针刺对单胺类神经递质的调控在抑郁症治疗中的研究进展
Research Progress on the Regulation of Monoamine Neurotransmitters by Acupuncture in the Treatment of Depression
DOI: 10.12677/acm.2025.1572081, PDF, HTML, XML,   
作者: 邓尧尧:黑龙江中医药大学研究生院,黑龙江 哈尔滨;程为平*:黑龙江中医药大学附属第一医院针灸二科,黑龙江 哈尔滨
关键词: 针刺抑郁症单胺类神经递质Acupuncture Depression Monoamine Neurotransmitters
摘要: 抑郁症是一种严重影响患者生活质量和社会功能的精神障碍疾病,主要表现为精神不振、兴趣减退和精力不足。针刺作为传统中医疗法,在抑郁症治疗中展现出显著疗效,其机制涉及对单胺类神经递质包括五羟色胺(3-(2-Ammonioethyl)-5-hydroxy-1H-indolium maleate, 5-HT)、多巴胺(Dopamine, DA)、去甲肾上腺素(Norepinephrine, NE)、组胺(Histamine)等的调控。概述针刺研究进展通过调节单胺类神经递质改善抑郁症,为中西医结合治疗抑郁症提供理论依据,探索其可能的分子机制。
Abstract: Depression is a mental disorder that seriously affects the quality of life and social function of patients, mainly manifested as low spirits, reduced interest, and lack of energy. Acupuncture, as a traditional Chinese medical therapy, has shown significant efficacy in the treatment of depression, and its mechanism involves the regulation of monoamine neurotransmitters, including serotonin (3-(2-ammonioethyl)-5-hydroxy-1H-indolium maleate, 5-HT), dopamine (Dopamine, DA), norepinephrine (Norepinephrine, NE), and histamine (Histamine). This paper summarizes the research progress of acupuncture in improving depression by regulating monoamine neurotransmitters, providing a theoretical basis for the combination of traditional Chinese and Western medicine in the treatment of depression, and exploring its possible molecular mechanisms.
文章引用:邓尧尧, 程为平. 针刺对单胺类神经递质的调控在抑郁症治疗中的研究进展[J]. 临床医学进展, 2025, 15(7): 978-984. https://doi.org/10.12677/acm.2025.1572081

1. 引言

抑郁症又称抑郁障碍,主要症状包括精神持续低落,对事物失去兴趣,精力不足,是一种严重限制患者心理、社会功能和降低生活质量的精神障碍疾病。世界卫生组织预测,到2030年,抑郁症将成为全球疾病负担的最大原因,作为精神疾病中最严重的疾病,是导致残疾的主要原因[1]。抑郁症的相关发病机制很复杂,其病理生理机理还没有完全阐明,目前主流的假说有单胺类神经递质假说、下丘脑–垂体–肾上腺(HPA)轴假说、神经营养因子假说、免疫炎症假说、肠道菌群失调假说等多种假说[2],其中较为公认的抑郁症发病机理假说是单胺类神经递质假说,目前主要有以下几种假说:单胺神经递质,如五羟色胺(3-(2-Ammonioethyl)-5-hydroxy-1H-indolium maleate, 5-HT)、多巴胺(Dopamine, DA)、去甲肾上腺素(Norepinephrine, NE)、组胺(Histamine)等,共同参与调节抑郁症的发生。针刺疗法具有潜在的缓解抑郁症状的优势,可替代或补充药物治疗,是一种可用于缓解抑郁症状的有前景的非药物治疗方法,可作为改善结局的药物治疗替代或补充治疗[3]。相对于药物治疗而言,针刺的优点是:费用低,副作用小[4]。此外,越来越多的研究表明,针刺与药物治疗相结合的方式在效果、安全性和耐受性方面优于单独的药物治疗,并且起效更快,这突显了针刺与药物联合治疗抑郁症的潜在优势[5]

