[1]
|
Bruner, L.P., White, A.M. and Proksell, S. (2023) Inflammatory Bowel Disease. Primary Care: Clinics in Office Practice, 50, 411-427. https://doi.org/10.1016/j.pop.2023.03.009
|
[2]
|
Kaplan, G.G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. https://doi.org/10.1038/nrgastro.2015.150
|
[3]
|
Kobayashi, T., Siegmund, B., Le Berre, C., Wei, S.C., Ferrante, M., Shen, B., et al. (2020) Ulcerative Colitis. Nature Reviews Disease Primers, 6, Article No. 74. https://doi.org/10.1038/s41572-020-0205-x
|
[4]
|
Singh, N. and Bernstein, C.N. (2022) Environmental Risk Factors for Inflammatory Bowel Disease. United European Gastroenterology Journal, 10, 1047-1053. https://doi.org/10.1002/ueg2.12319
|
[5]
|
Du, L. and Ha, C. (2020) Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America, 49, 643-654. https://doi.org/10.1016/j.gtc.2020.07.005
|
[6]
|
Guo, M. and Wang, X. (2023) Pathological Mechanism and Targeted Drugs of Ulcerative Colitis: A Review. Medicine, 102, e35020. https://doi.org/10.1097/md.0000000000035020
|
[7]
|
Liang, Y., Li, Y., Lee, C., Yu, Z., Chen, C. and Liang, C. (2024) Ulcerative Colitis: Molecular Insights and Intervention Therapy. Molecular Biomedicine, 5, Article No. 42. https://doi.org/10.1186/s43556-024-00207-w
|
[8]
|
Ge, L., Liu, S., Li, S., Yang, J., Hu, G., Xu, C., et al. (2022) Psychological Stress in Inflammatory Bowel Disease: Psychoneuroimmunological Insights into Bidirectional Gut-Brain Communications. Frontiers in Immunology, 13, Article ID: 1016578. https://doi.org/10.3389/fimmu.2022.1016578
|
[9]
|
Lungaro, L., Costanzini, A., Manza, F., Barbalinardo, M., Gentili, D., Guarino, M., et al. (2023) Impact of Female Gender in Inflammatory Bowel Diseases: A Narrative Review. Journal of Personalized Medicine, 13, Article No. 165. https://doi.org/10.3390/jpm13020165
|
[10]
|
Rustgi, S.D., Kayal, M. and Shah, S.C. (2020) Sex-Based Differences in Inflammatory Bowel Diseases: A Review. Therapeutic Advances in Gastroenterology, 13, 1-11. https://doi.org/10.1177/1756284820915043
|
[11]
|
Chavda, V.P., Chaudhari, A.Z., Balar, P.C., Gholap, A. and Vora, L.K. (2024) Phytoestrogens: Chemistry, Potential Health Benefits, and Their Medicinal Importance. Phytotherapy Research, 38, 3060-3079. https://doi.org/10.1002/ptr.8196
|
[12]
|
Sirotkin, A.V. and Harrath, A.H. (2014) Phytoestrogens and Their Effects. European Journal of Pharmacology, 741, 230-236. https://doi.org/10.1016/j.ejphar.2014.07.057
|
[13]
|
Canivenc-Lavier, M. and Bennetau-Pelissero, C. (2023) Phytoestrogens and Health Effects. Nutrients, 15, Article No. 317. https://doi.org/10.3390/nu15020317
|
[14]
|
Dixon, R.A. (2004) Phytoestrogens. Annual Review of Plant Biology, 55, 225-261. https://doi.org/10.1146/annurev.arplant.55.031903.141729
|
[15]
|
Patra, S., Gorai, S., Pal, S., Ghosh, K., Pradhan, S. and Chakrabarti, S. (2023) A Review on Phytoestrogens: Current Status and Future Direction. Phytotherapy Research, 37, 3097-3120. https://doi.org/10.1002/ptr.7861
|
[16]
|
Domínguez-López, I., Yago-Aragón, M., Salas-Huetos, A., Tresserra-Rimbau, A. and Hurtado-Barroso, S. (2020) Effects of Dietary Phytoestrogens on Hormones throughout a Human Lifespan: A Review. Nutrients, 12, Article No. 2456. https://doi.org/10.3390/nu12082456
|
[17]
|
Garcia-Villatoro, E.L. and Allred, C.D. (2021) Estrogen Receptor Actions in Colitis. Essays in Biochemistry, 65, 1003-1013. https://doi.org/10.1042/ebc20210010
|
[18]
|
