SAMD4家族在肿瘤中的研究进展
Research Advances on the SAMD4 Family in Tumors
DOI: 10.12677/acm.2025.1572106, PDF, HTML, XML,   
作者: 李广生, 杨体上, 宁小凤:右江民族医学院研究生学院,广西 百色;黄许森*:右江民族医学院附属医院胃肠外科,广西 百色
关键词: SAMD4家族肿瘤RNA结合蛋白信号通路靶向治疗SAMD4 Family Cancer RNA-Binding Protein Signaling Pathway Targeted Therapy
摘要: 不育α基序结构域蛋白4 (Sterile Alpha Motif Domain-containing 4, SAMD4)家族是一类保守的RNA结合蛋白,近年研究发现其在肿瘤发生、发展及转移中发挥重要调控作用。SAMD4家族成员(如SAMD4A、SAMD4B)通过介导mRNA稳定性、翻译抑制及信号通路调控,影响肿瘤细胞增殖、凋亡和侵袭。本文旨在综述SAMD4家族蛋白的结构特征、生物学功能,并重点阐述其在卵巢癌、胃癌、结直肠癌等多种肿瘤疾病中的分子调控机制,探讨其作为诊断标志物和治疗靶点的潜在价值。
Abstract: The sterile alpha motif domain-containing 4 (SAMD4) family represents a class of conserved RNA-binding proteins that have been found in recent studies to play crucial regulatory roles in tumor initiation, progression, and metastasis. Members of the SAMD4 family (e.g., SAMD4A, SAMD4B) influence tumor cell proliferation, apoptosis, and invasion by mediating mRNA stability, translational repression, and signaling pathway regulation. This review aims to summarize the structural characteristics and biological functions of SAMD4 family proteins, with a particular focus on elucidating their molecular regulatory mechanisms in various cancers, including ovarian cancer, gastric cancer, and colorectal cancer. Additionally, we discuss their potential value as diagnostic biomarkers and therapeutic targets.
文章引用:李广生, 黄许森, 杨体上, 宁小凤. SAMD4家族在肿瘤中的研究进展[J]. 临床医学进展, 2025, 15(7): 1159-1167. https://doi.org/10.12677/acm.2025.1572106

1. SAMD4家族的结构特征

不育α基序结构域蛋白4 (SAMD4)是一类在真核生物中高度保守的转录后调控因子,在翻译抑制过程中发挥关键作用,其功能与果蝇的Smaug蛋白具有同源性[1] [2]。Smaug作为一种序列特异性RNA结合蛋白,通过调控mRNA稳定性及翻译抑制机制,参与果蝇早期胚胎发育的转录后调控过程[3]-[5]。系统进化分析表明,从酵母Vts1p到哺乳动物SAMD4家族,该蛋白在结构和功能上均表现出显著的保守性特征[6]。在哺乳动物中,SAMD4蛋白家族主要包括SAMD4A (Smaug1)和SAMD4B (Smaug2)两个成员。所有SAMD4家族成员均含有特征性的RNA结合结构域——不育α基序(SAM结构域),该结构域能特异性识别靶mRNA 3'非翻译区(UTR)中长度约25~40个核苷酸的茎环结构,即Smaug识别元件(SRE);研究表明,SRE通常包含CNGGN或CNGG的保守序列,在靶mRNA上形成4~5个碱基的环状结构[5] [7] [8]。此外,SAMD4蛋白家族成员在N端还包含两个保守结构域:Smaug相似区域1 (SSR1) (由约48个氨基酸组成)和Smaug相似区域2 (SSR2) (由约83个氨基酸组成,这两个结构域在果蝇Smaug、小鼠和人类SAMD4蛋白中具有高度序列相似性) [6]。一级结构分析显示存在物种差异:果蝇Smaug蛋白由999个氨基酸组成[2],酵母Vts1p有523个氨基酸[9],而人类SAMD4A蛋白由629个氨基酸组成[10],人类SAMD4B蛋白由694个氨基酸组成[11]。在功能上,SSR1结构域被证实作为二聚化结构域发挥作用[12],而SSR2结构域的功能尚不完全清楚;研究发现,小鼠SAMD4蛋白SSR2结构域的错义突变会导致肌病功能丧失表型[13],并且删除果蝇Smaug蛋白的SSR1或SSR2结构域均会阻断其与Smoothened (SMO)蛋白的相互作用,提示这两个结构域对于介导特定的蛋白互作至关重要[14]