2. 抑郁症的针刺治疗起源

抑郁症,中医属于“郁证”范畴,郁证的发生常与情志不舒、思虑过度、饮食不节等因素有关,其病位在脑,涉及肝、心等脏腑,病机为气机郁滞,脏腑阴阳气血失调[6]。郁证的发生常与情绪低落、思虑过度、饮食不节等因素有关,郁证的发病原因使用针刺疗法治疗抑郁症最早是在《内经》中提出的:《内经》中记载的抑郁症,就叫解㑊。解㑊是指身体懈怠、懒惰的状态,对应抑郁症的劳累感增加和行为减少的精力下降。治疗上提到刺足少阳,因为劳累感、精力差属于肝萌芽蓄健之力不足,刺少阳可以促进肝的生发。郁证的针刺治疗以疏肝解郁、调畅气机为核心,常选取百会、内关、太冲等为主穴,配合辨证选穴,结合补泻手法调节情志。针刺作为一种独立的辅助治疗方法,已经成为治疗抑郁症的一种有效的治疗方案,主要有两种类型,普通针刺和电针。而与普通针刺相比,电针可以产生更一致和可重复的结果,因此,电针是临床试验和实验室研究中最常用的方法。

3. 调控抑郁的单胺类神经递质的相关机制假说

单胺类神经递质包括5-羟色胺(5-HT)、去甲肾上腺素(NE)、多巴胺(DA)等,是由大脑和肾上腺分泌的神经递质中的一类,在大脑发育、情绪调节、应激反应中起核心作用,在神经递质的组成和构成中具有重要作用。单胺类神经递质假说是抑郁症致病的经典学说,也是多重抗抑郁药和针刺疗法的理论依据。有研究发现,抑郁症患者的脑部突触间隙和突触后膜5-HT、NE和DA受体在突触后发生了显著的数目减少[7] [8]。5-HT最早发现于血清中,又称血清素,抑郁症患者血清中的吲哚胺2、3-双加氧酶(IDO)过激表达、色氨酸(TRP)分解速度加快、突触间隙神经递质5-HT水平降低、抑制色氨酸合成5-HT,从而加速抑郁症的发生[9]。DA在行为动机的强化和积极激励功能中扮演着核心角色,在快乐的情绪下,DA的分泌量明显上升,在沮丧的情绪下DA分泌明显降低。同时,单胺类神经递质中的组胺也是诱发抑郁症的因素,一项临床研究表明,184名初次抑郁的青少年患者,其组胺水平比对照组的组胺水平明显提高[10]

4. 通过调节单胺类神经递质治疗抑郁症

4.1. 通过针刺对于5-HT调节作用

5-羟色胺(5-HT),又称羟色胺,是一种单胺类神经递质,主要存在于动物和人类的血液中,也存在于人体的血清素中。脑内单胺类5-HT的耗竭是抑郁症领域传统广泛接受的假说[11]。针刺通过调整5-HT的水平和敏感性,能够实现抗抑郁的效果。王保国等[12]研究发现,抑郁症患者血清中5-HT的含量可以通过“通督治郁”针法得到有效改善,从而起到抗抑郁的效果。秦娜等人[13]在治疗前后用针刺神堂、脑户穴,检测血清中5-HT,结果发现针刺组5-HT含量较治疗前升高,说明针刺对单胺受体的调节有抗抑郁作用。徐雪娇等[14]研究发现,用针刺四神聪,可使拘束苦闷的小白鼠扭转拘束苦闷的种种行为。这可能与环磷酸腺苷(Cyclic adenosine monophosphate, CAMP)反应元件结合蛋白1 (CREB1)、糖原合酶激酶3α (GSK-3)、磷脂酶A2组V (Pla2G5)以及N型α1B亚基(CAUA1B)和核受体亚家族4组A成员1 (NR4A1)等基因相关。而这些基因与电压依赖的钙离子通道相关。5-HT在病理生理学和抑郁症的治疗上得到了人们的普遍重视。电针能调节5-HT受体,进而改善抑郁样行为[15]。对慢性温和不可预测应激(Cumical Mildunpredictable stress, CUMS)诱导的大鼠研究发现,电针治疗通过增强海马区5-HT合成,提高5-HT1A受体水平,增加脑内及突触间隙5-HT含量,从而逆转其抑郁行为缺陷,达到抗抑郁作用[16]。同样,穴位电刺激具有抗抑郁功效,主要或部分通过改善5-HT受体并上调脑区域突触间隙中的5-HT含量[16]。多巴胺能通路,尤其是涉及腹侧被盖区(VTA)和纹状体的通路,被认为是一种异常的情绪状态和行为,有助于在重度抑郁症(Major Depressive Disorder, MDD)中被观察到[17]-[19]。核磁共振(MRI)研究表明,纹状体的结构和功能异常与MDD发作和严重程度密切相关[20] [21],Wang等人报告了针刺后MDD患者纹状体功能连接(Functional Connectivity, FC)的变化,表明针刺通过调节皮质纹状体奖励/动机回路发挥抗抑郁作用[5]。此外,来自动物研究的证据表明,针刺通过调节特应性皮炎小鼠奖励回路中的神经通路,对焦虑和抑郁样行为产生积极影响[22]。根据上述证据表明,紊乱的5-HT系统水平是抑郁症的关键病理生理机制,而针刺在一定程度上可以逆转5-HT系统失衡,从而促使突触可塑,使抑郁样行为得到缓解,因此,电针或针刺治疗可以起到一定的作用[23]

