Sitia, R. and Suzuki, M. (2010) Crystal Structures of Human Ero1α Reveal the Mechanisms of Regulated and Targeted Oxidation of PDI. The EMBO Journal, 29, 3330-3343.
https://doi.org/10.1038/emboj.2010.222
[11] Araki, K. and Inaba, K. (2012) Structure, Mechanism, and Evolution of Ero1 Family Enzymes. Antioxidants & Redox Signaling, 16, 790-799.
https://doi.org/10.1089/ars.2011.4418
[12] Benham, A.M. (2000) The CXXCXXC Motif Determines the Folding, Structure and Stability of Human Ero1-lα. The EMBO Journal, 19, 4493-4502.
https://doi.org/10.1093/emboj/19.17.4493
[13] Shergalis, A.G., Hu, S., Bankhead, A. and Neamati, N. (2020) Role of the ERO1-PDI Interaction in Oxidative Protein Folding and Disease. Pharmacology & Therapeutics, 210, Article 107525.
https://doi.org/10.1016/j.pharmthera.2020.107525
[14] Puig, A. and Gilbert, H.F. (1994) Protein Disulfide Isomerase Exhibits Chaperone and Anti-Chaperone Activity in the Oxidative Refolding of Lysozyme. Journal of Biological Chemistry, 269, 7764-7771.
https://doi.org/10.1016/s0021-9258(17)37352-0
[15] Malhotra, J.D. and Kaufman, R.J. (2007) Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Cycle or a Double-Edged Sword? Antioxidants & Redox Signaling, 9, 2277-2294.
https://doi.org/10.1089/ars.2007.1782
[16] Reth, M. (2002) Hydrogen Peroxide as Second Messenger in Lymphocyte Activation. Nature Immunology, 3, 1129-1134.
https://doi.org/10.1038/ni1202-1129
[17] Bassot, A., Chen, J., Takahashi-Yamashiro, K., Yap, M.C., Gibhardt, C.S., Le, G.N.T., et al. (2023) The Endoplasmic Reticulum Kinase PERK Interacts with the Oxidoreductase ERO1 to Metabolically Adapt Mitochondria. Cell Reports, 42, Article 111899.
https://doi.org/10.1016/j.celrep.2022.111899
[18] Dias-Gunasekara, S., Gubbens, J., van Lith, M., Dunne, C., Williams, J.A.G., Kataky, R., et al. (2005) Tissue-Specific Expression and Dimerization of the Endoplasmic Reticulum Oxidoreductase Ero1β. Journal of Biological Chemistry, 280, 33066-33075.
https://doi.org/10.1074/jbc.m505023200
[19] May, D., Itin, A., Gal, O., Kalinski, H., Feinstein, E. and Keshet, E. (2004) Ero1-lα Plays a Key Role in a HIF-1-Mediated Pathway to Improve Disulfide Bond Formation and VEGF Secretion under Hypoxia: Implication for Cancer. Oncogene, 24, 1011-1020.
https://doi.org/10.1038/sj.onc.1208325
[20] Zhang, Y., Li, T., Zhang, L., Shangguan, F., Shi, G., Wu, X., et al. (2019) Targeting the Functional Interplay between Endoplasmic Reticulum Oxidoreductin-1α and Protein Disulfide Isomerase Suppresses the Progression of Cervical Cancer. EBioMedicine, 41, 408-419.
https://doi.org/10.1016/j.ebiom.2019.02.041
[21] Kutomi, G., Tamura, Y., Tanaka, T., Kajiwara, T., Kukita, K., Ohmura, T., et al. (2013) Human Endoplasmic Reticulum Oxidoreductin 1‐α Is a Novel Predictor for Poor Prognosis of Breast Cancer. Cancer Science, 104, 1091-1096.
https://doi.org/10.1111/cas.12177
[22] Seol, S., Kim, C., Lim, J.Y., Yoon, S.O., Hong, S.W., Kim, J.W., et al. (2016) Overexpression of Endoplasmic Reticulum Oxidoreductin 1-α (ERO1L) Is Associated with Poor Prognosis of Gastric Cancer. Cancer Research and Treatment, 48, 1196-1209.
