[1]
|
Simanshu, D.K., Nissley, D.V. and McCormick, F. (2017) RAS Proteins and Their Regulators in Human Disease. Cell, 170, 17-33. https://doi.org/10.1016/j.cell.2017.06.009
|
[2]
|
Hobbs, G.A., Der, C.J. and Rossman, K.L. (2016) RAS Isoforms and Mutations in Cancer at a Glance. Journal of Cell Science, 129, 1287-1292. https://doi.org/10.1242/jcs.182873
|
[3]
|
Huang, L., Guo, Z., Wang, F. and Fu, L. (2021) KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 386. https://doi.org/10.1038/s41392-021-00780-4
|
[4]
|
Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS Oncogenes: Weaving a Tumorigenic Web. Nature Reviews Cancer, 11, 761-774. https://doi.org/10.1038/nrc3106
|
[5]
|
贾潇潇, 张鹏, 景元明, 等. KRAS突变型非小细胞肺癌靶向治疗的新进展[J]. 浙江医学, 2023, 45(14): 1549-1553, 1559.
|
[6]
|
Nan, X., Tamgüney, T.M., Collisson, E.A., Lin, L., Pitt, C., Galeas, J., et al. (2015) Ras-GTP Dimers Activate the Mitogen-Activated Protein Kinase (MAPK) Pathway. Proceedings of the National Academy of Sciences of the United States of America, 112, 7996-8001. https://doi.org/10.1073/pnas.1509123112
|
[7]
|
Patricelli, M.P., Janes, M.R., Li, L., Hansen, R., Peters, U., Kessler, L.V., et al. (2016) Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer Discovery, 6, 316-329. https://doi.org/10.1158/2159-8290.cd-15-1105
|
[8]
|
Liu, P., Wang, Y. and Li, X. (2019) Targeting the Untargetable KRAS in Cancer Therapy. Acta Pharmaceutica Sinica B, 9, 871-879. https://doi.org/10.1016/j.apsb.2019.03.002
|
[9]
|
徐嘉若, 朱玉莹, 姚广涛, 等. 靶向KRAS信号通路的抗肿瘤抑制剂研发现状[J]. 中国新药杂志, 2021, 30(23): 2189-2193.
|
[10]
|
Khan, I., Rhett, J.M. and O'Bryan, J.P. (2020) Therapeutic Targeting of RAS: New Hope for Drugging the “Undruggable”. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1867, Article ID: 118570. https://doi.org/10.1016/j.bbamcr.2019.118570
|
[11]
|
Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras(G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature, 503, 548-551. https://doi.org/10.1038/nature12796
|
[12]
|
Lindsay, C.R., Jamal-Hanjani, M., Forster, M. and Blackhall, F. (2018) KRAS: Reasons for Optimism in Lung Cancer. European Journal of Cancer, 99, 20-27. https://doi.org/10.1016/j.ejca.2018.05.001
|
[13]
|
Li, Q., Li, Z., Luo, T. and Shi, H. (2022) Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK Pathways for Cancer Therapy. Molecular Biomedicine, 3, Article No. 47. https://doi.org/10.1186/s43556-022-00110-2
|
[14]
|
Désage, A., Léonce, C., Swalduz, A. and Ortiz-Cuaran, S. (2022) Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights into Therapeutic Strategies. Frontiers in Oncology, 12, Article 796832. https://doi.org/10.3389/fonc.2022.796832
|
[15]
|
Lam, K.K., Wong, S.H. and Cheah, P.Y. (2023) Targeting the ‘Undruggable’ Driver Protein, KRAS, in Epithelial Cancers: Current Perspective. Cells, 12, Article 631. https://doi.org/10.3390/cells12040631
|
[16]
|
Liu, C., Zheng, S., Wang, Z., Wang, S., Wang, X., Yang, L., et al. (2022) KRAS‐G12D Mutation Drives Immune Suppression and the Primary Resistance of Anti‐PD‐1/PD‐L1 Immunotherapy in Non‐Small Cell Lung Cancer. Cancer Communications, 42, 828-847. https://doi.org/10.1002/cac2.12327
|
[17]
|
Rohatgi, A. and Govindan, R. (2022) Targeting KRAS G12C Mutation in Lung Adenocarcinoma. Lung Cancer, 165, 28-33. https://doi.org/10.1016/j.lungcan.2021.12.021
|
[18]
|
Lito, P., Solomon, M., Li, L., Hansen, R. and Rosen, N. (2016) Allele-Specific Inhibitors Inactivate Mutant KRAS G12C by a Trapping Mechanism. Science, 351, 604-608. https://doi.org/10.1126/science.aad6204
