[1]
|
Pegoli, M., Zurlo, Z. and Bilotta, F. (2020) Temperature Management in Acute Brain Injury: A Systematic Review of Clinical Evidence. Clinical Neurology and Neurosurgery, 197, Article ID: 106165. https://doi.org/10.1016/j.clineuro.2020.106165
|
[2]
|
Santana, L.S., Diniz, J.B.C., Solla, D.J.F., Neville, I.S., Figueiredo, E.G. and Mota Telles, J.P. (2024) Brain Tissue Oxygen Combined with Intracranial Pressure Monitoring versus Isolated Intracranial Pressure Monitoring in Patients with Traumatic Brain Injury: An Updated Systematic Review and Meta-Analysis. Neurological Sciences, 45, 3051-3059. https://doi.org/10.1007/s10072-024-07392-0
|
[3]
|
许晖, 董江涛, 王惠, 等. 重型颅脑损伤患者TCD、神经电生理监测对预后评价的临床研究[J]. 现代预防医学, 2019, 46(4): 752-755.
|
[4]
|
Roldán, M., Abay, T.Y. and Kyriacou, P.A. (2020) Non-Invasive Techniques for Multimodal Monitoring in Traumatic Brain Injury: Systematic Review and Meta-Analysis. Journal of Neurotrauma, 37, 2445-2453. https://doi.org/10.1089/neu.2020.7266
|
[5]
|
Gouvêa Bogossian, E., Diosdado, A., Barrit, S., Al Barajraji, M., Annoni, F., Schuind, S., et al. (2022) The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocritical Care, 37, 779-789. https://doi.org/10.1007/s12028-022-01613-0
|
[6]
|
Bernard, F., Barsan, W., Diaz-Arrastia, R., Merck, L.H., Yeatts, S. and Shutter, L.A. (2022) Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): A Multicentre, Randomised, Blinded-Endpoint, Comparative Effectiveness Study of Brain Tissue Oxygen and Intracranial Pressure Monitoring versus Intracranial Pressure Alone. BMJ Open, 12, e060188. https://doi.org/10.1136/bmjopen-2021-060188
|
[7]
|
Bae, I.-S., et al. (2020) Using Components of the Glasgow Coma Scale and Rotterdam CT Scores for Mortality Risk Stratification in Adult Patients with Traumatic Brain Injury: A Preliminary Study. Clinical Neurology and Neurosurgery, 188, Article ID: 105599. https://doi.org/10.1016/j.clineuro.2019.105599
|
[8]
|
Marini, C.P., Stoller, C., McNelis, J., Del Deo, V., Prabhakaran, K. and Petrone, P. (2020) Correlation of Brain Flow Variables and Metabolic Crisis: A Prospective Study in Patients with Severe Traumatic Brain Injury. European Journal of Trauma and Emergency Surgery, 48, 537-544. https://doi.org/10.1007/s00068-020-01447-5
|
[9]
|
Hays, L.M.C., Udy, A., Adamides, A.A., Anstey, J.R., Bailey, M., Bellapart, J., et al. (2022) Effects of Brain Tissue Oxygen (pbto2) Guided Management on Patient Outcomes Following Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Clinical Neuroscience, 99, 349-358. https://doi.org/10.1016/j.jocn.2022.03.017
|
[10]
|
Teasdale, G. and Jennett, B. (1974) Assessment of Coma and Impaired Consciousness: A Practical Scale. The Lancet, 304, 81-84. https://doi.org/10.1016/s0140-6736(74)91639-0
|
[11]
|
Iyanna, N., Donohue, J.K., Lorence, J.M., Guyette, F.X., Gimbel, E., Brown, J.B., et al. (2024) Early Glasgow Coma Scale Score and Prediction of Traumatic Brain Injury: A Secondary Analysis of Three Harmonized Prehospital Randomized Clinical Trials. Prehospital Emergency Care, 6, 1-9. https://doi.org/10.1080/10903127.2024.2381048
|
[12]
|
Lapierre, A., Proulx, A., Gélinas, C., Dollé, S., Alexander, S., Williamson, D., et al. (2024) Association between Pupil Light Reflex and Delirium in Adults with Traumatic Brain Injury: Preliminary Findings. Journal of Neuroscience Nursing, 56, 107-112. https://doi.org/10.1097/jnn.0000000000000763
|
[13]
|
Trent, T., Vashisht, A., Novakovic, S., Kanter, G., Nairon, E., Lark, A., et al. (2022) Pupillary Light Reflex Measured with Quantitative Pupillometry Has Low Sensitivity and High Specificity for Predicting Neuroworsening after Traumatic Brain Injury. Journal of the American Association of Nurse Practitioners, 35, 130-134. https://doi.org/10.1097/jxx.0000000000000822
|
[14]
|
Gudigar, A., Raghavendra, U., Hegde, A., Menon, G.R., Molinari, F., et al. (2021) Automated Detection and Screening of Traumatic Brain Injury (TBI) Using Computed Tomography Images: A Comprehensive Review and Future Perspectives. International Journal of Environmental Research and Public Health, 18, Article No. 6499. https://doi.org/10.3390/ijerph18126499
|
[15]
|
吴泽健, 许欢, 徐蓉, 等. 颅脑损伤后CT影像特点及神经内分泌变化研究[J]. 中国医学装备, 2020, 17(5): 91-94.