SAM结构域最初由Ponting及其同事在研究酵母不育蛋白和果蝇多同源蛋白时发现并鉴定。该结构域能够介导蛋白质间相互作用,参与调控酵母性别分化、果蝇早期胚胎发育及细胞信号转导等关键生物学过程[15]。研究表明,Smaug蛋白通过其SAM结构域可与多种蛋白质发生直接互作,例如果蝇Cup蛋白[16]、CUG三联体重复RNA结合蛋白1 (CUGBP1) [17]以及Argonaute 1 (Ago1) [18]等,这些相互作用协同调控靶mRNA的翻译抑制与降解。值得注意的是,SAM结构域不仅介导蛋白质互作,还具有特异性识别和结合RNA的功能[7]:酵母Vts1p的SAM结构域在体内外均能特异性结合RNA发夹结构[8] [19] [20],而酵母MAPKKK Ste11蛋白的SAM结构域则在下游信号转导中发挥核心作用[21]。目前结构解析表明,果蝇Smaug的SAM结构域包含1个长α螺旋(α5)、3个短α螺旋(α1、α3和α4)及1个310螺旋(h2) [7];酵母Vts1p的SAM结构域由6个α螺旋构成,其关键氨基酸残基(Arg464、Lys467、Tyr468、Leu496、Gly497、Arg500和Lys501)通过氢键网络特异性结合SRE [8] [9] [19] [22]

近年研究表明,SAMD4通过多种分子机制参与调控机体的生理功能及疾病发生发展过程。在代谢调控方面,SAMD4可通过调控雷帕霉素靶蛋白复合物1 (mTORC1)信号通路影响代谢稳态[13]。在mRNA稳定性调控中,SAMD4能够特异性募集CCR4-NOT复合物的脱腺苷酸化酶组分(如CCR4和POP2),促进靶mRNA的脱腺苷酸化和降解[23]。表观遗传学研究发现,SAMD4介导的转录抑制与人类多种癌症中关键基因的表达下调显著相关[24]。临床研究进一步揭示,SAMD4的表达异常与多种癌症的发生、发展及不良预后密切相关。例如它可以通过特异性下调促血管生成基因的表达来抑制肿瘤血管生成,这可能是乳腺癌治疗的潜在抗血管生成靶点[10];SAMD4A与结直肠癌肿瘤浸润巨噬细胞密切相关,SAMD4A在一定程度上帮助结直肠癌细胞逃避免疫监控和清除[25]。研究发现CircSAMD4A能够促进骨肉瘤细胞的迁移、侵袭和上皮间质转化,且增加了骨肉瘤细胞对阿霉素的耐药性以及结直肠癌细胞对5-Fu的耐药性[26]

本文将对SAMD4的结构、生物学功能及其在肿瘤中的表达和作用机制进行阐述,为SAMD4在肿瘤中的后续研究提供依据。

2. SAMD4家族的生物学功能

近年来在RNA结合蛋白领域对SAMD4家族成员进行了大量的相关研究。SAMD4蛋白主要通过保守的SAM结构域发挥多种生物学功能。果蝇Smaug和哺乳动物的SAMD4蛋白已被确定为一种新型的转录后调控因子和一种新的保守的蛋白翻译阻遏物[27]。此外,SAMD4蛋白还参与细胞质灶的形成[28],并发挥抗病毒功能[29]

2.1. mRNA稳定和降解的调节

转录后调控是真核生物基因表达的关键环节,涉及RNA剪接、定位、稳定性及降解等过程,由多种RNA结合蛋白介导[30]。在动物早期胚胎发育中,母源mRNA的稳定性和翻译受精密调控[31] [32]。果蝇Smaug蛋白通过其保守的SAM结构域识别靶mRNA(如Hsp83)上的SRE茎环结构,作为多功能转录后调节因子,在调控母源mRNA稳定性中发挥核心作用[3] [7]。Smaug能诱导包括Hsp83在内的众多mRNA降解[3]。具体机制上,Smaug直接结合Hsp83 mRNA ORF内的SRE,进而招募CCR4/POP2/NOT脱腺苷酸酶复合物,启动该转录本的脱腺苷酸化(mRNA降解的关键限速步骤)及后续降解[23] [33]。SRE突变或CCR4水平降低均可稳定Hsp83 mRNA,证实Smaug在触发母源mRNA降解途径中的必要性[23] [33] [34]