|
[19]
|
(2022) U.S. FOOD and Drug Administration (FDA) Accepts Mirati Therapeutics’ New Drug Application for Adagrasib as Treatment of Previously Treated KRASG12C-Mutated Non-Small Cell Lung Cancer. https://www.biospace.com/u-s-food-and-drug-administration-fda-accepts-mirati-therapeutics-new-drug-application-for-Adagrasib-as-treatment-of-previously-treated-krasg12c-mutated-non-small-cell-lung-cancer
|
[20]
|
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. https://doi.org/10.1038/s41586-019-1694-1
|
[21]
|
Wang, X., Allen, S., Blake, J.F., Bowcut, V., Briere, D.M., Calinisan, A., et al. (2021) Identification of MRTX1133, a Noncovalent, Potent, and Selective KRASg12d Inhibitor. Journal of Medicinal Chemistry, 65, 3123-3133. https://doi.org/10.1021/acs.jmedchem.1c01688
|
[22]
|
Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., et al. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157. https://doi.org/10.1158/2159-8290.cd-20-0142
|
[23]
|
Zhou, C., Fan, Z., Zhou, Z., Li, Y., Cui, R., Liu, C., et al. (2022) Discovery of the First-in-Class Agonist-Based SOS1 Protacs Effective in Human Cancer Cells Harboring Various KRAS Mutations. Journal of Medicinal Chemistry, 65, 3923-3942. https://doi.org/10.1021/acs.jmedchem.1c01774
|
[24]
|
Ruess, D.A., Heynen, G.J., Ciecielski, K.J., Ai, J., Berninger, A., Kabacaoglu, D., et al. (2018) Mutant KRAS-Driven Cancers Depend on PTPN11/SHP2 Phosphatase. Nature Medicine, 24, 954-960. https://doi.org/10.1038/s41591-018-0024-8
|
[25]
|
Fedele, C., Li, S., Teng, K.W., Foster, C.J.R., Peng, D., Ran, H., et al. (2020) SHP2 Inhibition Diminishes KRASG12C Cycling and Promotes Tumor Microenvironment Remodeling. Journal of Experimental Medicine, 218, e20201414. https://doi.org/10.1084/jem.20201414
|
[26]
|
Kaiser, J. (2019) After Decades, Progress against an ‘Undruggable’ Cancer Target. Science, 366, 561. https://doi.org/10.1126/science.366.6465.561
|
[27]
|
Muzumdar, M.D., Chen, P., Dorans, K.J., Chung, K.M., Bhutkar, A., Hong, E., et al. (2017) Survival of Pancreatic Cancer Cells Lacking KRAS Function. Nature Communications, 8, Article No. 1090. https://doi.org/10.1038/s41467-017-00942-5
|
[28]
|
Zhu, Z., Golay, H.G. and Barbie, D.A. (2014) Targeting Pathways Downstream of KRAS in Lung Adenocarcinoma. Pharmacogenomics, 15, 1507-1518. https://doi.org/10.2217/pgs.14.108
|
[29]
|
Yaeger, R. and Corcoran, R.B. (2019) Targeting Alterations in the RAF-MEK Pathway. Cancer Discovery, 9, 329-341. https://doi.org/10.1158/2159-8290.cd-18-1321
|
[30]
|
Savoia, P., Fava, P., Casoni, F. and Cremona, O. (2019) Targeting the ERK Signaling Pathway in Melanoma. International Journal of Molecular Sciences, 20, Article 1483. https://doi.org/10.3390/ijms20061483
|
[31]
|
Drosten, M. and Barbacid, M. (2020) Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell, 37, 543-550. https://doi.org/10.1016/j.ccell.2020.03.013
|
[32]
|
Kelly, R.J., Rajan, A., Force, J., Lopez-Chavez, A., Keen, C., Cao, L., et al. (2011) Evaluation of KRAS Mutations, Angiogenic Biomarkers, and DCE-MRI in Patients with Advanced Non-Small-Cell Lung Cancer Receiving Sorafenib. Clinical Cancer Research, 17, 1190-1199. https://doi.org/10.1158/1078-0432.ccr-10-2331
|
[33]
|
van Malenstein, H., Dekervel, J., Verslype, C., Van Cutsem, E., Windmolders, P., Nevens, F., et al. (2013) Long-Term Exposure to Sorafenib of Liver Cancer Cells Induces Resistance with Epithelial-to-Mesenchymal Transition, Increased Invasion and Risk of Rebound Growth. Cancer Letters, 329, 74-83. https://doi.org/10.1016/j.canlet.2012.10.021
