重型创伤性脑损伤患者的多模态监测技术及其临床价值分析
Analysis of Multimodal Monitoring Techniques in Patients with Severe Traumatic Brain Injury and Their Clinical Value
DOI: 10.12677/acm.2025.1572089, PDF, HTML, XML,    科研立项经费支持
作者: 郭 徽, 武 彤, 焦振东, 樊华清:内蒙古医科大学内蒙古临床医学院,内蒙古 呼和浩特;张瑞剑*:内蒙古医科大学内蒙古临床医学院,内蒙古 呼和浩特;内蒙古自治区人民医院神经外科,内蒙古 呼和浩特
关键词: 重型创伤性脑损伤多模态监测临床结果Severe Traumatic Brain Injury Multimodal Monitoring Clinical Outcomes
摘要: 重型创伤性脑损伤涉及复杂的病理、生理机制,单一的监测手段不能获得完整的病理、生理信息。多模态监测从多角度观察患者受伤情况,能够更加清晰地显示脑损伤的程度变化,进而优化治疗方案,最终达到提高患者的生存率和改善神经功能恶化的目标。然而,现有技术的局限性及其在不同临床环境中的适用性仍然需要进一步探讨。本文综述了临床评估、影像学检查、颅内压监测、脑血流监测、脑氧监测、脑温监测、电生理监测、血清生物标志物监测等监测技术的临床应用。
Abstract: Severe traumatic brain injury involves complex pathological and physiological mechanisms, and a single monitoring means cannot obtain complete pathological and physiological information. Multimodal monitoring observes the patient’s injury from multiple perspectives, and can more clearly show the changes in the degree of brain injury, thereby optimising the treatment plan, and ultimately achieving the goal of increasing the patient’s survival rate and improving the deterioration of neurological function. However, the limitations of existing techniques and their applicability in different clinical settings still need to be further explored. This article reviews the clinical applications of monitoring techniques such as clinical assessment, imaging, intracranial pressure monitoring, cerebral blood flow monitoring, cerebral oxygen monitoring, cerebral temperature monitoring, electrophysiological monitoring, and serum biomarker monitoring.
文章引用:郭徽, 武彤, 焦振东, 樊华清, 张瑞剑. 重型创伤性脑损伤患者的多模态监测技术及其临床价值分析[J]. 临床医学进展, 2025, 15(7): 1040-1047. https://doi.org/10.12677/acm.2025.1572089

1. 前言

重型创伤性脑损伤(Traumatic brain injury, TBI)是导致死亡和残疾的重要原因之一,青中年的患病率更为显著。相关研究提示,重型TBI患者的发病率呈现上升趋势,给患者、家庭和社会带来了巨大的负担[1]-[3]。重型TBI包括初始的机械损伤和后续的继发性损伤,最终导致严重的功能障碍和生活质量下降[4]-[7]。其涉及复杂的病理、生理机制,单一的临床监测并不能够获取完整的病理、生理信息。近年来,多模态监测(Multimodality monitoring, MMM)逐渐被临床工作者重视起来。研究表明,采用MMM的患者在神经功能恢复和生存率上均优于传统单一监测的患者[8] [9]。本文针对临床评估、影像学检查、颅内压监测、脑血流监测、脑氧监测、脑温监测、电生理监测、血清生物标志物监测等监测技术进行探讨。

2. 相关监测技术简介

2.1. 临床评估

临床评估是重型TBI患者监测的基础,常用的评估工具包括格拉斯哥昏迷评分(Glasgow coma score, GCS)、体格检查等。GCS于1974年首次提出,是评估意识水平和神经功能的重要工具,至今仍是全球评估TBI的重要标准之一[10]。特别是在重型TBI患者中,GCS的初始分数与临床结局显著相关。GCS结合其他影像学评分(如Rotterdam CT评分)能更准确地预测TBI患者的出院结果和生存率[7]。也有研究指出GCS评分在严重损伤和休克患者中存在局限性,需要使用新的评分系统和改进的技术来促进TBI的准确早期诊断[11]。体格检查是初步评估患者伤情、确定治疗方案的基础。瞳孔对光反射(Pupillary light reflex, PLR)检查是常用的评估方法之一,具有快速、直接的优点,然而其可能受到临床工作者经验的影响,存在主观性。因此,有研究使用定量瞳孔测量法(Quantitative pupillometry, QP)使PLR标准化和客观化。在定量瞳孔测量的基础上又衍生出神经瞳孔指数(Neurological pupil index, NPI)。Lapierre等指出,在ICU住院期间机械通气的前3天使用QP可能有助于识别中、重型TBI患者拔管后谵妄的风险[12]。另一项研究显示异常的NPI (NPI < 3)与神经功能恶化之间存在显著关联,预测神经恶化的敏感性(51.43%)和特异性(91.67%) [13]

