乙型病毒肝炎分子研究进展
Advances in Molecular Research of Hepatitis B Virus
DOI: 10.12677/acm.2025.1572105, PDF, HTML, XML,    国家自然科学基金支持
作者: 冀柯宇:空军军医大学军事预防医学系军队防疫与流行病学教研室,特殊作业环境危害评估与防治教育部重点实验室,陕西省环境健康危害评估与防护重点实验室,陕西 西安;空军军医大学基础医学院学员五大队,陕西 西安;徐琳莉, 袁筱婕*:空军军医大学军事预防医学系军队防疫与流行病学教研室,特殊作业环境危害评估与防治教育部重点实验室,陕西省环境健康危害评估与防护重点实验室,陕西 西安
关键词: 乙型肝炎病毒基因组进化Hepatitis B Virus Genome Evolution
摘要: 乙型肝炎病毒(Hepatitis B virus, HBV)感染是全球重大公共卫生问题,其分子特征与进化溯源研究对临床防治具有关键意义。本文系统综述HBV的结构、基因多样性及进化起源。HBV具有复杂的病毒颗粒结构,包括感染性Dane颗粒和非感染性亚病毒颗粒,其基因组通过4个开放阅读框编码关键功能蛋白,依赖逆转录过程复制,其中共价闭合环状DNA (Covalently closed circular DNA, cccDNA)的稳定性是慢性感染难治的重要原因。HBV基因型(A~J)及亚型分布具显著地域特征,亚洲以B、C基因型为主,欧洲和地中海地区以D型为主,基因重组(如BC、CD重组体)和逆转录过程中的突变(如RT区耐药突变、Pre-S/S区抗原性突变)进一步加剧了病毒多样性。肝病毒科包含5个属,溯源研究表明,古代HBV基因组可追溯至新石器时代,灵长类及人类迁徙推动了病毒进化,但人HBV的起源仍存争议。中国作为HBV高负担国家,其防治进展对全球消除乙肝目标至关重要,未来需结合分子流行病学与病毒进化研究优化防控策略。
Abstract: Hepatitis B virus (HBV) infection is a major global public health issue, and research on its molecular characteristics and evolutionary tracing is of key significance for clinical prevention and treatment. This paper systematically reviews the structure, genetic diversity and evolutionary origin of HBV. HBV has a complex viral particle structure, including infectious Dane particles and non-infectious subviral particles. Its genome encodes key functional proteins through four open reading frames and relies on the reverse transcription process for replication. Among them, the stability of covalently closed circular DNA (cccDNA) is an important reason for the intractability of chronic infection. HBV genotypes (A~J) and subtypes show significant regional distribution characteristics. Genotypes B and C are dominant in Asia, while genotype D is predominant in Europe and the Mediterranean region. Genetic recombination (such as BC and CD recombinants) and mutations in the reverse transcription process (such as drug-resistant mutations in the RT region and antigenic mutations in the Pre-S/S region) further aggravate viral diversity. The family Hepadnaviridae contains five genera. Tracing studies have shown that ancient HBV genomes can be traced back to the Neolithic Age. The migration of primates and humans has promoted viral evolution, but the origin of human HBV remains controversial. As a country with a high HBV burden, China’s progress in prevention and treatment is crucial to the global goal of eliminating hepatitis B. In the future, it is necessary to optimize prevention and control strategies by combining molecular epidemiology and viral evolution research.
文章引用:冀柯宇, 徐琳莉, 袁筱婕. 乙型病毒肝炎分子研究进展[J]. 临床医学进展, 2025, 15(7): 1150-1158. https://doi.org/10.12677/acm.2025.1572105

1. 引言

乙型肝炎病毒(Hepatitis B virus)感染是一个严重的全球公共卫生问题,中国是世界上HBV感染负担最重的国家。HBV病毒结构的特征是影响患者生存及预后的重要因素,尤其对目前临床治疗提出重大挑战。本文简要综述乙型肝炎病毒特征及溯源研究进展。

2. 乙型肝炎病毒

2.1. 病毒结构

HBV是一种嗜肝包膜病毒,其病毒颗粒种类丰富且结构复杂。最具感染性的Dane颗粒由外膜和核衣壳组成,外膜内嵌有大、中、小三种HBsAg。其中,大HBsAg蛋白含有独特的PreS1结构域,这一结构域直接介导病毒与肝细胞膜上钠–牛磺胆酸共转运多肽(Na+-taurocholate cotransporting polypeptide, NTCP)受体的结合,是病毒进入宿主细胞的关键步骤。除感染性Dane颗粒外,HBV还会生成多种非感染性亚病毒颗粒(Subviral particles, SVP),如仅由HBsAg组成的22纳米球体和细丝,以及部分缺乏基因组的空病毒粒子,甚至裸核衣壳也可在细胞外释放,这种多样性在一定程度上掩盖了病毒的真实数量,同时也影响了宿主免疫反应的检测[1]