4.2. 针刺对于DA的调节作用

除了5-HT之外,DA在抑郁症发病及针刺治疗中也发挥了重要作用,在抑郁症可引起DA系统功能失调[24] [25]。在伴有快感缺乏的抑郁症患者中,PET成像研究表明:DA转运体(Dopamine Transporter, DAT)的结合作用相对于健康受试者有明显的降低[26]。这说明,当DA消耗较长时间后,DAT密度就会下降,这是因为DA浓度过低引起的减量。另一方面,电针(EA)可以通过上调多巴脱羧酶(DDC)的表达来改善大鼠的抑郁行为[27]。根据Cai等人的研究,EA可以逆转慢性不可预测的轻度应激(CUMS)大鼠总DAT和p-DAT的增加并减轻抑郁行为,这可能是通过痕量胺相关受体1 (TAAR1)激活下游蛋白来调节DAT的数量或功能[28]。此外,亦可以从多巴胺能系统来解释,多巴胺能系统主要包括从中额叶皮层(PFC)和伏隔核(NAC)投射到中脑皮层系统和中脑边缘系统中的从中脑延伸到前脑的DAergic神经元,这些神经元与应激、情绪、认知等功能有密切关系。它的功能活动的异常对抑郁性行为的表现进行了介导。采用基于同位素标记相对和绝对定量(iTRAQ)的蛋白组学技术,分析了前额叶皮层(PFC)的蛋白质变化,结果显示电针“百会穴”(GV20)和“印堂穴”(GV29)介入1周后,无法预测的慢性应激(CUMS)大鼠DAergic信号通路中的4个突触蛋白发生了明显的变化,这些蛋白分别为负责将多巴胺从细胞外再摄取到突触前神经元的多巴胺转运蛋白(DAT)、负责刺激调节多巴胺和谷氨酸受体并起到激酶或磷酸酶抑制剂作用的蛋白磷酸酶1调节因子亚基1B (PP1R1B)、参与多巴胺合成的酪氨酸羟化酶(TH)、产生多巴胺的催化多巴脱(PPP1R1B)、以及多巴胺(DDC)脱氧酶。这表明电针通过调节DAergic信号通路,可能起到抗抑郁的作用[26]。所有这些作用都可以改善抑郁模型大鼠的抑郁行为,但这些研究尚未得到进一步的研究和讨论。

4.3. 针刺对于NE的调节作用

NE在人体内的水平起伏也与病理机理中起着不可缺少的联系。抗抑郁药治疗抑郁症的过程,NE也参与了[29]。曾有研究显示,对脑卒中后抑郁症患者采用醒脑开窍针法取百会、水沟、印堂、内关、三阴交等穴位进行治疗,经研究发现,患者血清 NE 水平在治疗后升高[30]。类似的发现也出现在卒中后抑郁动物模型上。大鼠卒中后神经行为评分上升,测试水平运动和垂直运动次数下降,超微结构损伤海马神经元加重,NE含量下降;大鼠行经针刺治疗后为科学改善,海马神经元超微结构损伤降低,NE含量增加[31]。有研究用酶联免疫吸附测定(ELISA)检测小鼠血清和海马组织中炎症因子(TNF-α、IL1β和IL-6)的浓度,检测海马组织中NE的含量,以探讨电针(EA)对小鼠抑郁症(CUMS)诱导的慢性和难以预测的轻微应激作用的治疗效果及其机理。CUMS组血清和海马中的TNF-α、IL-1β和IL-6与对照组相比,浓度明显升高,而慢性和难以预测的轻度应激电针(CUMSEA)和CUMSAD-CGAS-SHRNA组则有明显的抑制作用。此外,CUMSEA和CUMSad-cGAS-shRNA组中NE分泌显著升高[32]。以上研究表明,包括NE在内的单胺类神经递质在针刺治疗抑郁症中均可能参与了调控。