2.2. 影像学检查

重型TBI的诊断和治疗在很大程度上依赖于影像学检查,包括计算机断层扫描(Computed tomography, CT)和磁共振成像(Magnetic resonance imaging, MRI)等。影像学检查的准确性和及时性对评估脑损伤程度、指导治疗方案以及预测患者预后具有至关重要的作用。Teasdale等研究了与颅脑损伤相关的临床表现,并强调了影像学检查在早期识别和评估患者病情变化中的重要性[10]

CT扫描是TBI患者的首选影像学检查工具,能迅速识别颅内出血和脑水肿等[3] [14]。研究表明,CT影像特征与ICP水平之间存在相关性,CT扫描在诊断和评估病情的进展都有重要作用[15]。此外,Roldan等指出,CT与近红外光谱技术结合脑氧监测方面的应用,为TBI患者的管理提供了更全面的视角[4]。MRI在重型TBI中的应用逐渐受到重视,尤其在评估慢性损伤和细微变化方面具有优势。通过不同的MRI序列能够观察到脑白质和灰质的变化,并与临床功能结果相联系。Sanchez-Molano等使用不同的MRI序列评估TBI后脑组织变化,发现脑血流和组织结构的显著变化与损伤严重程度相关,对TBI患者的长期预后有重要意义[16]

随着影像技术的不断进步,探索新型影像学技术与机器学习结合的自动化分析工具,可能为TBI的诊断和预后评估提供新的视角和方法。计算机辅助诊断(Computer-aided diagnosis, CAD)系统迅速发展,重型TBI 的诊断和管理正在向自动化和智能化前进。研究表明,利用CAD系统分析CT图像中的颅内血肿和其他特征,提高了诊断的准确性,减少了医生的工作负担[14]。未来的研究可能会集中在利用机器学习和人工智能算法,进一步提高诊断速度和精度[17]

2.3. 颅内压监测

颅内压(Intracranial pressure, ICP)监测是重型TBI患者管理的重要指标。通过实时监测ICP,临床工作者能够及时识别和处理部分可能导致继发性脑损伤的情况,从而优化治疗方案。研究显示,进行ICP监测的患者相较于未监测的患者,临床结果显著改善,包括住院时间缩短、死亡率降低等[2] [17] [18]。现行指南建议将ICP阈值设定为20 mmHg或22 mmHg,超过此值可能导致脑组织缺氧及其他并发症,合适的颅内压监测技术对重型TBI患者的管理至关重要[6] [19] [20]

颅内压监测的方法包括有创和无创两个部分。有创ICP监测包括脑室内测压、脑实质内测压、硬膜外测压、硬膜下测压、腰椎穿刺测压等。脑室内测压被视为ICP监测的“金标准”。该方法通过在脑室内放置导管直接测量ICP,能够同时进行治疗和监测,显著改善患者预后,但存在感染等相关并发症风险,其高成本和技术要求限制了在资源有限的环境中的普遍应用[1] [4] [5] [21] [22]。随着ICP研究的不断深入,多种与ICP相关的无创监测指标逐渐显现。视神经鞘直径(Optic nerve sheath diameter, ONSD)、经颅多普勒超声(Transcranial doppler, TCD)、光学相干断层扫描(Optical coherence tomography, OCT)、鼓膜位移测试(Tympanic membrane displacement, TMD)、近红外光谱技术(Near infrared spectroscopy,NIRS)等渐渐进入临床应用。研究指出,TCD和ONSD均与ICP呈现良好的相关性,其中ONSD的相关性更强,在资源有限的情况下,测量ONSD的非侵入性评估可以作为诊断和监测高ICP的一种有效工具[17] [23]。ONSD测量等新兴技术表现出良好的前景,但它们的普遍适应性和标准化应用尚未完全建立,未来需促进非侵入性监测技术的标准化和验证,以提高其临床应用的准确性和可靠性。单独的ICP监测不足以监测继发性脑损伤,ICP在正常范围内仍可能出现继发性脑损伤,MMM在重型TBI患者的应用显得更加重要[2] [19]