HBV基因组以极小的序列承载着多种功能性信息,由4个开放阅读框(Open reading frame, ORF)组成,S-ORF编码的为外膜所含的大、中、小外膜蛋白,C-ORF则同时编码核壳蛋白(Hepatitis B core protein, HBcAg)和分泌蛋白HBeAg,前者为病毒核壳的结构成分,后者在调节宿主免疫反应中发挥作用;P-ORF负责编码病毒聚合酶,该蛋白兼具RNA依赖性DNA聚合酶和逆转录酶活性,是病毒复制过程中不可或缺的酶;而X-ORF则编码HBx蛋白(Hepatitis B x protein, HBx),作为一种多功能调控因子,HBx能够激活核因子NF-κB (Nuclear factor-kappa B, NF-κB)、丝裂原活化蛋白激酶(Mitogen-activated protein kinase, MAPK)等多种细胞信号通路,并被认为在病毒复制调控和促进肝细胞癌变中具有重要作用[2]

HBV的复制主要依赖于逆转录过程。病毒在通过低亲和力与肝细胞表面的硫酸乙酰肝素蛋白聚糖结合后,借助NTCP受体进入细胞,随后核衣壳进入细胞核内,将携带的松弛环状DNA (Relaxed circular DNA, rcDNA)进行修复,转化为共价闭合环状DNA (Covalently closed circular DNA, cccDNA)。cccDNA因其稳定性极强而在感染细胞中长期存在,成为所有HBV转录本的模板。在cccDNA的驱动下,细胞内合成前基因组RNA (Pre-genomic RNA, pgRNA),该RNA既用于翻译产生病毒结构和功能蛋白,也作为逆转录模板,由病毒聚合酶在新生核衣壳内逆转录为rcDNA。新合成的rcDNA既可被组装成新的Dane颗粒,通过包膜包裹后释放至细胞外,亦可返回细胞核更新cccDNA库,进一步加剧病毒的顽固性和慢性感染难治性[3] [4]

2.2. 基因型及亚型分布特征

基于全基因组序列的比较,HBV可划分为A-J 10种基因型,各基因型内部又包含若干亚型,如图1所示,其分布具有明显的地域特征[5]。基因型A主要流行于北欧、西北欧、南非和巴西等地区,早期通过对慢性感染者中分离的前S2/S基因序列的研究,将A型细分为两大遗传亚型:亚型A1和A2,亚型A1主要流行于非洲、亚洲和拉丁美洲,而A2则集中于欧洲和北美[6]。此外,非洲地区还报道了A3-A8等亚型[7]

Figure 1. Global distribution map of HBV genotypes and subtypes [26]

1. HBV基因型及亚型全球分布图[26]

基因型B主要集中在亚洲及北极圈区域,其亚型划分包括B1至B10 [8]。B1亚基因型主要见于日本南部,而B2则广泛存在于东南亚和中国部分地区[9];随着研究的深入,B3在群岛西部及印度尼西亚等地被相继确认,B4至B10的报道则体现了东南亚地区独特的遗传特征[10]。基因型C则以太平洋岛屿和东亚地区为主,涵盖了C1至C17多个亚型[11]。研究表明,C1是南亚与东南亚的主要流行菌株,而C2则在韩国和中国尤为普遍,C3和C4等亚型分别在美拉尼西亚和澳大利亚原住民中发现[12]。近年来,有研究报道在印尼、菲律宾和中国云南等地发现的新的C基因型亚型[11]

基因型D较为常见于地中海区域、中东、南亚以及部分欧洲国家[13],D型病毒可细分为D1至D12 [14],其中D3在欧洲及地中海地区较为常见[15],D4则是波利尼西亚和密克罗尼西亚的主流亚型[16];同时,近年来在印度、突尼斯、尼日尔等地陆续报道了D5至D9亚型的存在[17]

基因型E局限于西非43,而基因型F和H主要分布在中南美洲和加勒比地区[18],其中基因型H在尼加拉瓜等美洲国家有报道[19]。此外,基因型G虽然患病率较低,但其分布广泛,覆盖欧洲、美洲、非洲和亚洲,包括阿根廷、巴西、墨西哥、荷兰、南非、美国和委内瑞拉[20] [21];基因型I主要分布在越南、老挝、中国西南部及印度东部[22]-[24];基因型J主要出现在日本[25],目前尚未发现其内部亚型的分化。