Arao, Y. and Korach, K.S. (2021) The Physiological Role of Estrogen Receptor Functional Domains. Essays in Biochemistry, 65, 867-875. https://doi.org/10.1042/ebc20200167
|
[19]
|
Jia, M., Dahlman-Wright, K. and Gustafsson, J. (2015) Estrogen Receptor Alpha and Beta in Health and Disease. Best Practice & Research Clinical Endocrinology & Metabolism, 29, 557-568. https://doi.org/10.1016/j.beem.2015.04.008
|
[20]
|
Arterburn, J.B. and Prossnitz, E.R. (2023) G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annual Review of Pharmacology and Toxicology, 63, 295-320. https://doi.org/10.1146/annurev-pharmtox-031122-121944
|
[21]
|
Prossnitz, E.R. and Barton, M. (2011) The G-Protein-Coupled Estrogen Receptor GPER in Health and Disease. Nature Reviews Endocrinology, 7, 715-726. https://doi.org/10.1038/nrendo.2011.122
|
[22]
|
Kiyama, R. (2017) Estrogenic Potentials of Traditional Chinese Medicine. The American Journal of Chinese Medicine, 45, 1365-1399. https://doi.org/10.1142/s0192415x17500756
|
[23]
|
Wang, T., Huang, Y., Jiang, P., Yuan, X., Long, Q., Yan, X., et al. (2025) Research Progress on Anti-Inflammatory Drugs for Preventing Colitis-Associated Colorectal Cancer. International Immunopharmacology, 144, Article ID: 113583. https://doi.org/10.1016/j.intimp.2024.113583
|
[24]
|
Honap, S., Jairath, V., Sands, B.E., Dulai, P.S., Danese, S. and Peyrin-Biroulet, L. (2024) Acute Severe Ulcerative Colitis Trials: The Past, the Present and the Future. Gut, 73, 1763-1773. https://doi.org/10.1136/gutjnl-2024-332489
|
[25]
|
Deng, M., Chen, H., Long, J., Song, J., Xie, L. and Li, X. (2020) Calycosin: A Review of Its Pharmacological Effects and Application Prospects. Expert Review of Anti-infective Therapy, 19, 911-925. https://doi.org/10.1080/14787210.2021.1863145
|
[26]
|
Chao, L., Zheng, P., Xia, L., et al. (2017) Calycosin Attenuates Dextran Sulfate Sodium-Induced Experimental Colitis. Iranian Journal of Basic Medical Sciences, 20, 1056-1062.
|
[27]
|
Yu, L., Rios, E., Castro, L., Liu, J., Yan, Y. and Dixon, D. (2021) Genistein: Dual Role in Women’s Health. Nutrients, 13, Article No. 3048. https://doi.org/10.3390/nu13093048
|
[28]
|
Fan, W., Zhang, S., Wu, Y., Lu, T., Liu, J., Cao, X., et al. (2021) Genistein-Derived Ros-Responsive Nanoparticles Relieve Colitis by Regulating Mucosal Homeostasis. ACS Applied Materials & Interfaces, 13, 40249-40266. https://doi.org/10.1021/acsami.1c09215
|
[29]
|
Liu, J., Viswanadhapalli, S., Garcia, L., Zhou, M., Nair, B.C., Kost, E., et al. (2017) Therapeutic Utility of Natural Estrogen Receptor Beta Agonists on Ovarian Cancer. Oncotarget, 8, 50002-50014. https://doi.org/10.18632/oncotarget.18442
|
[30]
|
Min, J.K., Lee, C.H., Jang, S., Park, J., Lim, S., Kim, D., et al. (2015) Amelioration of Trinitrobenzene Sulfonic Acid‐induced Colitis in Mice by Liquiritigenin. Journal of Gastroenterology and Hepatology, 30, 858-865. https://doi.org/10.1111/jgh.12812
|
[31]
|
Zhao, Q., Feng, J., Liu, F., Liang, Q., Xie, M., Dong, J., et al. (2024) Rhizoma Drynariae-Derived Nanovesicles Reverse Osteoporosis by Potentiating Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells via Targeting Erα Signaling. Acta Pharmaceutica Sinica B, 14, 2210-2227. https://doi.org/10.1016/j.apsb.2024.02.005
|
[32]
|
Cao, H., Liu, J., Shen, P., Cai, J., Han, Y., Zhu, K., et al. (2018) Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. Journal of Agricultural and Food Chemistry, 66, 13133-13140. https://doi.org/10.1021/acs.jafc.8b03942
|
[33]
|