2.4. 脑血流监测

TBI与脑血流(Cerebral blood flow, CBF)的改变有关,这可能是功能障碍的基础,并导致 TBI 诱导的神经退行性变[24]。维持正常的CBF是预防继发性脑损伤的关键。

TCD是当前广泛应用的非侵入性监测技术。TCD利用超声波测量脑血流速度的技术,能够实时监测脑血流动力学,对指导临床干预及预测患者预后有重要作用[4] [25]。Sokoloff等指出,TCD能够在创伤后24小时内识别低脑血流(Vmean < 40 cm/s)与脑组织缺氧(Pressure of brain tissue oxygen, PbtO2 ≤ 20 mmHg)之间的相关性,且其阳性预测值高达100%,但在长期监测中,其相关性逐渐减弱[26]。这突显了不同技术在时间和临床环境中的适用性差异。

动脉自旋标记成像(Arterial spin labeling, ASL)的原理是对动脉血中的氢质子进行标记,标记后的氢质子随血流进入脑组织,与脑组织中的氢质子进行交换,通过检测这种信号变化,反映脑血流情况[25] [27]。Gaggi等对中、重度TBI患者的ASL进行研究,结果显示患者在受伤后6和12个月的脑灰质CBF均低于健康对照组,并且在3到6个月间CBF普遍下降,强调了监测脑血流的重要性[24]

2.5. 脑氧监测

缺氧是继发性脑损伤的重要环节之一,对脑组织氧代谢的监测有助于临床工作者及时预防或阻止继发性脑损伤,从而改善患者的临床结局。目前临床上常用的监测方法包括脑组织氧分压(PbtO2)监测、近红外光谱法(NIRS)和颈内静脉球血氧饱和度(Jugular venous oxygen saturation, SjvO2)监测。

NIRS通过测量脑组织的氧合血红蛋白和去氧血红蛋白的浓度,提供脑组织氧合状态的实时数据。NIRS在脑氧饱和度监测中的应用具有广泛前景,尤其是在围手术期对脑缺血和缺氧的早期诊断中[28]。尽管NIRS在监测脑组织氧合及ICP方面具有潜在应用价值,但在准确性和临床适用性方面仍存在不足[4] [5] [28]。PbtO2监测是一种有创的直接监测方法,具有较高的准确度。结合PbtO2监测的ICP监测与孤立性ICP监测相比联合监测能够显著改善TBI患者的神经预后,但联合监测可能与住院时间延长相关[5] [18] [19]。SjvO的正常范围约为55%~75%,当脑供氧量大于耗氧量时,SjvO2将增加,SjvO2监测可及时发现脑氧供需的变化,提示临床工作者需做出相应治疗方案,以避免继发性脑损伤的发生[28]-[30]。将SjvO2测定法获得的信息与PbtO2、NIRS和微透析等相结合,可以补充标准管理方案,以改善患者预后[31]

2.6. 脑温监测

脑温变化与TBI患者预后密切相关,脑温的升高通常与不良的临床结果相关,温度过高可加剧脑代谢,导致细胞损伤和死亡。当直接监测脑温条件有限时,膀胱温与脑温的误差最小[32]。Birg等研究了脑温与ICP和脑灌注压(Cerebral perfusion pressure, CPP)的关系,发现脑温超过37.5℃时,ICP水平显著升高,而较低的脑温未能确认与ICP的相关性[33]。Kuo等提出脑温的昼夜节律变化可能与临床预后相关,约59.3%的TBI患者在术后的前72小时内表现出脑温的生物节律性变化,这些变化与患者的功能结局和生存率具有一定的预测价值[34]

2.7. 电生理监测

电生理监测在评估TBI患者的神经功能中扮演着重要角色,特别是脑电图(Electroencephalogram, EEG)和诱发电位(Evoked potentials, EP)技术的应用。