2.3. 基因重组

在HBV感染中,多种因素可导致不同基因型病毒共存进而引发重组,但重组的确切机制目前尚未完全明确,HBV基因重组全球分布如图2所示。在众多HBV重组体中,BC和CD杂交体最为常见,约占HBV重组体的60% [27]。BC重组体主要分布在亚洲地区,如柬埔寨、中国、印度尼西亚、日本、马来西亚、菲律宾、泰国和越南等[28]。这与B和C基因型在亚洲的高流行率密切相关,两种基因型在同一地区的广泛共存,增加了重组的机会。在中国,BC重组体的分布呈现多样化,不同地区的重组体在基因结构和流行程度上存在差异[29]。在部分地区,以基因型B序列与基因型C的前C/C区域重组的类型为主[30],也有基因型C基因组与基因型B片段在不同基因区域组合的重组体存在。CD重组体也有其特定的分布规律,在中国和蒙古等亚洲国家有较多发现。在中国,CD重组体在西部地区是主要的流行株[31]。该地区的CD重组体具有独特的基因特征,可能与当地的人群迁移、病毒传播历史以及不同基因型的相互作用有关[32]

Figure 2. Global distribution map of HBV genetic recombination [35]

2. HBV基因重组全球分布图[35]

除BC和CD重组体外,其他类型的重组体也在特定地区被发现。AD重组体分布相对广泛,在阿根廷、印度、意大利、波兰、俄罗斯和南非等国家均有报道[21]。印度的AD重组体类型多样,涉及不同基因区域的重组,反映出该地区复杂的病毒传播和进化历史。AE重组体主要在非洲国家以及部分欧洲国家的非洲裔患者中出现,如在喀麦隆、几内亚、加纳等非洲国家,以及法国和爱尔兰的非洲裔患者中被检测到[33]。这表明AE重组体的分布与人群的地理来源和流动密切相关。基因型I (A/C/G重组体)主要分布在越南、中国、印度和老挝等国家[34]

2.4. 常见突变

由于逆转录复制过程缺乏校对机制,HBV各个ORF易发生突变[36]。目前已获批用于治疗慢性乙型肝炎(Chronic hepatitis B, CHB)的核苷(酸)类似物(Nucleoside analogues, NAs)包括阿德福韦(Adefovir, ADV)、恩替卡韦(Entecavir, ETV)、拉米夫定(Lamivudine, 3TC)、替比夫定(Telbivudine, LdT)、替诺福韦酯(Tenofovir disoproxil fumarate, TDF)等。NAs的结构与天然核苷酸相似,在DNA合成过程中会与天然核苷酸竞争聚合酶上的结合位点。因此,长期接受NAs治疗的患者中,逆转录酶(Reverse transcriptase, RT)区域易发生特定突变,如rtM204V/I突变,其已被广泛证明与3TC及LdT的耐药密切相关[37];研究发现rtA181T/V和rtN236T与ADV的耐药性相关[38];rtT184G/S、rtS202I/G和rtM250V这些突变与rtL180M和rtM204V联合发生时,会增加ETV的耐药性[39]

除RT区突变外,Pre-S/S区的核苷酸和氨基酸突变同样引起临床关注。该区域突变常可改变HBsAg的抗原性,从而影响疫苗引发的免疫应答。例如,sG145R突变可显著降低HBsAg与中和抗体的亲和力,在疫苗接种后突破性感染病例中,该突变的检出率具备较高的临床意义[40]。此外,基底核心启动子(Basal core promoter, BCP)及前C区的突变,如G1896A和A1762T + G1764A双突变,将导致HBeAg表达的抑制,这类突变不仅促使部分患者出现HBeAg阴性慢性乙肝,也与病情的进展密切相关[41]

3. 乙肝病毒溯源研究进展

3.1. 肝病毒科组成

人类HBV是肝病毒科(Hepadnaviridae)的原型成员[42]。目前,肝病毒科包含五个属:感染哺乳动物的正肝病毒属(Orthohepadnavirus)、感染鸟类的禽肝病毒属(Avihepadnavirus)、感染硬骨鱼的副肝病毒属(Parahepadnavirus)和元肝病毒属(Metahepadnavirus),以及感染爬行动物和青蛙的疱疹肝病毒属(Herpetohepadnavirus)。所有成员在超微结构和分子基因组特征上具有相似性,如病毒粒子大小、形态,以及包含3.0~3.4 kb松弛环状双链DNA基因组的包膜核衣壳[43] [44]