|
[16]
|
Sanchez-Molano, J., Blaya, M.O., Padgett, K.R., Moreno, W.J., Zhao, W., Dietrich, W.D., et al. (2023) Multimodal Magnetic Resonance Imaging after Experimental Moderate and Severe Traumatic Brain Injury: A Longitudinal Correlative Assessment of Structural and Cerebral Blood Flow Changes. PLOS ONE, 18, e0289786. https://doi.org/10.1371/journal.pone.0289786
|
[17]
|
Gedeno, K., Neme, D., Jemal, B., Aweke, Z., Achule, A., Geremu, K., et al. (2023) Evidence-Based Management of Adult Traumatic Brain Injury with Raised Intracranial Pressure in Intensive Critical Care Unit at Resource-Limited Settings: A Literature Review. Annals of Medicine & Surgery, 85, 5983-6000. https://doi.org/10.1097/ms9.0000000000001291
|
[18]
|
Vakitbilir, N., Froese, L., Gomez, A., Sainbhi, A.S., Stein, K.Y., Islam, A., et al. (2024) Time-Series Modeling and Forecasting of Cerebral Pressure-Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. Sensors, 24, Article No. 1453. https://doi.org/10.3390/s24051453
|
[19]
|
Stein, K.Y., Amenta, F., Gomez, A., Froese, L., Sainbhi, A.S., Vakitbilir, N., et al. (2023) Associations between Intracranial Pressure Thresholds and Multimodal Monitoring in Acute Traumatic Neural Injury: A Scoping Review. Acta Neurochirurgica, 165, 1987-2000. https://doi.org/10.1007/s00701-023-05587-6
|
[20]
|
Rakhit, S., Nordness, M.F., Lombardo, S.R., Cook, M., Smith, L. and Patel, M.B. (2020) Management and Challenges of Severe Traumatic Brain Injury. Seminars in Respiratory and Critical Care Medicine, 42, 127-144. https://doi.org/10.1055/s-0040-1716493
|
[21]
|
Volovici, V., Huijben, J.A., Ercole, A., Stocchetti, N., Dirven, C.M.F., van der Jagt, M., et al. (2019) Ventricular Drainage Catheters versus Intracranial Parenchymal Catheters for Intracranial Pressure Monitoring-Based Management of Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 36, 988-995. https://doi.org/10.1089/neu.2018.6086
|
[22]
|
Lindblad, C., Raj, R., Zeiler, F.A. and Thelin, E.P. (2022) Current State of High-Fidelity Multimodal Monitoring in Traumatic Brain Injury. Acta Neurochirurgica, 164, 3091-3100. https://doi.org/10.1007/s00701-022-05383-8
|
[23]
|
Robba, C., Cardim, D., Tajsic, T., Pietersen, J., Bulman, M., Rasulo, F., et al. (2018) Non-Invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. In: Heldt, T., Ed., Intracranial Pressure & Neuromonitoring XVI, Springer International Publishing, 69-73. https://doi.org/10.1007/978-3-319-65798-1_15
|
[24]
|
Gaggi, N.L., Ware, J.B., Dolui, S., Brennan, D., Torrellas, J., Wang, Z., et al. (2023) Temporal Dynamics of Cerebral Blood Flow during the First Year after Moderate-Severe Traumatic Brain Injury: A Longitudinal Perfusion MRI Study. NeuroImage: Clinical, 37, Article ID: 103344. https://doi.org/10.1016/j.nicl.2023.103344
|
[25]
|
Jin, T., Lian, W., Xu, K., Liu, Y., Xu, Z., Lu, R., et al. (2021) Effect of Combination Invasive Intracranial Pressure (ICP) Monitoring and Transcranial Doppler in the Treatment of Severe Craniocerebral Injury Patients with Decompressive Craniectomy. Annals of Palliative Medicine, 10, 4472-4478. https://doi.org/10.21037/apm-21-504
|
[26]
|
Sokoloff, C., Williamson, D., Serri, K., Albert, M., Odier, C., Charbonney, E., et al. (2019) Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury. Neurocritical Care, 32, 486-491. https://doi.org/10.1007/s12028-019-00763-y
|
[27]
|
Ferré, J., Bannier, E., Raoult, H., Mineur, G., Carsin-Nicol, B. and Gauvrit, J. (2013) Arterial Spin Labeling (ASL) Perfusion: Techniques and Clinical Use. Diagnostic and Interventional Imaging, 94, 1211-1223. https://doi.org/10.1016/j.diii.2013.06.010
|
[28]
|
Zhong, W., Ji, Z. and Sun, C. (2021) A Review of Monitoring Methods for Cerebral Blood Oxygen Saturation. Healthcare, 9, Article No. 1104. https://doi.org/10.3390/healthcare9091104
|
[29]
|
Lang, S., Kumar, N.K., Zhao, C., Zhang, D.Y., Tucker, A.M., Storm, P.B., et al. (2022) Invasive Brain Tissue Oxygen and Intracranial Pressure (ICP) Monitoring versus ICP-Only Monitoring in Pediatric Severe Traumatic Brain Injury. Journal of Neurosurgery: Pediatrics, 30, 239-249. https://doi.org/10.3171/2022.4.peds21568
|
[30]
|
刘羡. 颈内静脉球血氧饱和度监测的临床应用[J]. 临床与病理杂志, 2021, 41(4): 928-933.