EEG是一种重要的电生理监测技术,能够提供脑电活动的动态信息。EEG提供了良好的空间和时间分辨率[35]。研究表明,EEG在创伤性脑损伤患者的预后评估中具有较强相关性,能够帮助临床工作者预测TBI患者的预后[3] [36]。EEG在轻度创伤性脑损伤中的应用存在局限性,监测轻度创伤性脑损伤的可信度较低,需要进一步优化该技术[16]。EP包括体感诱发电位(Somatosensory evoked potential, SEP)、运动诱发电位(Motor evoked potential, MEP)、视觉诱发电位(Visual evoked potential, VEP)和脑干听觉诱发电位(Brainstem auditory evoked potential, BAEP),在TBI患者的预后评估中同样重要。SEP的结果与患者的意识恢复和功能障碍之间存在显著相关性,正常的SEP能够预测良好的临床结果,而异常则与不良预后相关,且SEP在重型TBI的预后评估中的价值优于GCS和EEG [37]。许晖等指出,SEP和MEP的阳性结果与病情严重程度及临床预后密切相关,进一步支持了诱发电位技术在TBI评估中的重要性[3]。因此,综合应用EEG和EP技术有助于临床医生对TBI患者进行全面评估。

2.8. 生物标志物监测

生物标志物在TBI患者中的应用为评估病情变化与预后预测提供了新的视角。生物标志物在不同TBI严重程度下的诊断和预后预测的作用[38]。胶质纤维酸性蛋白(GFAP)和泛素C端水解酶L1(UCH-L1)被认为是预测重度TBI患者结果的有效生物标志物,可以提供有关脑损伤程度和恢复潜力的额外信息[20] [39]。Yang等发现血清外泌体miR-206和miR-549a-3p在重度TBI患者与轻度或中度TBI患者之间的表达水平显著不同,显示出它们作为潜在生物标志物的良好预测价值[39]。Choudhary等发现炎症标志物如IL-6与创伤后癫痫(PTE)的发生有显著关联,IL-6在PTE患者中的水平显著高于非癫痫组[40]。Lv等发现,纤维蛋白原水平与TBI患者的预后密切相关,低于特定阈值的纤维蛋白原浓度与较高的30天死亡率相关[41]。不同的生物标志物在不同TBI严重程度下的表现存在显著差异,增加了临床管理的复杂性,其临床有效性尚需进一步研究[14] [38]。未来的研究应继续探讨这些生物标志物的机制及其在临床应用中的潜力,以实现更有效的TBI管理。

3. 总结

MMM的临床应用将改善重型TBI患者的治疗策略。综合使用GCS、ICP和其他参数能够为临床医生提供更全面的病情评估和治疗建议。研究发现,结合多种监测数据的综合分析能显著降低 TBI 患者的死亡率和神经功能障碍的发生率。在重型TBI患者的管理中,MMM技术的应用至关重要。已有大量研究支持多模态监测在重型TBI管理中的应用,但仍存在一些挑战和知识空白。例如,缺乏关于不同监测手段之间最佳整合方式的明确指南,以及如何利用这些数据进行预测和决策支持的系统性研究;当前监测技术在成本效益及适用性方面仍存在显著局限性;目前市场上缺乏成本效益高的综合性监测设备,限制了临床医生在病情评估和管理中的灵活性与效率;高水平的证据支持仍不足,制约了相关技术的发展和应用。

未来的研究应重点关注以下几个方面:1) 利用人工智能解决数据交互性和整合性问题;2) 开发低成本、高效能的监测设备,使其在不同经济背景的医疗环境中均能应用;3) 探索MMM在不同临床环境中的应用,以便为临床医生提供更全面的病情评估工具;4) 开展多中心MMM的临床应,提供高质量的证据支持,确立其在重型TBI管理中的地位。