3.2. 古代HBV研究进展

目前已知,最古老的重建aHBV基因组可追溯到新石器时代和青铜时代[45] [46],样本主要来源于牙齿和骨骼残骸。此外,在韩国和意大利的木乃伊中也检测到了古老的乙型肝炎病毒(Ancient Hepatitis B virus, aHBV),其年代大约在400年前[47] [48]。根据aHBV的年代和遗传特征,可将其进行分类。其中,在德国的Karsdorf (7 kya)和Sorsum (5.2 kya)发现两个新石器时代分离株,它们与非洲非人灵长类动物(Non-Human Primates, NHP) HBV的基因组相似性较高,而与现代人类(Anatomically modern humans, AMH) HBV的相似性较低[47]。青铜时代基因型的分离株,在遗传上与新石器时代aHBV以及非洲NHP HBV相关。

众多研究显示,许多aHBV序列呈现出基因间重组的特征,这充分表明重组在HBV进化进程中发挥了关键作用。新石器时代aHBV的Karsdorf序列片段与AMH HBV基因型G和E以及NHP HBV序列高度相似,Sorsum HBV、基因组的部分区域则与人类基因型G、E和B相似[45]

在新石器时代和早期青铜时代的aHBV序列构成中,NHP样HBV序列发挥了主要作用,同时HBV基因型D (D6亚型)和E型序列也参与了aHBV序列构成,但贡献较少[49]。此外,在欧洲/中亚的新石器时代和青铜时代aHBV分离株中,还检测到了与基因型C (C2亚型)和长臂猿HBV相似的序列[50]

3.3. 迁徙对HBV进化的影响

灵长类肝病毒在其宿主中具有本土性。灵长类的起源、进化和迁徙在HBV的进化历程中扮演着重要角色。普遍认为,灵长类起源于亚洲,大约在4500 mya,部分灵长类群体迁移至非洲[51]。这一迁移事件不仅对灵长类和人类的进化意义重大,也极有可能影响了HBV的传播和进化轨迹。在新大陆猴中,卷尾猴和绒毛猴被发现感染了各自独特的肝病毒。它们所携带的HBV与其他灵长类HBV在核苷酸水平上差异较大,可能与旧大陆猴和新大陆猴在约35 mya的早期分化以及随后的长期隔离有关[52]

人类的进化和迁徙也与HBV的进化密切相关。AMH起源于非洲,约200 kya出现,随后经历了多次迁徙[53]。在迁徙过程中,人类与不同的人群和环境接触,可能导致HBV的传播和进化。例如,非洲起源的现代人类在迁徙过程中与尼安德特人和丹尼索瓦人发生了基因交流[54],这可能影响了HBV在不同地区的传播和演化。此外,农业革命导致人口增长和扩散,也为HBV的传播提供了更广泛的机会。在这个过程中,不同地区的HBV基因型可能发生了重组和变异,形成了如今复杂的HBV基因型分布格局。

4. 人HBV起源

关于HBV的进化起源存在多种理论,不同研究推算的起源年代和地区结果差异较大。早期观点认为,人类HBV起源于新世界[55]。然而,HBV在旧世界灵长类中的广泛分布使该学说遭受质疑。aHBV的发现使人们对HBV的进化历史有了新的认识,因此,另一假说提出约10万年前,HBV与AMH共同进化,并随着AMH走出非洲而传播[56]。但后续研究中发现美洲土著和其近亲蒙古利亚人中流行的HBV基因型存在差异[57],因此该学说的科学性也遭到质疑。此外,有研究者提出HBV起源于灵长类动物,特异性进化后发生跨物种传播。但除了在黑猩猩中发现基因型E的变异外[58],人类与灵长类动物之间未发现充足的跨物种传播证据。与其他学说中推算的人HBV起源于非人灵长类相反,Paraskevis及其同事[59]提出在HBV于33.6 kya进入人类间传播,分别于8 kya、7 kya和13 kya从人类传入黑猩猩、猩猩和长臂猿,但未对33.6 kya HBV如何在人类的起源做出解释。

5. 结语与展望

中国虽然是世界上HBV感染负担最重的国家之一,但也是实现2030年前全球消除乙肝目标的主力军。近年来,我国在乙肝防治方面取得了举世瞩目的成绩,未来仍需要进一步开展预防和临床治疗工作,降低HBV带来的疾病及社会负担。