2.2. mRNA翻译抑制的调控

Smaug/SAMD4蛋白作为重要的翻译抑制因子,通过特异性结合靶mRNA 3'-非翻译区(3'-UTR)中的Smaug识别元件(SRE),实现对不同靶标的差异性调控。这种差异性调控的典型例证体现在其对两个关键靶mRNA的作用上:一方面,Smaug结合Hsp83 mRNA上的SRE主要导致其降解,而对Hsp83的翻译过程本身并无显著抑制作用[23] [33];另一方面,当Smaug结合nanos mRNA 3'-UTR中的SRE时,则主要发挥翻译抑制功能,对其mRNA稳定性的影响相对较小[1] [2] [6]。在抑制翻译的分子机制层面,Smaug/SAMD4蛋白通过多条通路发挥作用:Smaug能够招募Cup蛋白(一种eIF4E结合蛋白),Cup通过阻断真核起始因子eIF4E与eIF4G之间的相互作用,干扰翻译起始复合物的形成,从而有效抑制mRNA的翻译起始过程[16];Smaug还能以不依赖微小RNA(miRNA)的方式,直接募集Argonaute 1 (Ago1)蛋白至nanos mRNA的3'-UTR区域,进而抑制其翻译,此过程无需经典miRNA的引导[18] [35] [36]。值得注意的是,哺乳动物中的SAMD4家族同源蛋白在翻译抑制功能上表现出高度的保守性。例如,小鼠SAMD4A (Smaug1)通过结合并抑制Mig6 mRNA的翻译,在骨骼发育调控中扮演关键角色[37];而小鼠SAMD4B (Smaug2)则通过抑制nanos1 mRNA的翻译,精确调控神经发生过程[38]。这些研究结果共同确立了Smaug/SAMD4蛋白家族作为核心翻译抑制因子在基因表达调控网络中的重要地位。

2.3. 转录活性的调节

在真核生物中,转录起始是基因表达调控的关键点。转录因子通过结合特定的DNA序列来控制转录起始,从而激活或抑制基因启动子活性[39]。然而,在基因选择性表达的过程中,基因的转录后调控不容忽视。研究发现,RNA结合蛋白作为转录后调控中的关键调控因子起着至关重要的作用,它可以参与从mRNA合成到mRNA衰变的每个阶段,从而调节mRNA的活性。RNA结合蛋白对识别和结合靶mRNA具有不同的亲和力和特异性,在mRNA代谢的各个环节中都起着至关重要的作用[40] [41]。果蝇Smaug和酵母Vts1p已被定义为多功能的转录后调控因子,部分原因是它们通过共同的RNA识别机制[3]。人类的SAMD4蛋白不仅在转录后调控中起重要作用,而且具有调节转录活性的功能。有研究表明,人类的SAMD4B是一个潜在的转录阻遏物,能够抑制转录活性[11]。SAMD4B蛋白分布于细胞核和细胞质中,在人类成体和胚胎组织中广泛表达,是一种进化过程中保守的RNA结合蛋白。SAMD4B过表达会抑制激活蛋白-1 (AP-1)、p21和p53的转录活性,而使用小干扰RNA (siRNA)敲低SAMD4B可以减轻这种抑制效应。SAMD4B蛋白的SAM结构域是其发挥转录抑制作用的主要结构区域,同时还揭示了SAMD4B在AP-1-p53信号通路中起负转录调节剂的作用[11] [42]

2.4. mRNA沉默焦点(S-Foci)的形成

哺乳动物Smaug1/SAMD4A在神经元中形成特异的mRNA沉默灶(S-foci),显著区别于加工小体(PB)和应激颗粒(SG) [43] [44]。S-foci存在于突触后,可动态响应突触活动:NMDA受体刺激导致S-foci迅速解聚,释放被抑制的mRNA进行局部翻译[43] [45]。S-foci的聚集与多聚核糖体释放的多聚腺苷酸化mRNA有关[28] [45]。Smaug1在突触形成期表达,其缺失影响突触数量与大小,表明其通过调控局部蛋白翻译参与突触形成与稳定[43] [46]