Lee, K., Kim, M., Yuk, H.J., Jo, Y., Kim, H.J., Kim, J., et al. (2024) Alleviating Depressive-Like Behavior in DSS-Induced Colitis Mice: Exploring Naringin and Poncirin from Poncirus Trifoliata Extracts. Biomedicine & Pharmacotherapy, 175, Article ID: 116770. https://doi.org/10.1016/j.biopha.2024.116770
|
[34]
|
Zhang, Y., Pan, H., Yu, C., Liu, R., Xing, B., Jia, B., et al. (2023) Phytoestrogen-Derived Multifunctional Ligands for Targeted Therapy of Breast Cancer. Asian Journal of Pharmaceutical Sciences, 18, Article ID: 100827. https://doi.org/10.1016/j.ajps.2023.100827
|
[35]
|
Hu, C., Chen, Y., Jin, T., Wang, Z., Jin, B., Liao, J., et al. (2024) A Derivative of Tanshinone IIA and Salviadione, 15a, Inhibits Inflammation and Alleviates DSS-Induced Colitis in Mice by Direct Binding and Inhibition of RIPK2. Acta Pharmacologica Sinica, 46, 672-686. https://doi.org/10.1038/s41401-024-01399-1
|
[36]
|
Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H. and Gonzalez-Granado, J.M. (2023) Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. International Journal of Molecular Sciences, 24, Article No. 1526. https://doi.org/10.3390/ijms24021526
|
[37]
|
Giesler, S., Riemer, R., Lowinus, T. and Zeiser, R. (2025) Immune-Mediated Colitis after Immune Checkpoint Inhibitor Therapy. Trends in Molecular Medicine, 31, 265-280. https://doi.org/10.1016/j.molmed.2024.09.009
|
[38]
|
Liao, D., Liu, Y., Li, C., He, B., Zhou, G., Cui, Y., et al. (2023) Arctigenin Hinders the Invasion and Metastasis of Cervical Cancer Cells via the Fak/paxillin Pathway. Heliyon, 9, e16683. https://doi.org/10.1016/j.heliyon.2023.e16683
|
[39]
|
Wu, X., Dou, Y., Yang, Y., Bian, D., Luo, J., Tong, B., et al. (2015) Arctigenin Exerts Anti-Colitis Efficacy through Inhibiting the Differentiation of Th1 and Th17 Cells via an Mtorc1-Dependent Pathway. Biochemical Pharmacology, 96, 323-336. https://doi.org/10.1016/j.bcp.2015.06.008
|
[40]
|
Khushboo, M., Sanjeev, S., Murthy, M.K., Sunitadevi, M., Dinata, R., Bhanushree, B., et al. (2023) Dietary Phytoestrogen Diosgenin Interrupts Metabolism, Physiology, and Reproduction of Swiss Albino Mice: Possible Mode of Action as an Emerging Environmental Contaminant, Endocrine Disruptor and Reproductive Toxicant. Food and Chemical Toxicology, 176, Article ID: 113798. https://doi.org/10.1016/j.fct.2023.113798
|
[41]
|
Wu, M., Wang, Q., Huang, B., Mai, C., Wang, C., Wang, T., et al. (2021) Dioscin Ameliorates Murine Ulcerative Colitis by Regulating Macrophage Polarization. Pharmacological Research, 172, Article ID: 105796. https://doi.org/10.1016/j.phrs.2021.105796
|
[42]
|
Wong, K., Kong, T., Poon, C.C., Yu, W., Zhou, L. and Wong, M. (2023) Icariin, a Phytoestrogen, Exerts Rapid Estrogenic Actions through Crosstalk of Estrogen Receptors in Osteoblasts. Phytotherapy Research, 37, 4706-4721. https://doi.org/10.1002/ptr.7939
|
[43]
|
Tao, F., Qian, C., Guo, W., Luo, Q., Xu, Q. and Sun, Y. (2013) Inhibition of Th1/Th17 Responses via Suppression of STAT1 and STAT3 Activation Contributes to the Amelioration of Murine Experimental Colitis by a Natural Flavonoid Glucoside Icariin. Biochemical Pharmacology, 85, 798-807. https://doi.org/10.1016/j.bcp.2012.12.002
|
[44]
|
Lee, D., Kim, Y., Chin, Y. and Kang, K.S. (2021) Schisandrol a Exhibits Estrogenic Activity via Estrogen Receptor Α-Dependent Signaling Pathway in Estrogen Receptor-Positive Breast Cancer Cells. Pharmaceutics, 13, Article No. 1082. https://doi.org/10.3390/pharmaceutics13071082
|
[45]
|
