[1]
|
Bauer, A., Berben, P., Chakravarthi, S.S., Chattorraj, S., Garg, A., Gourdon, B., et al. (2023) Current State and Opportunities with Long-Acting Injectables: Industry Perspectives from the Innovation and Quality Consortium “Long-Acting Injectables” Working Group. Pharmaceutical Research, 40, 1601-1631. https://doi.org/10.1007/s11095-022-03391-y
|
[2]
|
Song, R., Murphy, M., Li, C., Ting, K., Soo, C. and Zheng, Z. (2018) Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Design, Development and Therapy, 12, 3117-3145. https://doi.org/10.2147/dddt.s165440
|
[3]
|
He, J., Shi, H., Li, X., Nie, X., Yang, Y., Li, J., et al. (2022) A Review on Microbial Synthesis of Lactate-Containing Polyesters. World Journal of Microbiology and Biotechnology, 38, Article No. 198. https://doi.org/10.1007/s11274-022-03388-0
|
[4]
|
Hao, Y., Liu, Z., Zhang, H., Wu, Y., Xiao, Y., Li, Y., et al. (2019) Effect of Reactive Group Types on the Properties of Poly(ethylene Octane) Toughened Poly(Lactic Acid). Journal of Polymer Research, 26, Article No. 109. https://doi.org/10.1007/s10965-019-1764-y
|
[5]
|
Cui, J.Y., Chen, C., Yang, Y., et al. (2020) Research Progress of the Synthesis and Modification of Biomedical PLA. New-Chemical Materials, 48, 268-272.
|
[6]
|
Li, G., Zhao, M., Xu, F., Yang, B., Li, X., Meng, X., et al. (2020) Synthesis and Biological Application of Polylactic Acid. Molecules, 25, Article 5023. https://doi.org/10.3390/molecules25215023
|
[7]
|
Hu, X., Kamberi, M. and Xu, X. (2021) Quantitative Analysis of Lactic Acid Oligomers from Dimer to 15mer in poly(D,L-Lactide) (PDLLA) Polymers. International Journal of Polymer Analysis and Characterization, 26, 145-157.
|
[8]
|
Vermet, G., Degoutin, S., Chai, F., Maton, M., Flores, C., Neut, C., et al. (2017) Cyclodextrin Modified PLLA Parietal Reinforcement Implant with Prolonged Antibacterial Activity. Acta Biomaterialia, 53, 222-232. https://doi.org/10.1016/j.actbio.2017.02.017
|
[9]
|
Dai, F., Li, X., Lv, K., Wang, J. and Zhao, Y. (2023) Combined Core Stability and Degradability of Nanomedicine via Amorphous PDLLA-Dextran Bottlebrush Copolymer for Alzheimer’s Disease Combination Treatment. ACS Applied Materials & Interfaces, 15, 26385-26397. https://doi.org/10.1021/acsami.3c03174
|
[10]
|
Zhao, X., Liu, J., Li, J., Liang, X., Zhou, W. and Peng, S. (2022) Strategies and Techniques for Improving Heat Resistance and Mechanical Performances of Poly(Lactic Acid) (PLA) Biodegradable Materials. International Journal of Biological Macromolecules, 218, 115-134. https://doi.org/10.1016/j.ijbiomac.2022.07.091
|
[11]
|
Li, X., Lin, Y., Liu, M., Meng, L. and Li, C. (2022) A Review of Research and Application of Polylactic Acid Composites. Journal of Applied Polymer Science, 140, e53477. https://doi.org/10.1002/app.53477
|
[12]
|
Yang, Y., Zhang, L., Xiong, Z., et al. (2024) Research Progress on Heat Resistant Modification of Polylactide. Poly-Mer Bulletin, 37, 430-441.