|
[34]
|
Moss, D.Y., McCann, C. and Kerr, E.M. (2022) Rerouting the Drug Response: Overcoming Metabolic Adaptation in KRAS-Mutant Cancers. Science Signaling, 15, eabj3490. https://doi.org/10.1126/scisignal.abj3490
|
[35]
|
Jiao, D. and Yang, S. (2020) Overcoming Resistance to Drugs Targeting KRAS Mutation. The Innovation, 1, Article ID: 100035. https://doi.org/10.1016/j.xinn.2020.100035
|
[36]
|
Burslem, G.M. and Crews, C.M. (2020) Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, 181, 102-114. https://doi.org/10.1016/j.cell.2019.11.031
|
[37]
|
Bond, M.J., Chu, L., Nalawansha, D.A., Li, K. and Crews, C.M. (2020) Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting PROTACs. ACS Central Science, 6, 1367-1375. https://doi.org/10.1021/acscentsci.0c00411
|
[38]
|
Qi, S., Dong, J., Xu, Z., Cheng, X., Zhang, W. and Qin, J. (2021) PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy. Frontiers in Pharmacology, 12, Article 692574. https://doi.org/10.3389/fphar.2021.692574
|
[39]
|
Ostrem, J.M.L. and Shokat, K.M. (2016) Direct Small-Molecule Inhibitors of KRAS: From Structural Insights to Mechanism-Based Design. Nature Reviews Drug Discovery, 15, 771-785. https://doi.org/10.1038/nrd.2016.139
|
[40]
|
Mullard, A. (2019) Cracking KRAS. Nature Reviews Drug Discovery, 18, 887-891. https://doi.org/10.1038/d41573-019-00195-5
|
[41]
|
Xie, J., Xia, L., Xiang, W., He, W., Yin, H., Wang, F., et al. (2020) Metformin Selectively Inhibits Metastatic Colorectal Cancer with the KRAS Mutation by Intracellular Accumulation through Silencing MATE1. Proceedings of the National Academy of Sciences of the United States of America, 117, 13012-13022. https://doi.org/10.1073/pnas.1918845117
|
[42]
|
Awad, M.M., Liu, S., Rybkin, I.I., Arbour, K.C., Dilly, J., Zhu, V.W., et al. (2021) Acquired Resistance to KRASG12C Inhibition in Cancer. New England Journal of Medicine, 384, 2382-2393. https://doi.org/10.1056/nejmoa2105281
|
[43]
|
Xue, J.Y., Zhao, Y., Aronowitz, J., Mai, T.T., Vides, A., Qeriqi, B., et al. (2020) Rapid Non-Uniform Adaptation to Conformation-Specific KRAS(G12C) Inhibition. Nature, 577, 421-425. https://doi.org/10.1038/s41586-019-1884-x
|
[44]
|
Ceddia, S., Landi, L. and Cappuzzo, F. (2022) KRAS-Mutant Non-Small-Cell Lung Cancer: From Past Efforts to Future Challenges. International Journal of Molecular Sciences, 23, Article 9391. https://doi.org/10.3390/ijms23169391
|
[45]
|
Brown, W.S., McDonald, P.C., Nemirovsky, O., Awrey, S., Chafe, S.C., Schaeffer, D.F., et al. (2020) Overcoming Adaptive Resistance to KRAS and MEK Inhibitors by Co-Targeting MTORC1/2 Complexes in Pancreatic Cancer. Cell Reports Medicine, 1, Article ID: 100131. https://doi.org/10.1016/j.xcrm.2020.100131
|
[46]
|
Hallin, J., Engstrom, L.D., Hargis, L., Calinisan, A., Aranda, R., Briere, D.M., et al. (2020) The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 10, 54-71. https://doi.org/10.1158/2159-8290.cd-19-1167
|
[47]
|
Mellema, W.W., Masen-Poos, L., Smit, E.F., Hendriks, L.E.L., Aerts, J.G., Termeer, A., et al. (2015) Comparison of Clinical Outcome after First-Line Platinum-Based Chemotherapy in Different Types of KRAS Mutated Advanced Non-Small-Cell Lung Cancer. Lung Cancer, 90, 249-254. https://doi.org/10.1016/j.lungcan.2015.09.012
|
[48]
|
Liu, F., Wang, F., He, J., Zhou, S. and Luo, M. (2023) Correlation between KRAS Mutation Subtypes and Prognosis in Chinese Advanced Non‐Squamous Non‐Small Cell Lung Cancer Patients. Cancer Medicine, 12, 13123-13134. https://doi.org/10.1002/cam4.5995
|