| [1] | Bauer, A., Berben, P., Chakravarthi, S.S., Chattorraj, S., Garg, A., Gourdon, B., et al. (2023) Current State and Opportunities with Long-Acting Injectables: Industry Perspectives from the Innovation and Quality Consortium “Long-Acting Injectables” Working Group. Pharmaceutical Research, 40, 1601-1631.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Song, R., Murphy, M., Li, C., Ting, K., Soo, C. and Zheng, Z. (2018) Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Design, Development and Therapy, 12, 3117-3145.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | He, J., Shi, H., Li, X., Nie, X., Yang, Y., Li, J., et al. (2022) A Review on Microbial Synthesis of Lactate-Containing Polyesters. World Journal of Microbiology and Biotechnology, 38, Article No. 198.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Hao, Y., Liu, Z., Zhang, H., Wu, Y., Xiao, Y., Li, Y., et al. (2019) Effect of Reactive Group Types on the Properties of Poly(ethylene Octane) Toughened Poly(Lactic Acid). Journal of Polymer Research, 26, Article No. 109.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Cui, J.Y., Chen, C., Yang, Y., et al. (2020) Research Progress of the Synthesis and Modification of Biomedical PLA. New-Chemical Materials, 48, 268-272. | 
                     
                                
                                    
                                        | [6] | Li, G., Zhao, M., Xu, F., Yang, B., Li, X., Meng, X., et al. (2020) Synthesis and Biological Application of Polylactic Acid. Molecules, 25, Article 5023.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Hu, X., Kamberi, M. and Xu, X. (2021) Quantitative Analysis of Lactic Acid Oligomers from Dimer to 15mer in poly(D,L-Lactide) (PDLLA) Polymers. International Journal of Polymer Analysis and Characterization, 26, 145-157. | 
                     
                                
                                    
                                        | [8] | Vermet, G., Degoutin, S., Chai, F., Maton, M., Flores, C., Neut, C., et al. (2017) Cyclodextrin Modified PLLA Parietal Reinforcement Implant with Prolonged Antibacterial Activity. Acta Biomaterialia, 53, 222-232.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Dai, F., Li, X., Lv, K., Wang, J. and Zhao, Y. (2023) Combined Core Stability and Degradability of Nanomedicine via Amorphous PDLLA-Dextran Bottlebrush Copolymer for Alzheimer’s Disease Combination Treatment. ACS Applied Materials & Interfaces, 15, 26385-26397.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Zhao, X., Liu, J., Li, J., Liang, X., Zhou, W. and Peng, S. (2022) Strategies and Techniques for Improving Heat Resistance and Mechanical Performances of Poly(Lactic Acid) (PLA) Biodegradable Materials. International Journal of Biological Macromolecules, 218, 115-134.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Li, X., Lin, Y., Liu, M., Meng, L. and Li, C. (2022) A Review of Research and Application of Polylactic Acid Composites. Journal of Applied Polymer Science, 140, e53477.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Yang, Y., Zhang, L., Xiong, Z., et al. (2024) Research Progress on Heat Resistant Modification of Polylactide. Poly-Mer Bulletin, 37, 430-441. | 
                     
                                
                                    
                                        | [13] | Li, C., Gong, W., Deng, Z., Yao, Z., Meng, X. and Xin, Z. (2022) Fully Biodegradable Long-Chain Branched Polylactic Acid with High Crystallization Performance and Heat Resistance. Industrial & Engineering Chemistry Research, 61, 10945-10954.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Ebrahimi, F. and Ramezani Dana, H. (2021) Poly Lactic Acid (PLA) Polymers: From Properties to Biomedical Applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 71, 1117-1130.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Simmons, H. and Kontopoulou, M. (2018) Hydrolytic Degradation of Branched PLA Produced by Reactive Extrusion. Polymer Degradation and Stability, 158, 228-237.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Wanyan, Q., Qiu, Y., Xie, W. and Wu, D. (2020) Tuning Degradation and Mechanical Properties of Poly(L-Lactic Acid) with Biomass-Derived Poly(L-Malic Acid). Journal of Polymers and the Environment, 28, 884-891.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Pandey, D., Pandey, R., Mishra, A., et al. (2024) Effect of Printing Temperature on Fatigue and Impact Performance of 3-D Printed Carbon Fiber Reinforced PLA Composites for Ankle Foot Orthotic Device. Mechanics of Composite Materials, 60, 549-560. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Subramaniyan, M., Karuppan, S., Appusamy, A. and Pitchandi, N. (2025) Sandwich Printing of PLA and Carbon Fiber Reinforced-Pla for Enhancing Tensile and Impact Strength of Additive Manufactured Parts. Journal of Manufacturing Processes, 137, 425-436.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Butreddy, A., Gaddam, R.P., Kommineni, N., Dudhipala, N. and Voshavar, C. (2021) PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. International Journal of Molecular Sciences, 22, Article 8884.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Lu, Y., Cheng, D., Niu, B., Wang, X., Wu, X. and Wang, A. (2023) Properties of Poly (Lactic-Co-Glycolic Acid) and Progress of Poly (Lactic-Co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 16, Article 454.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Andhariya, J.V., Jog, R., Shen, J., Choi, S., Wang, Y., Zou, Y., et al. (2019) In Vitro-in Vivo Correlation of Parenteral PLGA Microspheres: Effect of Variable Burst Release. Journal of Controlled Release, 314, 25-37.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Dai, J., Liang, M., Zhang, Z., Bernaerts, K.V. and Zhang, T. (2021) Synthesis and Crystallization Behavior of Poly(Lactide-co-Glycolide). Polymer, 235, Article 124302.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Kumar, L., Kukreti, G., Rana, R., Chaurasia, H., Sharma, A., Sharma, N., et al. (2023) Poly(Lactic-co-Glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview. Current Pharmaceutical Design, 29, 2940-2953.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Wang, Y., Li, P. and Kong, L. (2013) Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved 4 Drug Delivery. AAPS PharmSciTech, 14, 585-592. | 
                     