利益冲突

所有作者均声明不存在利益冲突。

基金项目

内蒙古医学科学院公立医院科研联合基金项目(项目编号:2024GLLH0079)。

NOTES

*通讯作者。

参考文献

[1] Pegoli, M., Zurlo, Z. and Bilotta, F. (2020) Temperature Management in Acute Brain Injury: A Systematic Review of Clinical Evidence. Clinical Neurology and Neurosurgery, 197, Article ID: 106165.
https://doi.org/10.1016/j.clineuro.2020.106165
[2] Santana, L.S., Diniz, J.B.C., Solla, D.J.F., Neville, I.S., Figueiredo, E.G. and Mota Telles, J.P. (2024) Brain Tissue Oxygen Combined with Intracranial Pressure Monitoring versus Isolated Intracranial Pressure Monitoring in Patients with Traumatic Brain Injury: An Updated Systematic Review and Meta-Analysis. Neurological Sciences, 45, 3051-3059.
https://doi.org/10.1007/s10072-024-07392-0
[3] 许晖, 董江涛, 王惠, 等. 重型颅脑损伤患者TCD、神经电生理监测对预后评价的临床研究[J]. 现代预防医学, 2019, 46(4): 752-755.
[4] Roldán, M., Abay, T.Y. and Kyriacou, P.A. (2020) Non-Invasive Techniques for Multimodal Monitoring in Traumatic Brain Injury: Systematic Review and Meta-Analysis. Journal of Neurotrauma, 37, 2445-2453.
https://doi.org/10.1089/neu.2020.7266
[5] Gouvêa Bogossian, E., Diosdado, A., Barrit, S., Al Barajraji, M., Annoni, F., Schuind, S., et al. (2022) The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocritical Care, 37, 779-789.
https://doi.org/10.1007/s12028-022-01613-0
[6] Bernard, F., Barsan, W., Diaz-Arrastia, R., Merck, L.H., Yeatts, S. and Shutter, L.A. (2022) Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): A Multicentre, Randomised, Blinded-Endpoint, Comparative Effectiveness Study of Brain Tissue Oxygen and Intracranial Pressure Monitoring versus Intracranial Pressure Alone. BMJ Open, 12, e060188.
https://doi.org/10.1136/bmjopen-2021-060188
[7] Bae, I.-S., et al. (2020) Using Components of the Glasgow Coma Scale and Rotterdam CT Scores for Mortality Risk Stratification in Adult Patients with Traumatic Brain Injury: A Preliminary Study. Clinical Neurology and Neurosurgery, 188, Article ID: 105599.
https://doi.org/10.1016/j.clineuro.2019.105599
[8] Marini, C.P., Stoller, C., McNelis, J., Del Deo, V., Prabhakaran, K. and Petrone, P. (2020) Correlation of Brain Flow Variables and Metabolic Crisis: A Prospective Study in Patients with Severe Traumatic Brain Injury. European Journal of Trauma and Emergency Surgery, 48, 537-544.
https://doi.org/10.1007/s00068-020-01447-5
[9] Hays, L.M.C., Udy, A., Adamides, A.A., Anstey, J.R., Bailey, M., Bellapart, J., et al. (2022) Effects of Brain Tissue Oxygen (pbto2) Guided Management on Patient Outcomes Following Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Clinical Neuroscience, 99, 349-358.
https://doi.org/10.1016/j.jocn.2022.03.017
[10] Teasdale, G. and Jennett, B. (1974) Assessment of Coma and Impaired Consciousness: A Practical Scale. The Lancet, 304, 81-84.
https://doi.org/10.1016/s0140-6736(74)91639-0
[11] Iyanna, N., Donohue, J.K., Lorence, J.M., Guyette, F.X., Gimbel, E., Brown, J.B., et al. (2024) Early Glasgow Coma Scale Score and Prediction of Traumatic Brain Injury: A Secondary Analysis of Three Harmonized Prehospital Randomized Clinical Trials. Prehospital Emergency Care, 6, 1-9.
https://doi.org/10.1080/10903127.2024.2381048
[12] Lapierre, A., Proulx, A., Gélinas, C., Dollé, S., Alexander, S., Williamson, D., et al. (2024) Association between Pupil Light Reflex and Delirium in Adults with Traumatic Brain Injury: Preliminary Findings. Journal of Neuroscience Nursing, 56, 107-112.
https://doi.org/10.1097/jnn.0000000000000763