https://doi.org/10.4143/crt.2015.189
[23] Yang, S., Yang, C., Yu, F., Ding, W., Hu, Y., Cheng, F., et al. (2018) Endoplasmic Reticulum Resident Oxidase ERO1-Lalpha Promotes Hepatocellular Carcinoma Metastasis and Angiogenesis through the S1PR1/STAT3/VEGF-A Pathway. Cell Death & Disease, 9, Article No. 1105.
https://doi.org/10.1038/s41419-018-1134-4
[24] Zhang, J., Yang, J., Lin, C., Liu, W., Huo, Y., Yang, M., et al. (2020) Endoplasmic Reticulum Stress-Dependent Expression of ERO1L Promotes Aerobic Glycolysis in Pancreatic Cancer. Theranostics, 10, 8400-8414.
https://doi.org/10.7150/thno.45124
[25] Wang, Z., Zong, H., Liu, W., Lin, W., Sun, A., Ding, Z., et al. (2024) Augmented ERO1α Upon mTORC1 Activation Induces Ferroptosis Resistance and Tumor Progression via Upregulation of SLC7A11. Journal of Experimental & Clinical Cancer Research, 43, Article No. 112.
https://doi.org/10.1186/s13046-024-03039-2
[26] Xie, J., Liao, G., Feng, Z., Liu, B., Li, X. and Qiu, M. (2022) ERO1L Promotes the Proliferation and Metastasis of Lung Adenocarcinoma via the Wnt2/β-Catenin Signaling Pathway. Molecular Carcinogenesis, 61, 897-909.
https://doi.org/10.1002/mc.23441
[27] Wu, M., Li, R., Qin, J., Wang, Z., Guo, J., Lv, F., et al. (2023) ERO1α Promotes the Proliferation and Inhibits Apoptosis of Colorectal Cancer Cells by Regulating the PI3K/AKT Pathway. Journal of Molecular Histology, 54, 621-631.
https://doi.org/10.1007/s10735-023-10149-2
[28] Varone, E., Decio, A., Barbera, M.C., Bolis, M., Di Rito, L., Pisati, F., et al. (2022) Endoplasmic Reticulum Oxidoreductin 1-Alpha Deficiency and Activation of Protein Translation Synergistically Impair Breast Tumour Resilience. British Journal of Pharmacology, 179, 5180-5195.
https://doi.org/10.1111/bph.15927
[29] Nishida, N., Yano, H., Nishida, T., Kamura, T. and Kojiro, M. (2006) Angiogenesis in Cancer. Vascular Health and Risk Management, 2, 213-219.
https://doi.org/10.2147/vhrm.2006.2.3.213
[30] Zilli, F., Marques Ramos, P., Auf der Maur, P., Jehanno, C., Sethi, A., Coissieux, M., et al. (2021) The NFIB‐ERO1A Axis Promotes Breast Cancer Metastatic Colonization of Disseminated Tumour Cells. EMBO Molecular Medicine, 13, e13162.
https://doi.org/10.15252/emmm.202013162
[31] Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., et al. (2016) Cancer-Associated Oxidoreductase ERO1-α Drives the Production of VEGF via Oxidative Protein Folding and Regulating the mRNA Level. British Journal of Cancer, 114, 1227-1234.
https://doi.org/10.1038/bjc.2016.105
[32] Varone, E., Decio, A., Chernorudskiy, A., Minoli, L., Brunelli, L., Ioli, F., et al. (2021) The ER Stress Response Mediator ERO1 Triggers Cancer Metastasis by Favoring the Angiogenic Switch in Hypoxic Conditions. Oncogene, 40, 1721-1736.
https://doi.org/10.1038/s41388-021-01659-y
[33] Wang, Y., Alam, G.N., Ning, Y., Visioli, F., Dong, Z., Nör, J.E., et al. (2012) The Unfolded Protein Response Induces the Angiogenic Switch in Human Tumor Cells through the PERK/ATF4 Pathway. Cancer Research, 72, 5396-5406.