|
[13]
|
Li, C., Gong, W., Deng, Z., Yao, Z., Meng, X. and Xin, Z. (2022) Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Industrial & Engineering Chemistry Research, 61, 10945-10954. https://doi.org/10.1021/acs.iecr.2c01276
|
[14]
|
Ebrahimi, F. and Ramezani Dana, H. (2021) Poly Lactic Acid (PLA) Polymers: From Properties to Biomedical Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 71, 1117-1130. https://doi.org/10.1080/00914037.2021.1944140
|
[15]
|
Simmons, H. and Kontopoulou, M. (2018) Hydrolytic Degradation of Branched PLA Produced by Reactive Extrusion. Polymer Degradation and Stability, 158, 228-237. https://doi.org/10.1016/j.polymdegradstab.2018.11.006
|
[16]
|
Wanyan, Q., Qiu, Y., Xie, W. and Wu, D. (2020) Tuning Degradation and Mechanical Properties of Poly(L-Lactic Acid) with Biomass-Derived Poly(L-Malic Acid). Journal of Polymers and the Environment, 28, 884-891. https://doi.org/10.1007/s10924-020-01652-8
|
[17]
|
Pandey, D., Pandey, R., Mishra, A., et al. (2024) Effect of Printing Temperature on Fatigue and Impact Performance of 3-D Printed Carbon Fiber Reinforced PLA Composites for Ankle Foot Orthotic Device. Mechanics of Composite Materials, 60, 549-560. https://doi.org/10.1007/s11029-024-10209-y
|
[18]
|
Subramaniyan, M., Karuppan, S., Appusamy, A. and Pitchandi, N. (2025) Sandwich Printing of PLA and Carbon Fiber Reinforced-Pla for Enhancing Tensile and Impact Strength of Additive Manufactured Parts. Journal of Manufacturing Processes, 137, 425-436. https://doi.org/10.1016/j.jmapro.2025.02.001
|
[19]
|
Butreddy, A., Gaddam, R.P., Kommineni, N., Dudhipala, N. and Voshavar, C. (2021) PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. International Journal of Molecular Sciences, 22, Article 8884. https://doi.org/10.3390/ijms22168884
|
[20]
|
Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X. and Wang, A. (2023) Properties of Poly (Lactic-Co-Glycolic Acid) and Progress of Poly (Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 16, Article 454. https://doi.org/10.3390/ph16030454
|
[21]
|
Andhariya, J.V., Jog, R., Shen, J., Choi, S., Wang, Y., Zou, Y., et al. (2019) In Vitro-in Vivo Correlation of Parenteral PLGA Microspheres: Effect of Variable Burst Release. Journal of Controlled Release, 314, 25-37. https://doi.org/10.1016/j.jconrel.2019.10.014
|
[22]
|
Dai, J., Liang, M., Zhang, Z., Bernaerts, K.V. and Zhang, T. (2021) Synthesis and Crystallization Behavior of Poly(Lactide-co-Glycolide). Polymer, 235, Article 124302. https://doi.org/10.1016/j.polymer.2021.124302
|
[23]
|
Kumar, L., Kukreti, G., Rana, R., Chaurasia, H., Sharma, A., Sharma, N., et al. (2023) Poly(Lactic-co-Glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview. Current Pharmaceutical Design, 29, 2940-2953. https://doi.org/10.2174/0113816128275385231027054743
|
[24]
|
Wang, Y., Li, P. and Kong, L. (2013) Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved 4 Drug Delivery. AAPS PharmSciTech, 14, 585-592.
|
[25]
|
Pawar, R., Pathan, A., Nagaraj, S., Kapare, H., Giram, P. and Wavhale, R. (2023) Polycaprolactone and Its Derivatives for Drug Delivery. Polymers for Advanced Technologies, 34, 3296-3316. https://doi.org/10.1002/pat.6140
|
[26]
|
Dias, J.R., Sousa, A., Augusto, A., Bártolo, P.J. and Granja, P.L. (2022) Electrospun Polycaprolactone (PCL) Degradation: An in Vitro and in Vivo Study. Polymers, 14, Article 3397. https://doi.org/10.3390/polym14163397
|
[27]
|
Matumba, K.I., Mokhena, T.C., Ojijo, V., Sadiku, E.R. and Ray, S.S. (2024) Morphological Characteristics, Properties, and Applications of Polylactide/Poly(ε‐Caprolactone) Blends and Their Composites—A Review. Macromolecular Materials and Engineering, 309, Article 2400056. https://doi.org/10.1002/mame.202400056
|
[28]
|
Mtibe, A., Motloung, M.P., Bandyopadhyay, J. and Ray, S.S. (2021) Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromolecular Rapid Communications, 42, Article 2100130. https://doi.org/10.1002/marc.202100130
|
[29]
|
Heller, J. and Barr, J. (2004) Poly(Ortho Esters) from Concept to Reality. Biomacromolecules, 5, 1625-1632. https://doi.org/10.1021/bm040049n
|
[30]
|
HELLER, J. (2005) Ocular Delivery Using Poly(Ortho Esters). Advanced Drug Delivery Reviews, 57, 2053-2062. https://doi.org/10.1016/j.addr.2005.09.007
|
[31]
|
Wang, C., Ge, Q., Ting, D., Nguyen, D., Shen, H., Chen, J., et al. (2004) Molecularly Engineered Poly(Ortho Ester) Microspheres for Enhanced Delivery of DNA Vaccines. Nature Materials, 3, 190-196. https://doi.org/10.1038/nmat1075
|
[32]
|
Wang, M., Wang, S., Zhang, C., et al. (2024) Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. International Journal of Nanomedicine, 2024, 1571-1595. https://doi.org/10.2147/IJN.S445269
|
[33]
|
Su, Y., Zhang, B., Sun, R., Liu, W., Zhu, Q., Zhang, X., et al. (2021) PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Delivery, 28, 1397-1418. https://doi.org/10.1080/10717544.2021.1938756
|
[34]
|
何广宏, 万丹丹, 董然. 长效微球注射剂的研究进展[J]. 中国医院药学杂志, 2015, 35(10): 963-966.
