[1]
|
Giza, D.E., Fuentes-Mattei, E., Bullock, M.D., Tudor, S., Goblirsch, M.J., Fabbri, M., et al. (2016) Cellular and Viral Micrornas in Sepsis: Mechanisms of Action and Clinical Applications. Cell Death & Differentiation, 23, 1906-1918. https://doi.org/10.1038/cdd.2016.94
|
[2]
|
Raeven, P., Zipperle, J. and Drechsler, S. (2018) Extracellular Vesicles as Markers and Mediators in Sepsis. Theranostics, 8, 3348-3365. https://doi.org/10.7150/thno.23453
|
[3]
|
Wiersinga, W.J. (2011) Current Insights in Sepsis. Current Opinion in Critical Care, 17, 480-486. https://doi.org/10.1097/mcc.0b013e32834a4aeb
|
[4]
|
Huttunen, R. and Aittoniemi, J. (2011) New Concepts in the Pathogenesis, Diagnosis and Treatment of Bacteremia and Sepsis. Journal of Infection, 63, 407-419. https://doi.org/10.1016/j.jinf.2011.08.004
|
[5]
|
Huang, M., Cai, S. and Su, J. (2019) The Pathogenesis of Sepsis and Potential Therapeutic Targets. International Journal of Molecular Sciences, 20, Article 5376. https://doi.org/10.3390/ijms20215376
|
[6]
|
Kok, V.C. and Yu, C. (2020) Cancer-Derived Exosomes: Their Role in Cancer Biology and Biomarker Development. International Journal of Nanomedicine, 15, 8019-8036. https://doi.org/10.2147/ijn.s272378
|
[7]
|
Al-Madhagi, H. (2024) The Landscape of Exosomes Biogenesis to Clinical Applications. International Journal of Nanomedicine, 19, 3657-3675. https://doi.org/10.2147/ijn.s463296
|
[8]
|
Xu, Z., Chen, Y., Ma, L., Chen, Y., Liu, J., Guo, Y., et al. (2022) Role of Exosomal Non-Coding RNAs from Tumor Cells and Tumor-Associated Macrophages in the Tumor Microenvironment. Molecular Therapy, 30, 3133-3154. https://doi.org/10.1016/j.ymthe.2022.01.046
|
[9]
|
Gong, T., Liu, Y. and Fan, J. (2024) Exosomal Mediators in Sepsis and Inflammatory Organ Injury: Unraveling the Role of Exosomes in Intercellular Crosstalk and Organ Dysfunction. Military Medical Research, 11, Article No. 24. https://doi.org/10.1186/s40779-024-00527-6
|
[10]
|
Chen, R. and Zhou, L. (2021) PD-1 Signaling Pathway in Sepsis: Does It Have a Future? Clinical Immunology, 229, Article ID: 108742. https://doi.org/10.1016/j.clim.2021.108742
|
[11]
|
Nakamori, Y., Park, E.J. and Shimaoka, M. (2021) Immune Deregulation in Sepsis and Septic Shock: Reversing Immune Paralysis by Targeting PD-1/PD-L1 Pathway. Frontiers in Immunology, 11, Article 624279. https://doi.org/10.3389/fimmu.2020.624279
|
[12]
|
Rossi, A., Le, M., Chung, C., Chen, Y., Fallon, E.A., Matoso, A., et al. (2019) A Novel Role for Programmed Cell Death Receptor Ligand 2 in Sepsis-Induced Hepatic Dysfunction. American Journal of Physiology-Gastrointestinal and Liver Physiology, 316, G106-G114. https://doi.org/10.1152/ajpgi.00204.2018
|
[13]
|
Ruan, W., Feng, M., Xu, J., Xu, Y., Song, C., Lin, L., et al. (2020) Early Activation of Myeloid-Derived Suppressor Cells Participate in Sepsis-Induced Immune Suppression via PD-L1/PD-1 Axis. Frontiers in Immunology, 11, Article 1299. https://doi.org/10.3389/fimmu.2020.01299
|
[14]
|
Patil, N., Guo, Y., Luan, L. and Sherwood, E. (2017) Targeting Immune Cell Checkpoints during Sepsis. International Journal of Molecular Sciences, 18, Article 2413. https://doi.org/10.3390/ijms18112413
|
[15]
|
Yang, L., Gao, Q., Li, Q. and Guo, S. (2023) PD-L1 Blockade Improves Survival in Sepsis by Reversing Monocyte Dysfunction and Immune Disorder. Inflammation, 47, 114-128. https://doi.org/10.1007/s10753-023-01897-0
|
[16]
|