[13] Trent, T., Vashisht, A., Novakovic, S., Kanter, G., Nairon, E., Lark, A., et al. (2022) Pupillary Light Reflex Measured with Quantitative Pupillometry Has Low Sensitivity and High Specificity for Predicting Neuroworsening after Traumatic Brain Injury. Journal of the American Association of Nurse Practitioners, 35, 130-134.
https://doi.org/10.1097/jxx.0000000000000822
[14] Gudigar, A., Raghavendra, U., Hegde, A., Menon, G.R., Molinari, F., et al. (2021) Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives. International Journal of Environmental Research and Public Health, 18, Article No. 6499.
https://doi.org/10.3390/ijerph18126499
[15] 吴泽健, 许欢, 徐蓉, 等. 颅脑损伤后CT影像特点及神经内分泌变化研究[J]. 中国医学装备, 2020, 17(5): 91-94.
[16] Sanchez-Molano, J., Blaya, M.O., Padgett, K.R., Moreno, W.J., Zhao, W., Dietrich, W.D., et al. (2023) Multimodal Magnetic Resonance Imaging after Experimental Moderate and Severe Traumatic Brain Injury: A Longitudinal Correlative Assessment of Structural and Cerebral Blood Flow Changes. PLOS ONE, 18, e0289786.
https://doi.org/10.1371/journal.pone.0289786
[17] Gedeno, K., Neme, D., Jemal, B., Aweke, Z., Achule, A., Geremu, K., et al. (2023) Evidence-Based Management of Adult Traumatic Brain Injury with Raised Intracranial Pressure in Intensive Critical Care Unit at Resource-Limited Settings: A Literature Review. Annals of Medicine & Surgery, 85, 5983-6000.
https://doi.org/10.1097/ms9.0000000000001291
[18] Vakitbilir, N., Froese, L., Gomez, A., Sainbhi, A.S., Stein, K.Y., Islam, A., et al. (2024) Time-Series Modeling and Forecasting of Cerebral Pressure-Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. Sensors, 24, Article No. 1453.
https://doi.org/10.3390/s24051453
[19] Stein, K.Y., Amenta, F., Gomez, A., Froese, L., Sainbhi, A.S., Vakitbilir, N., et al. (2023) Associations between Intracranial Pressure Thresholds and Multimodal Monitoring in Acute Traumatic Neural Injury: A Scoping Review. Acta Neurochirurgica, 165, 1987-2000.
https://doi.org/10.1007/s00701-023-05587-6
[20] Rakhit, S., Nordness, M.F., Lombardo, S.R., Cook, M., Smith, L. and Patel, M.B. (2020) Management and Challenges of Severe Traumatic Brain Injury. Seminars in Respiratory and Critical Care Medicine, 42, 127-144.
https://doi.org/10.1055/s-0040-1716493
[21] Volovici, V., Huijben, J.A., Ercole, A., Stocchetti, N., Dirven, C.M.F., van der Jagt, M., et al. (2019) Ventricular Drainage Catheters versus Intracranial Parenchymal Catheters for Intracranial Pressure Monitoring-Based Management of Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 36, 988-995.
https://doi.org/10.1089/neu.2018.6086
[22] Lindblad, C., Raj, R., Zeiler, F.A. and Thelin, E.P. (2022) Current State of High-Fidelity Multimodal Monitoring in Traumatic Brain Injury. Acta Neurochirurgica, 164, 3091-3100.
https://doi.org/10.1007/s00701-022-05383-8
[23] Robba, C., Cardim, D., Tajsic, T., Pietersen, J., Bulman, M., Rasulo, F., et al. (2018) Non-Invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. In: Heldt, T., Ed., Intracranial Pressure & Neuromonitoring XVI, Springer International Publishing, 69-73.
https://doi.org/10.1007/978-3-319-65798-1_15
[24] Gaggi, N.L., Ware, J.B., Dolui, S., Brennan, D., Torrellas, J., Wang, Z., et al. (2023) Temporal Dynamics of Cerebral Blood Flow during the First Year after Moderate-Severe Traumatic Brain Injury: A Longitudinal Perfusion MRI Study. NeuroImage: Clinical, 37, Article ID: 103344.
https://doi.org/10.1016/j.nicl.2023.103344
[25] Jin, T., Lian, W., Xu, K., Liu, Y., Xu, Z., Lu, R., et al. (2021) Effect of Combination Invasive Intracranial Pressure (ICP) Monitoring and Transcranial Doppler in the Treatment of Severe Craniocerebral Injury Patients with Decompressive Craniectomy. Annals of Palliative Medicine, 10, 4472-4478.