4.4. 通过针刺对于组胺的调节作用

关于组胺对于抑郁症的调节作用研究较少,其具体机制我们可以从组胺与血脑屏障和细胞因子的关系进行探讨。血脑屏障(Blood Brain Break,简称BBB)是中央神经系统的主要屏障,阻止活动物质从周围循环系统进入BBB与MDD等精神障碍密切相关。研究表明,组胺是造成BBB通透性增加的主要因素[33]。一般情况下,组胺不会通过BBB途径发挥作用;但组胺会诱导BBB通透性的提高,从而促使组胺进入中枢神经系统,而使组胺的通透性增高。在各种神经退行性疾病的患者在脑脊液和脑实质中具有较高的组胺水平[34]。而抑郁症的炎症假说表明,组胺水平升高会降低血清素并增加细胞因子[35]。细胞因子被视为调控先天免疫反应的“免疫信使”[36]。在基础条件下(即无炎症刺激时)低浓度表达在中枢上的细胞因子及其受体[37]。研究发现,抑郁症患者在血液和脑脊液中呈现出促炎细胞因子和细胞因子受体水平上升的现象[38] [39]。炎症会产生活性氧(ROS)和活性氮(RNS),从而降低氧化应激敏感酶和四氢生物蝶呤(BH4)等因子的活性和表达[40]。BH4是单胺类神经递质合成过程中的辅助因子,研究显示,在接受炎症细胞因子(即IFNα)治疗的患者中,BH4与CSFIL-6水平呈负相关[41]。并且有四种组胺受体(H1R、H2R、H3R、H4R),H3R和H4R在介导CNS中的免疫应答中可能发挥重要作用。组胺升高可导致海马体中5HT末端上的H3异源受体活化增加,导致神经元5-羟色胺释放钝化并产生细胞外5-羟色胺减少。有研究表明针刺能有效降低血清内的组胺含量[42],此外,也有研究通过平针刺降低了组胺、IL-6的释放以及CCR3和H1R的表达[43]。然而,这些研究可能表明抑郁症患者的组胺系统发生了变化,但仍需更多临床研究来确认组胺在抑郁症发展和治疗中的作用。

5. 结语与展望

作为一种常见的精神类疾病,抑郁症的发病机理十分复杂,所以抑郁症在当今的治疗过程中面临着巨大的挑战。针刺作为中华民族传统文化的重要组成部分,经过几千年的积淀,已经形成了一套相对完整的体系。针刺可以通过调节5-HT、NE、DA和组胺的含量以及相关受体的活性来实现其抗抑郁效果。关于针刺治疗抑郁症的研究仍然处于起步阶段,目前主要集中在单胺类神经递质,特别是5-HT受体方面。未来将继续深入探讨针刺如何通过这些单胺类神经递质来治疗抑郁症。