|
[35]
|
Kim, M., Kim, J.H., Kim, S., Maharjan, R., Kim, N.A. and Jeong, S.H. (2022) New Long-Acting Injectable Microspheres Prepared by IVL-DrugFluidic™ System: 1-Month and 3-Month in Vivo Drug Delivery of Leuprolide. International Journal of Pharmaceutics, 622, Article 121875. https://doi.org/10.1016/j.ijpharm.2022.121875
|
[36]
|
Dimatteo, R., Darling, N.J. and Segura, T. (2018) In Situ Forming Injectable Hydrogels for Drug Delivery and Wound Repair. Advanced Drug Delivery Reviews, 127, 167-184. https://doi.org/10.1016/j.addr.2018.03.007
|
[37]
|
Dunn Richard, L., English James, P., Cowsar Donald, R., et al. (1997) Biodegradable in-Situ Forming Implants and Methods of Producing the Same. http://europepmc.org/patents/PAT/US5990194
|
[38]
|
Christian, R., Thakkar, V., Patel, T., Gohel, M., Baldaniya, L., Shah, P., et al. (2018) Development of Biodegradable Injectable in Situ Forming Implants for Sustained Release of Lornoxicam. Current Drug Delivery, 16, 66-78. https://doi.org/10.2174/1567201815666180927155710
|
[39]
|
Abulateefeh, S.R. (2023) Long-Acting Injectable PLGA/PLA Depots for Leuprolide Acetate: Successful Translation from Bench to Clinic. Drug Delivery and Translational Research, 13, 520-530. https://doi.org/10.1007/s13346-022-01228-0
|
[40]
|
Ansari, Z., Kalantar, M., Kharaziha, M., Ambrosio, L. and Raucci, M.G. (2020) Polycaprolactone/Fluoride Substituted-Hydroxyapatite (PCL/FHA) Nanocomposite Coatings Prepared by In-Situ Sol-Gel Process for Dental Implant Applications. Progress in Organic Coatings, 147, Article 105873. https://doi.org/10.1016/j.porgcoat.2020.105873
|
[41]
|
Aroda, V.R. and DeYoung, M.B. (2011) Clinical Implications of Exenatide as a Twice-Daily or Once-Weekly Therapy for Type 2 Diabetes. Postgraduate Medicine, 123, 228-238. https://doi.org/10.3810/pgm.2011.09.2479
|
[42]
|
Ekinci, E.I., Pyrlis, F., Hachem, M., et al. (2021) Feasibility of once Weekly Exenatide-LAR and Enhanced Diabetes Care in Indigenous Australians with Type 2 Diabetes. (Long-Acting-Once-Weekly-Exenatide Lower-SUGAR, “Lower SUGAR” Study). Internal Medicine Journal, 51, 1463-1472.
|
[43]
|
Bradham, K.D., Diamond, G.L., Burgess, M., Juhasz, A., Klotzbach, J.M., Maddaloni, M., et al. (2018) In Vivo and in Vitro Methods for Evaluating Soil Arsenic Bioavailability: Relevant to Human Health Risk Assessment. Journal of Toxicology and Environmental Health, Part B, 21, 83-114. https://doi.org/10.1080/10937404.2018.1440902
|
[44]
|
Panchal, S.S. and Vasava, D.V. (2023) Synthetic Biodegradable Polymeric Materials in Non-Viral Gene Delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 73, 478-489. https://doi.org/10.1080/00914037.2023.2167081
|
[45]
|
Bose, R.J., Kim, M., Chang, J.H., Paulmurugan, R., Moon, J.J., Koh, W., et al. (2019) Biodegradable Polymers for Modern Vaccine Development. Journal of Industrial and Engineering Chemistry, 77, 12-24. https://doi.org/10.1016/j.jiec.2019.04.044
|