|
[31]
|
Singh, N., Regmi, S. and Luthra, A. (2024) Jugular Venous Oximetry. In: Prabhakar, H., et al., Eds., Principles and Practice of Neurocritical Care, Springer, 93-103. https://doi.org/10.1007/978-981-99-8059-8_7
|
[32]
|
翁维吉, 张永明, 刘劲芳, 等. 颅脑创伤患者术后体温监测的多中心前瞻性研究[J]. 中华神经外科杂志, 2017, 33(7): 655-659.
|
[33]
|
Birg, T., Ortolano, F., Wiegers, E.J.A., Smielewski, P., Savchenko, Y., Ianosi, B.A., et al. (2021) Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure after Traumatic Brain Injury: A CENTER-TBI Study. Neurocritical Care, 35, 651-661. https://doi.org/10.1007/s12028-021-01294-1
|
[34]
|
Kuo, L., Lu, H. and Huang, A.P. (2021) Prognostic Value of Circadian Rhythm of Brain Temperature in Traumatic Brain Injury. Journal of Personalized Medicine, 11, Article No. 620. https://doi.org/10.3390/jpm11070620
|
[35]
|
Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., et al. (2017) Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. The Lancet Neurology, 16, 987-1048. https://doi.org/10.1016/s1474-4422(17)30371-x
|
[36]
|
王瑾, 陈道朋, 冯应君, 等. 多模态神经电生理指标对意识障碍的预后评估价值[J]. 生命科学仪器, 2024, 22(3): 149-153.
|
[37]
|
Amantini, A., Grippo, A., Fossi, S., Cesaretti, C., Piccioli, A., Peris, A., et al. (2005) Prediction of “Awakening” and Outcome in Prolonged Acute Coma from Severe Traumatic Brain Injury: Evidence for Validity of Short Latency SEPs. Clinical Neurophysiology, 116, 229-235. https://doi.org/10.1016/j.clinph.2004.07.008
|
[38]
|
Al-Adli, N., Akbik, O.S., Rail, B., Montgomery, E., Caldwell, C., Barrie, U., et al. (2021) The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurgery, 155, e418-e438. https://doi.org/10.1016/j.wneu.2021.08.073
|
[39]
|
Dolmans, R.G.F., Hulsbergen, A.F.C., Gormley, W.B. and Broekman, M.L.D. (2020) Routine Blood Tests for Severe Traumatic Brain Injury: Can They Predict Outcomes? World Neurosurgery, 136, e60-e67. https://doi.org/10.1016/j.wneu.2019.10.086
|
[40]
|
Choudhary, A., Varshney, R., Kumar, A. and Kaushik, K. (2021) A Prospective Study of Novel Therapeutic Targets Interleukin 6, Tumor Necrosis Factor Α, and Interferon γ as Predictive Biomarkers for the Development of Posttraumatic Epilepsy. World Neurosurgery: X, 12, Article ID: 100107. https://doi.org/10.1016/j.wnsx.2021.100107
|
[41]
|
Lv, K., Yuan, Q., Fu, P., Wu, G., Wu, X., Du, Z., et al. (2020) Impact of Fibrinogen Level on the Prognosis of Patients with Traumatic Brain Injury: A Single-Center Analysis of 2570 Patients. World Journal of Emergency Surgery, 15, Article No. 54. https://doi.org/10.1186/s13017-020-00332-1
|