NOTES

*通讯作者。

参考文献

[1] Penner-Goeke, S. and Binder, E.B. (2019) Epigenetics and Depression. Dialogues in Clinical Neuroscience, 21, 397-405.
https://doi.org/10.31887/dcns.2019.21.4/ebinder
[2] 尹一淑, 刘军莲, 王佳平, 等. 抑郁症相关发病机制研究进展[J]. 医学综述, 2022, 28(12): 2368-2372.
[3] Smith, C.A., Armour, M., Lee, M.S., Wang, L.-Q. and Hay, P.J. (2018) Acupuncture for Depression. Cochrane Database of Systematic Reviews, 3, CD004046.
[4] Chan, Y., Lo, W., Yang, S., Chen, Y. and Lin, J. (2015) The Benefit of Combined Acupuncture and Antidepressant Medication for Depression: A Systematic Review and Meta-Analysis. Journal of Affective Disorders, 176, 106-117.
https://doi.org/10.1016/j.jad.2015.01.048
[5] Wang, Z., Wang, X., Liu, J., Chen, J., Liu, X., Nie, G., et al. (2017) Acupuncture Treatment Modulates the Corticostriatal Reward Circuitry in Major Depressive Disorder. Journal of Psychiatric Research, 84, 18-26.
https://doi.org/10.1016/j.jpsychires.2016.09.014
[6] 倪伟. 中医内科学[M]. 北京: 中国中医药出版社, 2016: 489.
[7] Morrissette, D.A. and Stahl, S.M. (2014) Modulating the Serotonin System in the Treatment of Major Depressive Disorder. CNS Spectrums, 19, 54-68.
https://doi.org/10.1017/s1092852914000613
[8] Samuels, B.A., Mendez-David, I., Faye, C., David, S.A., Pierz, K.A., Gardier, A.M., et al. (2014) Serotonin 1A and Serotonin 4 Receptors: Essential Mediators of the Neurogenic and Behavioral Actions of Antidepressants. The Neuroscientist, 22, 26-45.
https://doi.org/10.1177/1073858414561303
[9] Sublette, M.E. and Postolache, T.T. (2012) Neuroinflammation and Depression: The Role of Indoleamine 2,3-Dioxygenase (IDO) as a Molecular Pathway. Psychosomatic Medicine, 74, 668-672.
https://doi.org/10.1097/psy.0b013e318268de9f
[10] Tao, R., Fu, Z. and Xiao, L. (2019) Chronic Food Antigen-Specific IgG-Mediated Hypersensitivity Reaction as a Risk Factor for Adolescent Depressive Disorder. Genomics, Proteomics & Bioinformatics, 17, 183-189.
https://doi.org/10.1016/j.gpb.2019.05.002
[11] Aan het Rot, M., Mathew, S.J. and Charney, D.S. (2009) Neurobiological Mechanisms in Major Depressive Disorder. Canadian Medical Association Journal, 180, 305-313.
https://doi.org/10.1503/cmaj.080697
[12] 王保国, 肖伟, 王震, 等. “通督治郁”针法治疗脑卒中后抑郁对临床症状及血清5-HT、NE、DA的影响[J]. 中华中医药学刊, 2023, 41(3): 190-193.
[13] 秦娜, 胡国强. 针刺神堂和脑户穴配合重复经颅磁刺激治疗中风后抑郁的效果[J]. 中国医药导报, 2023, 20(8): 79-82.
[14] 徐雪娇, 李天英, 李欣, 等. 针刺对抑郁大鼠单胺类神经递质相关基因表达的影响[J]. 针灸临床杂志, 2022, 38(5): 42-47.
[15] Duan, D., Tu, Y., Yang, X. and Liu, P. (2016) Electroacupuncture Restores 5‐HT System Deficit in Chronic Mild Stress‐induced Depressed Rats. Evidence-Based Complementary and Alternative Medicine, 2016, Article 7950635.
https://doi.org/10.1155/2016/7950635
[16] Chen, L., Yao, Z., Qu, S., Zhang, J., Zhang, J., Zhang, Z., et al. (2020) Electroacupuncture Improves Synaptic Plasticity by Regulating the 5-HT1A Receptor in Hippocampus of Rats with Chronic Unpredictable Mild Stress. Journal of International Medical Research, 48, 1-14.
https://doi.org/10.1177/0300060520918419
[17] Schuch, F.B., Vancampfort, D., Richards, J., Rosenbaum, S., Ward, P.B. and Stubbs, B. (2016) Exercise as a Treatment for Depression: A Meta-Analysis Adjusting for Publication Bias. Journal of Psychiatric Research, 77, 42-51.