基金项目

国家自然基金青年项目(82404323)。

NOTES

*通讯作者。

参考文献

[1] 王明凤, 曹佳莉, 袁权, 等. 乙型肝炎病毒体外感染和复制的细胞模型[J]. 微生物学报, 2019, 59(12): 2263-2275.
[2] 赫晓林, 黄建炜, 许瑞安, 等. HBV病毒复制机制及慢性乙型肝炎药物靶点[J]. 中国药理学通报, 2015, 31(2): 152-156.
[3] Erken, R., Loukachov, V., van Dort, K., van den Hurk, A., Takkenberg, R.B., de Niet, A., et al. (2022) Quantified Integrated Hepatitis B Virus Is Related to Viral Activity in Patients with Chronic Hepatitis B. Hepatology, 76, 196-206.
https://doi.org/10.1002/hep.32352
[4] Péneau, C., Imbeaud, S., La Bella, T., Hirsch, T.Z., Caruso, S., Calderaro, J., et al. (2021) Hepatitis B Virus Integrations Promote Local and Distant Oncogenic Driver Alterations in Hepatocellular Carcinoma. Gut, 71, 616-626.
https://doi.org/10.1136/gutjnl-2020-323153
[5] Kramvis, A. (2014) Genotypes and Genetic Variability of Hepatitis B Virus. Intervirology, 57, 141-150.
https://doi.org/10.1159/000360947
[6] Liu, Z., Zhang, Y., Xu, M., Li, X. and Zhang, Z. (2021) Distribution of Hepatitis B Virus Genotypes and Subgenotypes. Medicine, 100, e27941.
https://doi.org/10.1097/md.0000000000027941
[7] Toyé, R.M., Cohen, D., Pujol, F.H., Sow-Sall, A., Lô, G., Hoshino, K., et al. (2021) Hepatitis B Virus Genotype Study in West Africa Reveals an Expanding Clade of Subgenotype A4. Microorganisms, 9, Article 623.
https://doi.org/10.3390/microorganisms9030623
[8] Liu, Y., Feng, Y., Li, Y., Ma, J., Jia, Y., Yue, W., et al. (2020) Characterization of a Novel Hepatitis B Virus Subgenotype B10 among Chronic Hepatitis B Patients in Yunnan, China. Infection, Genetics and Evolution, 83, Article 104322.
https://doi.org/10.1016/j.meegid.2020.104322
[9] Lin, S.Y.C. and Woo, P.C.Y. (2025) Phylodynamics of Hepatitis B Virus Genotype B in East Asia: A Population Genomics Analysis. Journal of Biological Methods, 12, e99010048.
https://doi.org/10.14440/jbm.2025.0084
[10] Bello, K.E., Mat Jusoh, T.N.A., Irekeola, A.A., Abu, N., Mohd Amin, N.A.Z., Mustaffa, N., et al. (2023) A Recent Prevalence of Hepatitis B Virus (HBV) Genotypes and Subtypes in Asia: A Systematic Review and Meta-Analysis. Healthcare, 11, Article 1011.
https://doi.org/10.3390/healthcare11071011
[11] Feng, Y., Ran, J., Feng, Y., Miao, J., Zhao, Y., Jia, Y., et al. (2020) Genetic Diversity of Hepatitis B Virus in Yunnan, China: Identification of Novel Subgenotype C17, an Intergenotypic B/I Recombinant, and B/C Recombinants. Journal of General Virology, 101, 972-981.
https://doi.org/10.1099/jgv.0.001147
[12] Li, T., Chen, H., Sun, L. and Liu, J. (2022) Dating the Origin and Dispersal of Global Hepatitis B Virus Genotype C in Humans. Drug Discoveries & Therapeutics, 16, 85-92.
https://doi.org/10.5582/ddt.2022.01030
[13] Spitz, N., Mello, F.C.A., Moreira, A.S., Gusatti, C.S., Martins, R.M.B., Gomes, S.A., et al. (2019) Reconstruction of the Spatial and Temporal Dynamics of Hepatitis B Virus Genotype D in the Americas. PLOS ONE, 14, e0220342.
https://doi.org/10.1371/journal.pone.0220342
[14] Sant’Anna, T.B. and Araujo, N.M. (2023) Hepatitis B Virus Genotype D: An Overview of Molecular Epidemiology, Evolutionary History, and Clinical Characteristics. Microorganisms, 11, Article 1101.
https://doi.org/10.3390/microorganisms11051101
[15] Wolf, J.M., Pereira, V.R.Z.B., De Carli, S., Godoi, T.P.M., Wortmann, A.C., Stumm, G.Z., et al. (2020) Tracing Back Hepatitis B Virus Genotype D Introduction and Dissemination in South Brazil. Infection, Genetics and Evolution, 82, Article 104294.
https://doi.org/10.1016/j.meegid.2020.104294