Zhang, Y., Li, J., Lou, J., Zhou, Y., Bo, L., Zhu, J., et al. (2011) Upregulation of Programmed Death-1 on T Cells and Programmed Death Ligand-1 on Monocytes in Septic Shock Patients. Critical Care, 15, Article No. R70. https://doi.org/10.1186/cc10059
|
[17]
|
Zhang, T., Yu-Jing, L. and Ma, T. (2023) Role of Regulation of PD-1 and PD-L1 Expression in Sepsis. Frontiers in Immunology, 14, Article 1029438. https://doi.org/10.3389/fimmu.2023.1029438
|
[18]
|
Liu, J., Song, K., Lin, B., Chen, Z., Zuo, Z., Fang, Y., et al. (2024) HMGB1 Promotes Neutrophil PD-L1 Expression through TLR2 and Mediates T Cell Apoptosis Leading to Immunosuppression in Sepsis. International Immunopharmacology, 133, Article ID: 112130. https://doi.org/10.1016/j.intimp.2024.112130
|
[19]
|
Derigs, M., Heers, H., Lingelbach, S., Hofmann, R. and Hänze, J. (2022) Soluble PD-L1 in Blood Correlates Positively with Neutrophil and Negatively with Lymphocyte mRNA Markers and Implies Adverse Sepsis Outcome. Immunologic Research, 70, 698-707. https://doi.org/10.1007/s12026-022-09302-y
|
[20]
|
Chen, J., Chen, R., Huang, S., Zu, B. and Zhang, S. (2020) Atezolizumab Alleviates the Immunosuppression Induced by Pd-L1-Positive Neutrophils and Improves the Survival of Mice during Sepsis. Molecular Medicine Reports, 23, Article No. 144. https://doi.org/10.3892/mmr.2020.11783
|
[21]
|
Wang, F., Cui, Y., He, D., Gong, L. and Liang, H. (2023) Natural Killer Cells in Sepsis: Friends or Foes? Frontiers in Immunology, 14, Article 1101918. https://doi.org/10.3389/fimmu.2023.1101918
|
[22]
|
Jiang, W., Li, X., Wen, M., Liu, X., Wang, K., Wang, Q., et al. (2020) Increased Percentage of PD-L1+ Natural Killer Cells Predicts Poor Prognosis in Sepsis Patients: A Prospective Observational Cohort Study. Critical Care, 24, Article No. 617. https://doi.org/10.1186/s13054-020-03329-z
|
[23]
|
Tang, J., Shang, C., Chang, Y., Jiang, W., Xu, J., Zhang, L., et al. (2024) Peripheral PD-1+NK Cells Could Predict the 28-Day Mortality in Sepsis Patients. Frontiers in Immunology, 15, Article 1426064. https://doi.org/10.3389/fimmu.2024.1426064
|
[24]
|
Chen, D., Li, K., Pan, L., Wu, Y., Chen, M., Zhang, X., et al. (2023) TCF7 and LEF-1 Downregulation in Sepsis Promotes Immune Suppression by Inhibiting CD4+ T Cell Proliferation. Microbial Pathogenesis, 184, Article ID: 106362. https://doi.org/10.1016/j.micpath.2023.106362
|
[25]
|
Chen, Y., Guo, D., Zhu, C., Ren, S., Sun, C., Wang, Y., et al. (2023) The Implication of Targeting PD-1:PD-L1 Pathway in Treating Sepsis through Immunostimulatory and Anti-Inflammatory Pathways. Frontiers in Immunology, 14, Article 1323797. https://doi.org/10.3389/fimmu.2023.1323797
|
[26]
|
Coman, O., Grigorescu, B., Huțanu, A., Bacârea, A., Văsieșiu, A.M., Fodor, R.Ș., et al. (2024) The Role of Programmed Cell Death 1/Programmed Death Ligand 1 (PD-1/PD-L1) Axis in Sepsis-Induced Apoptosis. Medicina, 60, Article 1174. https://doi.org/10.3390/medicina60071174
|
[27]
|
丁烨, 戴璐, 向雅婷, 等. 程序性死亡蛋白1 (PD-1)及其配体PD-L1在脓毒症免疫细胞功能障碍中的作用及其应用 [J]. 细胞与分子免疫学杂志, 2020, 36(9): 843-848.
|
[28]
|
王宗培, 汪松, 喻安永, 等. PD-1/PD-L1对脓毒症患者免疫细胞影响的研究进展 [J]. 现代免疫学, 2019, 39(6): 518-521.
|
[29]
|
Lee, S.I., Kim, N.Y., Chung, C., Park, D., Kang, D.H., Kim, D.K., et al. (2025) IL-6 and PD-1 Antibody Blockade Combination Therapy Regulate Inflammation and T Lymphocyte Apoptosis in Murine Model of Sepsis. BMC Immunology, 26, Article No. 3. https://doi.org/10.1186/s12865-024-00679-z
|