https://doi.org/10.1016/j.jpsychires.2016.02.023
[18] Knowland, D. and Lim, B.K. (2018) Circuit-Based Frameworks of Depressive Behaviors: The Role of Reward Circuitry and Beyond. Pharmacology Biochemistry and Behavior, 174, 42-52.
https://doi.org/10.1016/j.pbb.2017.12.010
[19] Cao, J., Covington, H.E., Friedman, A.K., Wilkinson, M.B., Walsh, J.J., Cooper, D.C., et al. (2010) Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action. The Journal of Neuroscience, 30, 16453-16458.
https://doi.org/10.1523/jneurosci.3177-10.2010
[20] Auerbach, R.P., Pagliaccio, D., Hubbard, N.A., Frosch, I., Kremens, R., Cosby, E., et al. (2022) Reward-Related Neural Circuitry in Depressed and Anxious Adolescents: A Human Connectome Project. Journal of the American Academy of Child & Adolescent Psychiatry, 61, 308-320.
https://doi.org/10.1016/j.jaac.2021.04.014
[21] Tan, A., Costi, S., Morris, L.S., Van Dam, N.T., Kautz, M., Whitton, A.E., et al. (2018) Effects of the KCNQ Channel Opener Ezogabine on Functional Connectivity of the Ventral Striatum and Clinical Symptoms in Patients with Major Depressive Disorder. Molecular Psychiatry, 25, 1323-1333.
https://doi.org/10.1038/s41380-018-0283-2
[22] Yeom, M., Ahn, S., Jang, S., Jang, J., Lee, Y., Hahm, D., et al. (2022) Acupuncture Attenuates Comorbid Anxiety-and Depressive-Like Behaviors of Atopic Dermatitis through Modulating Neuroadaptation in the Brain Reward Circuit in Mice. Biological Research, 55, Article No. 28.
https://doi.org/10.1186/s40659-022-00396-0
[23] Han, X., Wu, H., Yin, P., Chen, Z., Cao, X., Duan, Y., et al. (2018) Electroacupuncture Restores Hippocampal Synaptic Plasticity via Modulation of 5-HT Receptors in a Rat Model of Depression. Brain Research Bulletin, 139, 256-262.
https://doi.org/10.1016/j.brainresbull.2018.03.004
[24] Belujon, P. and Grace, A.A. (2017) Dopamine System Dysregulation in Major Depressive Disorders. International Journal of Neuropsychopharmacology, 20, 1036-1046.
https://doi.org/10.1093/ijnp/pyx056
[25] Tye, K.M., Mirzabekov, J.J., Warden, M.R., Ferenczi, E.A., Tsai, H., Finkelstein, J., et al. (2012) Dopamine Neurons Modulate Neural Encoding and Expression of Depression-Related Behaviour. Nature, 493, 537-541.
https://doi.org/10.1038/nature11740
[26] Sarchiapone, M., Carli, V., Camardese, G., Cuomo, C., Di Giuda, D., Calcagni, M., et al. (2006) Dopamine Transporter Binding in Depressed Patients with Anhedonia. Psychiatry Research: Neuroimaging, 147, 243-248.
https://doi.org/10.1016/j.pscychresns.2006.03.001
[27] Zhang, J., Zhang, J., Zhang, Z., Zheng, Y., Zhong, Z., Yao, Z., et al. (2021) Dopaminergic Signaling in Prefrontal Cortex Contributes to the Antidepressant Effect of Electroacupuncture: An ITRAQ-Based Proteomics Analysis in a Rat Model of CUMS. The Anatomical Record, 304, 2454-2469.
https://doi.org/10.1002/ar.24732
[28] Cai, X., Wu, M., Zhang, Z., Liu, H., Huang, S., Song, J., et al. (2023) Electroacupuncture Alleviated Depression‐like Behaviors in Ventromedial Prefrontal Cortex of Chronic Unpredictable Mild Stress-Induced Rats: Increasing Synaptic Transmission and Phosphorylating Dopamine Transporter. CNS Neuroscience & Therapeutics, 29, 2608-2620.
https://doi.org/10.1111/cns.14200
[29] 姚娇, 杨岩涛, 艾启迪, 等. 神经递质功能与抑郁症发病的研究进展[J]. 中国药理学通报, 2023, 39(7): 1217-1221.