[16] Lago, B.V., do Espirito-Santo, M.P., Costa, V.D., Marques, V.A., Villar, L.M., Lewis-Ximenez, L.L., et al. (2019) Genetic Diversity of the Hepatitis B Virus Subgenotypes in Brazil. Viruses, 11, Article 860.
https://doi.org/10.3390/v11090860
[17] Lusida, M.I., Nugrahaputra, V.E., Soetjipto Handajani, R., Nagano-Fujii, M., Sasayama, M., et al. (2008) Novel Subgenotypes of Hepatitis B Virus Genotypes C and D in Papua, Indonesia. Journal of Clinical Microbiology, 46, 2160-2166.
https://doi.org/10.1128/jcm.01681-07
[18] Pourkarim, M.R., Amini-Bavil-Olyaee, S., Kurbanov, F., et al. (2014) Molecular Identification of Hepatitis B Virus Genotypes/Subgenotypes: Revised Classification Hurdles and Updated Resolutions. World Journal of Gastroenterology, 20, 7152-7168.
https://doi.org/10.3748/wjg.v20.i23.7152
[19] Wolf, J.M., Pereira, V.R.Z.B., Simon, D. and Lunge, V.R. (2020) Evolutionary History of Hepatitis B Virus Genotype H. Journal of Medical Virology, 93, 4004-4009.
https://doi.org/10.1002/jmv.26463
[20] Wolf, J.M., De Carli, S., Pereira, V.R.Z.B., Simon, D. and Lunge, V.R. (2020) Temporal Evolution and Global Spread of Hepatitis B Virus Genotype G. Journal of Viral Hepatitis, 28, 393-399.
https://doi.org/10.1111/jvh.13431
[21] Araujo, N.M. and Osiowy, C. (2022) Hepatitis B Virus Genotype G: The Odd Cousin of the Family. Frontiers in Microbiology, 13, Article 872766.
https://doi.org/10.3389/fmicb.2022.872766
[22] Shen, T., Yan, X.M., Liu, H.X., Zhang, B.X., Li, L., Zhang, J.P., et al. (2014) Genotype I of Hepatitis B Virus Was Found in East Xishuangbanna, China and Molecular Dynamics of HBV/I. Journal of Viral Hepatitis, 22, 37-45.
https://doi.org/10.1111/jvh.12231
[23] Li, G.J., Hue, S., Harrison, T.J., et al. (2013) Hepatitis B Virus Candidate Subgenotype I1 Varies in Distribution Throughout Guangxi, China and May Have Originated in Longan County, Guangxi. Journal of Medical Virology, 85, 799-807.
https://doi.org/10.1002/jmv.23533
[24] Arankalle, V.A., Gandhe, S.S., Borkakoty, B.J., Walimbe, A.M., Biswas, D. and Mahanta, J. (2010) A Novel HBV Recombinant (Genotype I) Similar to Vietnam/Laos in a Primitive Tribe in Eastern India. Journal of Viral Hepatitis, 17, 501-510.
https://doi.org/10.1111/j.1365-2893.2009.01206.x
[25] Tatematsu, K., Tanaka, Y., Kurbanov, F., Sugauchi, F., Mano, S., Maeshiro, T., et al. (2009) A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J. Journal of Virology, 83, 10538-10547.
https://doi.org/10.1128/jvi.00462-09
[26] Chen, J., Li, L., Yin, Q. and Shen, T. (2023) A Review of Epidemiology and Clinical Relevance of Hepatitis B Virus Genotypes and Subgenotypes. Clinics and Research in Hepatology and Gastroenterology, 47, Article 102180.
https://doi.org/10.1016/j.clinre.2023.102180
[27] Ye, L., Zhang, Y., Mei, Y., Nan, P. and Zhong, Y. (2010) Detecting Putative Recombination Events of Hepatitis B Virus: An Updated Comparative Genome Analysis. Chinese Science Bulletin, 55, 2373-2379.
https://doi.org/10.1007/s11434-010-3109-4
[28] Huy, T.T.T. and Abe, K. (2004) Molecular Epidemiology of Hepatitis B and C Virus Infections in Asia. Pediatrics International, 46, 223-230.
https://doi.org/10.1046/j.1442-200x.2004.01867.x
[29] Sugauchi, F., Orito, E., Ichida, T., Kato, H., Sakugawa, H., Kakumu, S., et al. (2002) Hepatitis B Virus of Genotype B with or without Recombination with Genotype C over the Precore Region plus the Core Gene. Journal of Virology, 76, 5985-5992.
https://doi.org/10.1128/jvi.76.12.5985-5992.2002