                                
                                    
                                        | [25] | Pawar, R., Pathan, A., Nagaraj, S., Kapare, H., Giram, P. and Wavhale, R. (2023) Polycaprolactone and Its Derivatives for Drug Delivery. Polymers for Advanced Technologies, 34, 3296-3316.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Dias, J.R., Sousa, A., Augusto, A., Bártolo, P.J. and Granja, P.L. (2022) Electrospun Polycaprolactone (PCL) Degradation: An in Vitro and in Vivo Study. Polymers, 14, Article 3397.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Matumba, K.I., Mokhena, T.C., Ojijo, V., Sadiku, E.R. and Ray, S.S. (2024) Morphological Characteristics, Properties, and Applications of Polylactide/Poly(ε‐Caprolactone) Blends and Their Composites—A Review. Macromolecular Materials and Engineering, 309, Article 2400056.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Mtibe, A., Motloung, M.P., Bandyopadhyay, J. and Ray, S.S. (2021) Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview. Macromolecular Rapid Communications, 42, Article 2100130.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Heller, J. and Barr, J. (2004) Poly(Ortho Esters) from Concept to Reality. Biomacromolecules, 5, 1625-1632.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | HELLER, J. (2005) Ocular Delivery Using Poly(Ortho Esters). Advanced Drug Delivery Reviews, 57, 2053-2062.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Wang, C., Ge, Q., Ting, D., Nguyen, D., Shen, H., Chen, J., et al. (2004) Molecularly Engineered Poly(Ortho Ester) Microspheres for Enhanced Delivery of DNA Vaccines. Nature Materials, 3, 190-196.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Wang, M., Wang, S., Zhang, C., et al. (2024) Microstructure Formation and Characterization of Long-Acting Injectable Microspheres: The Gateway to Fully Controlled Drug Release Pattern. International Journal of Nanomedicine, 2024, 1571-1595. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Su, Y., Zhang, B., Sun, R., Liu, W., Zhu, Q., Zhang, X., et al. (2021) PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Delivery, 28, 1397-1418.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | 何广宏, 万丹丹, 董然. 长效微球注射剂的研究进展[J]. 中国医院药学杂志, 2015, 35(10): 963-966. | 
                     
                                
                                    
                                        | [35] | Kim, M., Kim, J.H., Kim, S., Maharjan, R., Kim, N.A. and Jeong, S.H. (2022) New Long-Acting Injectable Microspheres Prepared by IVL-DrugFluidic™ System: 1-Month and 3-Month in Vivo Drug Delivery of Leuprolide. International Journal of Pharmaceutics, 622, Article 121875.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Dimatteo, R., Darling, N.J. and Segura, T. (2018) In Situ Forming Injectable Hydrogels for Drug Delivery and Wound Repair. Advanced Drug Delivery Reviews, 127, 167-184.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Dunn Richard, L., English James, P., Cowsar Donald, R., et al. (1997) Biodegradable in-Situ Forming Implants and Methods of Producing the Same. http://europepmc.org/patents/PAT/US5990194
 | 
                     
                                
                                    
                                        | [38] | Christian, R., Thakkar, V., Patel, T., Gohel, M., Baldaniya, L., Shah, P., et al. (2018) Development of Biodegradable Injectable in Situ Forming Implants for Sustained Release of Lornoxicam. Current Drug Delivery, 16, 66-78.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Abulateefeh, S.R. (2023) Long-Acting Injectable PLGA/PLA Depots for Leuprolide Acetate: Successful Translation from Bench to Clinic. Drug Delivery and Translational Research, 13, 520-530.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Ansari, Z., Kalantar, M., Kharaziha, M., Ambrosio, L. and Raucci, M.G. (2020) Polycaprolactone/Fluoride Substituted-Hydroxyapatite (PCL/FHA) Nanocomposite Coatings Prepared by In-Situ Sol-Gel Process for Dental Implant Applications. Progress in Organic Coatings, 147, Article 105873.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [41] | Aroda, V.R. and DeYoung, M.B. (2011) Clinical Implications of Exenatide as a Twice-Daily or Once-Weekly Therapy for Type 2 Diabetes. Postgraduate Medicine, 123, 228-238.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Ekinci, E.I., Pyrlis, F., Hachem, M., et al. (2021) Feasibility of once Weekly Exenatide-LAR and Enhanced Diabetes Care in Indigenous Australians with Type 2 Diabetes. (Long-Acting-Once-Weekly-Exenatide Lower-SUGAR, “Lower SUGAR” Study). Internal Medicine Journal, 51, 1463-1472. | 
                     
                                
                                    
                                        | [43] | Bradham, K.D., Diamond, G.L., Burgess, M., Juhasz, A., Klotzbach, J.M., Maddaloni, M., et al. (2018) In Vivo and in Vitro Methods for Evaluating Soil Arsenic Bioavailability: Relevant to Human Health Risk Assessment. Journal of Toxicology and Environmental Health, Part B, 21, 83-114.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Panchal, S.S. and Vasava, D.V. (2023) Synthetic Biodegradable Polymeric Materials in Non-Viral Gene Delivery. International Journal of Polymeric Materials and Polymeric Biomaterials, 73, 478-489.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [45] | Bose, R.J., Kim, M., Chang, J.H., Paulmurugan, R., Moon, J.J., Koh, W., et al. (2019) Biodegradable Polymers for Modern Vaccine Development. Journal of Industrial and Engineering Chemistry, 77, 12-24.  [Google Scholar] [CrossRef] [PubMed] |