Ma, Z., Xu, G., Shen, Y., Hu, S., Lin, X., Zhou, J., et al. (2021) Schisandrin B-Mediated Th17 Cell Differentiation Attenuates Bowel Inflammation. Pharmacological Research, 166, Article ID: 105459. https://doi.org/10.1016/j.phrs.2021.105459
|
[46]
|
Iacucci, M., Santacroce, G., Majumder, S., Morael, J., Zammarchi, I., Maeda, Y., et al. (2024) Opening the Doors of Precision Medicine: Novel Tools to Assess Intestinal Barrier in Inflammatory Bowel Disease and Colitis-Associated Neoplasia. Gut, 73, 1749-1762. https://doi.org/10.1136/gutjnl-2023-331579
|
[47]
|
Qiao, Y., He, C., Xia, Y., Ocansey, D.K.W. and Mao, F. (2025) Intestinal Mucus Barrier: A Potential Therapeutic Target for IBD. Autoimmunity Reviews, 24, Article ID: 103717. https://doi.org/10.1016/j.autrev.2024.103717
|
[48]
|
Yang, Y., Chen, D., Li, Y., Zou, J., Han, R., Li, H., et al. (2022) Effect of Puerarin on Osteogenic Differentiation in Vitro and on New Bone Formation in Vivo. Drug Design, Development and Therapy, 16, 2885-2900. https://doi.org/10.2147/dddt.s379794
|
[49]
|
Wu, Y., Li, Y., Ruan, Z., Li, J., Zhang, L., Lu, H., et al. (2020) Puerarin Rebuilding the Mucus Layer and Regulating Mucin-Utilizing Bacteria to Relieve Ulcerative Colitis. Journal of Agricultural and Food Chemistry, 68, 11402-11411. https://doi.org/10.1021/acs.jafc.0c04119
|
[50]
|
Novakovic, R., Rajkovic, J., Gostimirovic, M., Gojkovic-Bukarica, L. and Radunovic, N. (2022) Resveratrol and Reproductive Health. Life, 12, Article No. 294. https://doi.org/10.3390/life12020294
|
[51]
|
Pan, H., Zhou, X., Ma, Y., Pan, W., Zhao, F., Yu, M., et al. (2020) Resveratrol Alleviates Intestinal Mucosal Barrier Dysfunction in Dextran Sulfate Sodium-Induced Colitis Mice by Enhancing Autophagy. World Journal of Gastroenterology, 26, 4945-4959. https://doi.org/10.3748/wjg.v26.i33.4945
|
[52]
|
Wang, X., Peng, J., Cai, P., Xia, Y., Yi, C., Shang, A., et al. (2024) The Emerging Role of the Gut Microbiota and Its Application in Inflammatory Bowel Disease. Biomedicine & Pharmacotherapy, 179, Article ID: 117302. https://doi.org/10.1016/j.biopha.2024.117302
|
[53]
|
Bethlehem, L., Estevinho, M.M., Grinspan, A., Magro, F., Faith, J.J. and Colombel, J. (2024) Microbiota Therapeutics for Inflammatory Bowel Disease: The Way Forward. The Lancet Gastroenterology & Hepatology, 9, 476-486. https://doi.org/10.1016/s2468-1253(23)00441-7
|
[54]
|
Oh, S.M., Kim, Y.P. and Chung, K.H. (2006) Biphasic Effects of Kaempferol on the Estrogenicity in Human Breast Cancer Cells. Archives of Pharmacal Research, 29, 354-362. https://doi.org/10.1007/bf02968584
|
[55]
|
Qu, Y., Li, X., Xu, F., Zhao, S., Wu, X., Wang, Y., et al. (2021) Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Frontiers in Immunology, 12, Article ID: 679897. https://doi.org/10.3389/fimmu.2021.679897
|
[56]
|
Al‐Shami, A.S., Essawy, A.E. and Elkader, H.A.E.A. (2023) Molecular Mechanisms Underlying the Potential Neuroprotective Effects of Trifolium pratense and Its Phytoestrogen‐Isoflavones in Neurodegenerative Disorders. Phytotherapy Research, 37, 2693-2737. https://doi.org/10.1002/ptr.7870
|
[57]
|
Ceccarelli, I., Bioletti, L., Peparini, S., Solomita, E., Ricci, C., Casini, I., et al. (2022) Estrogens and Phytoestrogens in Body Functions. Neuroscience & Biobehavioral Reviews, 132, 648-663. https://doi.org/10.1016/j.neubiorev.2021.12.007
|
[58]
|
Xue, J., Yuan, S., Meng, H., Hou, X., Li, J., Zhang, H., et al. (2023) The Role and Mechanism of Flavonoid Herbal Natural Products in Ulcerative Colitis. Biomedicine & Pharmacotherapy, 158, Article ID: 114086. https://doi.org/10.1016/j.biopha.2022.114086
|