[30] Sugauchi, F., Orito, E., Ichida, T., Kato, H., Sakugawa, H., Kakumu, S., et al. (2003) Epidemiologic and Virologic Characteristics of Hepatitis B Virus Genotype B Having the Recombination with Genotype C. Gastroenterology, 124, 925-932.
https://doi.org/10.1053/gast.2003.50140
[31] Cui, C., Shi, J., Hui, L., Xi, H., Zhuoma,, Quni,, et al. (2002) The Dominant Hepatitis B Virus Genotype Identified in Tibet Is a C/D Hybrid. Journal of General Virology, 83, 2773-2777.
https://doi.org/10.1099/0022-1317-83-11-2773
[32] Liu, T., Wang, F., Zhang, S., Wang, F., Meng, Q., Zhang, G., et al. (2017) Whole-Gene Analysis of Two Groups of Hepatitis B Virus C/D Inter-Genotype Recombinant Strains Isolated in Tibet, China. PLOS ONE, 12, e0179846.
https://doi.org/10.1371/journal.pone.0179846
[33] Martel, N., Gomes, S.A., Chemin, I., Trépo, C. and Kay, A. (2013) Improved Rolling Circle Amplification (RCA) of Hepatitis B Virus (HBV) Relaxed-Circular Serum DNA (RC-DNA). Journal of Virological Methods, 193, 653-659.
https://doi.org/10.1016/j.jviromet.2013.07.045
[34] Liu, C.J. and Kao, J.H. (2013) Global Perspective on the Natural History of Chronic Hepatitis B: Role of Hepatitis B Virus Genotypes A to J. Seminars in Liver Disease, 33, 97-102.
https://doi.org/10.1055/s-0033-1345716
[35] Araujo, N.M. (2015) Hepatitis B Virus Intergenotypic Recombinants Worldwide: An Overview. Infection, Genetics and Evolution, 36, 500-510.
https://doi.org/10.1016/j.meegid.2015.08.024
[36] Milosevic, I., Delic, D., Lazarevic, I., Pavlovic, I.P., Korac, M., Bojovic, K., et al. (2013) The Significance of Hepatitis B Virus (HBV) Genotypes for the Disease and Treatment Outcome among Patients with Chronic Hepatitis B in Serbia. Journal of Clinical Virology, 58, 54-58.
https://doi.org/10.1016/j.jcv.2013.06.017
[37] Gohar, M., Rehman, I.U., Ullah, A., Khan, M.A., Yasmin, H., Ahmad, J., et al. (2023) Phylogenetic Analysis and Emerging Drug Resistance against Different Nucleoside Analogues in Hepatitis B Virus Positive Patients. Microorganisms, 11, Article 2622.
https://doi.org/10.3390/microorganisms11112622
[38] He, X., Wang, F., Huang, B., et al. (2015) Detection and Analysis of Resistance Mutations of Hepatitis B Virus. International Journal of Clinical and Experimental Medicine, 8, 9630-9639.
[39] Zoulim, F. and Locarnini, S. (2009) Hepatitis B Virus Resistance to Nucleos(t)ide Analogues. Gastroenterology, 137, 1593-1608.
https://doi.org/10.1053/j.gastro.2009.08.063
[40] Chen, X.X., Xiang, K.H., Zhang, H.P., et al. (2020) Occult HBV Infection in Patients with Autoimmune Hepatitis: A Virological and Clinical Study. Journal of Microbiology, Immunology, and Infection, 53, 946-954.
[41] Pollicino, T., Cacciola, I., Saffioti, F. and Raimondo, G. (2014) Hepatitis B Virus PreS/S Gene Variants: Pathobiology and Clinical Implications. Journal of Hepatology, 61, 408-417.
https://doi.org/10.1016/j.jhep.2014.04.041
[42] Magnius, L., Mason, W.S., Taylor, J., Kann, M., Glebe, D., Dény, P., et al. (2020) ICTV Virus Taxonomy Profile: Hepadnaviridae. Journal of General Virology, 101, 571-572.
https://doi.org/10.1099/jgv.0.001415
[43] Nie, F.Y., Tian, J.H., Lin, X.D., et al. (2019) Discovery of a Highly Divergent Hepadnavirus in Shrews from China. Virology, 531, 162-170.
https://doi.org/10.1016/j.virol.2019.03.007
[44] He, B., Zhang, F., Xia, L., Hu, T., Chen, G., Qiu, W., et al. (2014) Identification of a Novel Orthohepadnavirus in Pomona Roundleaf Bats in China. Archives of Virology, 160, 335-337.