https://doi.org/10.21037/apm-21-504
[26] Sokoloff, C., Williamson, D., Serri, K., Albert, M., Odier, C., Charbonney, E., et al. (2019) Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury. Neurocritical Care, 32, 486-491.
https://doi.org/10.1007/s12028-019-00763-y
[27] Ferré, J., Bannier, E., Raoult, H., Mineur, G., Carsin-Nicol, B. and Gauvrit, J. (2013) Arterial Spin Labeling (ASL) Perfusion: Techniques and Clinical Use. Diagnostic and Interventional Imaging, 94, 1211-1223.
https://doi.org/10.1016/j.diii.2013.06.010
[28] Zhong, W., Ji, Z. and Sun, C. (2021) A Review of Monitoring Methods for Cerebral Blood Oxygen Saturation. Healthcare, 9, Article No. 1104.
https://doi.org/10.3390/healthcare9091104
[29] Lang, S., Kumar, N.K., Zhao, C., Zhang, D.Y., Tucker, A.M., Storm, P.B., et al. (2022) Invasive Brain Tissue Oxygen and Intracranial Pressure (ICP) Monitoring versus ICP-Only Monitoring in Pediatric Severe Traumatic Brain Injury. Journal of Neurosurgery: Pediatrics, 30, 239-249.
https://doi.org/10.3171/2022.4.peds21568
[30] 刘羡. 颈内静脉球血氧饱和度监测的临床应用[J]. 临床与病理杂志, 2021, 41(4): 928-933.
[31] Singh, N., Regmi, S. and Luthra, A. (2024) Jugular Venous Oximetry. In: Prabhakar, H., et al., Eds., Principles and Practice of Neurocritical Care, Springer, 93-103.
https://doi.org/10.1007/978-981-99-8059-8_7
[32] 翁维吉, 张永明, 刘劲芳, 等. 颅脑创伤患者术后体温监测的多中心前瞻性研究[J]. 中华神经外科杂志, 2017, 33(7): 655-659.
[33] Birg, T., Ortolano, F., Wiegers, E.J.A., Smielewski, P., Savchenko, Y., Ianosi, B.A., et al. (2021) Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure after Traumatic Brain Injury: A CENTER-TBI Study. Neurocritical Care, 35, 651-661.
https://doi.org/10.1007/s12028-021-01294-1
[34] Kuo, L., Lu, H. and Huang, A.P. (2021) Prognostic Value of Circadian Rhythm of Brain Temperature in Traumatic Brain Injury. Journal of Personalized Medicine, 11, Article No. 620.
https://doi.org/10.3390/jpm11070620
[35] Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., et al. (2017) Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. The Lancet Neurology, 16, 987-1048.
https://doi.org/10.1016/s1474-4422(17)30371-x
[36] 王瑾, 陈道朋, 冯应君, 等. 多模态神经电生理指标对意识障碍的预后评估价值[J]. 生命科学仪器, 2024, 22(3): 149-153.
[37] Amantini, A., Grippo, A., Fossi, S., Cesaretti, C., Piccioli, A., Peris, A., et al. (2005) Prediction of “Awakening” and Outcome in Prolonged Acute Coma from Severe Traumatic Brain Injury: Evidence for Validity of Short Latency SEPs. Clinical Neurophysiology, 116, 229-235.
https://doi.org/10.1016/j.clinph.2004.07.008
[38] Al-Adli, N., Akbik, O.S., Rail, B., Montgomery, E., Caldwell, C., Barrie, U., et al. (2021) The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurgery, 155, e418-e438.
https://doi.org/10.1016/j.wneu.2021.08.073
[39] Dolmans, R.G.F., Hulsbergen, A.F.C., Gormley, W.B. and Broekman, M.L.D. (2020) Routine Blood Tests for Severe Traumatic Brain Injury: Can They Predict Outcomes? World Neurosurgery, 136, e60-e67.
https://doi.org/10.1016/j.wneu.2019.10.086
[40] Choudhary, A., Varshney, R., Kumar, A. and Kaushik, K. (2021) A Prospective Study of Novel Therapeutic Targets Interleukin 6, Tumor Necrosis Factor Α, and Interferon γ as Predictive Biomarkers for the Development of Posttraumatic Epilepsy. World Neurosurgery: X, 12, Article ID: 100107.
https://doi.org/10.1016/j.wnsx.2021.100107
[41] Lv, K., Yuan, Q., Fu, P., Wu, G., Wu, X., Du, Z., et al. (2020) Impact of Fibrinogen Level on the Prognosis of Patients with Traumatic Brain Injury: A Single-Center Analysis of 2570 Patients. World Journal of Emergency Surgery, 15, Article No. 54.
https://doi.org/10.1186/s13017-020-00332-1