https://doi.org/10.1158/0008-5472.can-12-0474
[34] Waypa, G.B., Marks, J.D., Guzy, R., Mungai, P.T., Schriewer, J., Dokic, D., et al. (2010) Hypoxia Triggers Subcellular Compartmental Redox Signaling in Vascular Smooth Muscle Cells. Circulation Research, 106, 526-535.
https://doi.org/10.1161/circresaha.109.206334
[35] Pitt, J.M., Marabelle, A., Eggermont, A., Soria, J.-., Kroemer, G. and Zitvogel, L. (2016) Targeting the Tumor Microenvironment: Removing Obstruction to Anticancer Immune Responses and Immunotherapy. Annals of Oncology, 27, 1482-1492.
https://doi.org/10.1093/annonc/mdw168
[36] Liu, L., Li, S., Qu, Y., Bai, H., Pan, X., Wang, J., et al. (2023) Ablation of ERO1A Induces Lethal Endoplasmic Reticulum Stress Responses and Immunogenic Cell Death to Activate Anti-Tumor Immunity. Cell Reports Medicine, 4, Article 101206.
https://doi.org/10.1016/j.xcrm.2023.101206
[37] Tanaka, T., Kajiwara, T., Torigoe, T., Okamoto, Y., Sato, N. and Tamura, Y. (2015) Cancer-Associated Oxidoreductase Ero1-α Drives the Production of Tumor-Promoting Myeloid-Derived Suppressor Cells via Oxidative Protein Folding. The Journal of Immunology, 194, 2004-2010.
https://doi.org/10.4049/jimmunol.1402538
[38] Tay, A.H.M., Cinotti, R., Sze, N.S.K. and Lundqvist, A. (2023) Inhibition of Ero1a and IDO1 Improves Dendritic Cell Infiltration into Pancreatic Ductal Adenocarcinoma. Frontiers in Immunology, 14, Article 1264012.
https://doi.org/10.3389/fimmu.2023.1264012
[39] Hurst, K.E., Lawrence, K.A., Essman, M.T., Walton, Z.J., Leddy, L.R. and Thaxton, J.E. (2019) Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8+ T Cells. Cancer Immunology Research, 7, 476-486.
https://doi.org/10.1158/2326-6066.cir-18-0182
[40] Tanaka, T., Kutomi, G., Kajiwara, T., Kukita, K., Kochin, V., Kanaseki, T., et al. (2017) Cancer-Associated Oxidoreductase ERO1-α Promotes Immune Escape through Up-Regulation of PD-L1 in Human Breast Cancer. Oncotarget, 8, 24706-24718.
https://doi.org/10.18632/oncotarget.14960
[41] Liu, L., Li, S., Qu, Y., Wang, J., Fei, K., Wang, C., et al. (2022) Tumour ERO1A Instigates T Cell Dysfunction by Transmission of Endoplasmic Reticulum Stress. Journal of Clinical Oncology, 40, e14533-e14533.
https://doi.org/10.1200/jco.2022.40.16_suppl.e14533
[42] Wang, G., Han, J., Wang, G., Wu, X., Huang, Y., Wu, M., et al. (2021) ERO1α Mediates Endoplasmic Reticulum Stress-Induced Apoptosis via microRNA-101/EZH2 Axis in Colon Cancer RKO and HT-29 Cells. Human Cell, 34, 932-944.
https://doi.org/10.1007/s13577-021-00494-3
[43] Blais, J.D., Chin, K., Zito, E., Zhang, Y., Heldman, N., Harding, H.P., et al. (2010) A Small Molecule Inhibitor of Endoplasmic Reticulum Oxidation 1 (ERO1) with Selectively Reversible Thiol Reactivity. Journal of Biological Chemistry, 285, 20993-21003.
https://doi.org/10.1074/jbc.m110.126599
[44] Johnson, B.D., Kaulagari, S.R., Chen, W., Hayes, K., Geldenhuys, W.J. and Hazlehurst, L.A. (2022) Identification of Natural Product Sulfuretin Derivatives as Inhibitors for the Endoplasmic Reticulum Redox Protein Ero1α. ACS Bio & Med Chem Au, 2, 161-170.
https://doi.org/10.1021/acsbiomedchemau.1c00062