https://doi.org/10.1007/s00705-014-2222-0
[45] Krause-Kyora, B., Susat, J., Key, F.M., Kühnert, D., Bosse, E., Immel, A., et al. (2018) Neolithic and Medieval Virus Genomes Reveal Complex Evolution of Hepatitis B. eLife, 7, e36666.
https://doi.org/10.7554/elife.36666
[46] Mühlemann, B., Jones, T.C., et al. (2018) Ancient Hepatitis B Viruses from the Bronze Age to the Medieval Period. Nature, 557, 418-423.
https://doi.org/10.1038/s41586-018-0097-z
[47] Bar-Gal, G.K., Kim, M.J., Klein, A., et al. (2012) Tracing Hepatitis B Virus to the 16th Century in a Korean Mummy. Hepatology, 56, 1671-1680.
https://doi.org/10.1002/hep.25852
[48] Beard, K.C., Qi, T., Dawson, M.R., Wang, B. and Li, C. (1994) A Diverse New Primate Fauna from Middle Eocene Fissure-Fillings in Southeastern China. Nature, 368, 604-609.
https://doi.org/10.1038/368604a0
[49] Datta, S. (2020) Excavating New Facts from Ancient Hepatitis B Virus Sequences. Virology, 549, 89-99.
https://doi.org/10.1016/j.virol.2020.08.002
[50] Locarnini, S.A., Littlejohn, M. and Yuen, L.K.W. (2021) Origins and Evolution of the Primate Hepatitis B Virus. Frontiers in Microbiology, 12, Article 653684.
https://doi.org/10.3389/fmicb.2021.653684
[51] Chaimanee, Y., Chavasseau, O., Beard, K.C., Kyaw, A.A., Soe, A.N., Sein, C., et al. (2012) Late Middle Eocene Primate from Myanmar and the Initial Anthropoid Colonization of Africa. Proceedings of the National Academy of Sciences, 109, 10293-10297.
https://doi.org/10.1073/pnas.1200644109
[52] de Carvalho Dominguez Souza, B.F., König, A., Rasche, A., de Oliveira Carneiro, I., Stephan, N., Corman, V.M., et al. (2018) A Novel Hepatitis B Virus Species Discovered in Capuchin Monkeys Sheds New Light on the Evolution of Primate Hepadnaviruses. Journal of Hepatology, 68, 1114-1122.
https://doi.org/10.1016/j.jhep.2018.01.029
[53] Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E.M.L. and Skoglund, P. (2021) Origins of Modern Human Ancestry. Nature, 590, 229-237.
https://doi.org/10.1038/s41586-021-03244-5
[54] Hammer, M.F., Woerner, A.E., Mendez, F.L., Watkins, J.C. and Wall, J.D. (2011) Genetic Evidence for Archaic Admixture in Africa. Proceedings of the National Academy of Sciences, 108, 15123-15128.
https://doi.org/10.1073/pnas.1109300108
[55] Bollyky, P., Rambaut, A., Grassley, N., Carman, W. and Holmes, E. (1998) Hepatitis B Virus Has a Recent New World Evolutionary Origin. Journal of Hepatology, 28, Article 96.
[56] Souza, B.F., Drexler, J.F., Lima, R.S., et al. (2014) Theories about Evolutionary Origins of Human Hepatitis B Virus in Primates and Humans. The Brazilian Journal of Infectious Diseases, 18, 535-543.
https://doi.org/10.1016/j.bjid.2013.12.006
[57] Oppenheimer, S. (2012) Out-of-Africa, the Peopling of Continents and Islands: Tracing Uniparental Gene Trees across the Map. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 770-784.
https://doi.org/10.1098/rstb.2011.0306
[58] Takahashi, K., Brotman, B., Usuda, S., Mishiro, S. and Prince, A.M. (2000) Full-Genome Sequence Analyses of Hepatitis B Virus (HBV) Strains Recovered from Chimpanzees Infected in the Wild: Implications for an Origin of HBV. Virology, 267, 58-64.
https://doi.org/10.1006/viro.1999.0102
[59] Paraskevis, D., Magiorkinis, G., Magiorkinis, E., Ho, S.Y.W., Belshaw, R., Allain, J., et al. (2013) Dating the Origin and Dispersal of Hepatitis B Virus Infection in Humans and Primates. Hepatology, 57, 908-916.
https://doi.org/10.1002/hep.26079