[30] 付巍. 针药并用对卒中后抑郁症患者脑电图和血清NE、NSE、IL-6、TNF-α水平的影响[J]. 上海针灸杂志, 2019, 38(11): 1214-1218.
[31] 孙培养, 蔡荣林, 李佩芳, 等. “通督调神”针刺对脑卒中后抑郁大鼠海马神经元保护作用及单胺类神经递质的影响[J]. 中国针灸, 2019, 39(7): 741-747.
[32] Chen, S., Li, J., Yan, L., Zhang, X., Huang, J. and Zhou, P. (2024) Electroacupuncture Alleviates the Symptom of Depression in Mice by Regulating the cGAS-STING-NLRP3 Signaling. Aging, 16, 6731-6744.
https://doi.org/10.18632/aging.205596
[33] Sedeyn, J.C., Wu, H., Hobbs, R.D., Levin, E.C., Nagele, R.G. and Venkataraman, V. (2015) Histamine Induces Alzheimer’s Disease-Like Blood Brain Barrier Breach and Local Cellular Responses in Mouse Brain Organotypic Cultures. BioMed Research International, 2015, Article 937148.
https://doi.org/10.1155/2015/937148
[34] Najjar, S., Pearlman, D.M., Devinsky, O., Najjar, A. and Zagzag, D. (2013) Neurovascular Unit Dysfunction with Blood-Brain Barrier Hyperpermeability Contributes to Major Depressive Disorder: A Review of Clinical and Experimental Evidence. Journal of Neuroinflammation, 10, Article No. 906.
https://doi.org/10.1186/1742-2094-10-142
[35] Hersey, M., Hashemi, P. and Reagan, L.P. (2021) Integrating the Monoamine and Cytokine Hypotheses of Depression: Is Histamine the Missing Link? European Journal of Neuroscience, 55, 2895-2911.
https://doi.org/10.1111/ejn.15392
[36] Dunn, A.J. (2006) Effects of Cytokines and Infections on Brain Neurochemistry. Clinical Neuroscience Research, 6, 52-68.
https://doi.org/10.1016/j.cnr.2006.04.002
[37] Schmidt, F.M., Lichtblau, N., Minkwitz, J., Chittka, T., Thormann, J., Kirkby, K.C., et al. (2014) Cytokine Levels in Depressed and Non-Depressed Subjects, and Masking Effects of Obesity. Journal of Psychiatric Research, 55, 29-34.
https://doi.org/10.1016/j.jpsychires.2014.04.021
[38] Maes, M. (1999) Negative Immunoregulatory Effects of Antidepressants Inhibition of Interferon-γ and Stimulation of Interleukin-10 Secretion. Neuropsychopharmacology, 20, 370-379.
https://doi.org/10.1016/s0893-133x(98)00088-8
[39] Miller, A.H., Maletic, V. and Raison, C.L. (2009) Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry, 65, 732-741.
https://doi.org/10.1016/j.biopsych.2008.11.029
[40] Neurauter, G., Schrocksnadel, K., Scholl-Burgi, S., Sperner-Unterweger, B., Schubert, C., Ledochowski, M., et al. (2008) Chronic Immune Stimulation Correlates with Reduced Phenylalanine Turnover. Current Drug Metabolism, 9, 622-627.
https://doi.org/10.2174/138920008785821738
[41] Felger, J.C. and Lotrich, F.E. (2013) Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications. Neuroscience, 246, 199-229.
https://doi.org/10.1016/j.neuroscience.2013.04.060
[42] Wang, Z, Wang, Z, Jiang, Y, et al. (2023) Effect of Acupuncture at Xinwu Acupoint Combined with Loratadine and Fluticasone Propionate on Symptom Alleviation, Nasal Function, and Serum Histamine Level in Patients with Allergic Rhinitis. American Journal of Translational Research, 15, 1403-1411.
[43] Yu, W., Ma, L., Tian, Y., Mu, J., Zhang, Z., Sun, T., et al. (2022) Acupuncture Alleviates Menstrual Pain in Rat Model via Suppressing Eotaxin/CCR3 Axis to Weak EOS-MC Activation. Evidence-Based Complementary and Alternative Medicine, 2022, Article 4571981.
https://doi.org/10.1155/2022/4571981