2.5. 其他功能

最新研究发现Smaug1参与形成细胞质无膜细胞器(Smaug1 MLO),响应AMPK/mTOR信号调控线粒体功能[47]。Smaug1 MLO与线粒体酶SDHB和UQCRC1的mRNA相关。敲低SAMD4A/B损害线粒体呼吸和网络结构。抑制线粒体复合物I (鱼藤酮)、抑制mTOR (雷帕霉素)或激活AMPK (二甲双胍)均诱导Smaug1 MLO溶解,释放SDHB/UQCRC1 mRNA进行翻译,此过程可被AMPK抑制剂阻断。Smaug1 MLO凝聚缺陷损害线粒体功能,表明其通过感知AMPK-mTOR平衡调控线粒体mRNA翻译,进而影响线粒体功能[47]。另外,通过Smg免疫沉淀实验发现Smg与编码线粒体蛋白的mRNA结合,并参与由于PABPN1功能受损导致mRNA下调。具体来讲,在眼咽型肌营养不良症中,第一个分子缺陷是由于PABPN1功能受损导致的裂解/多聚腺苷酸化反应普遍降低。这不会导致大多数mRNA在稳态下的mRNA水平降低,但会导致被Smg/CCR4-NOT主动脱腺苷酸化的mRNA水平降低,其中包括参与线粒体功能的mRNA。这会导致线粒体功能障碍,进而影响肌肉功能[48]。鉴于线粒体功能缺陷与多种疾病相关[49] [50],SAMD4蛋白缺失可导致能量代谢异常和线粒体功能障碍。

3. SAMD4家族与肿瘤

SAMD4蛋白家族作为高度保守的转录后调控因子,通过其SAM结构域介导的RNA结合与蛋白互作功能,在维持细胞稳态中发挥关键作用。近来研究表明,SAMD4A与SAMD4B在特定癌症类型中呈现表达失调,且其异常表达水平与肿瘤的恶性进展密切相关。

3.1. SAMD4与卵巢癌

拓扑替康(TOP)作为临床治疗卵巢癌的常用化疗药物,通过以非竞争性抑制剂形式结合拓扑异构酶I-DNA复合物,抑制DNA复制与转录过程,最终诱导卵巢癌细胞死亡[51]。然而,卵巢癌细胞易对TOP产生获得性耐药,显著限制其临床疗效。突破性研究发现:在TOP耐药的卵巢癌细胞系中,首次观察到SAMD4基因的持续性过表达,这也是SAMD4家族成员参与卵巢癌化疗耐药机制的首次实验证据[52] [53]。该发现从分子层面揭示了SAMD4表达上调与卵巢癌TOP耐药表型间的正相关性,为阐明化疗耐药机制提供了新方向。

3.2. SAMD4和乳腺癌

乳腺癌是女性最常见的癌症之一,目前全球乳腺癌患者的发病率和死亡率也呈上升趋势。因此,寻找有效的靶点对于乳腺癌的诊断和治疗具有重要意义[54]。肿瘤血管生成对促进肿瘤进展非常重要,控制血管生成相关因子的表达可能有助于控制肿瘤血管生成[55]。最近研究发现,人类SAMD4A是一种新型的乳腺癌血管生成抑制剂[10]。具体而言,SAMD4A在人乳腺癌组织中的表达显著降低,低表达与乳腺癌患者生存率较差有关。从机制上看,研究发现,乳腺癌细胞中SAMD4A的过表达会下调促血管生成基因(包括CXCL5、ENG、IL1β和ANGPT1)的表达,并通过SAMD4A的SAM结构域直接与这些mRNA 3'-UTR中保守的茎环结构结合,使促血管生成mRNA不稳定,从而抑制乳腺肿瘤的血管生成和进展。相反,敲低SAMD4A会增加这些促血管生成基因的mRNA稳定性,并促进乳腺肿瘤的血管生成和进展[10]。总之,这些观察结果表明SAMD4A可能是一种新型的乳腺肿瘤抑制因子和乳腺癌治疗有希望的抗血管生成靶点。

3.3. SAMD4和胃癌

胃癌是全球常见的恶性肿瘤之一,肿瘤进展和转移是导致胃癌高死亡率的主要原因,但其潜在的分子机制尚未完全阐明。研究通过RT-qPCR、Western blot实验和免疫组化(IHC)(定位显示SAMD4A主要位于细胞质)分析胃腺癌组织与癌旁正常组织中SAMD4A的表达差异,发现SAMD4A在胃癌组织中高表达,且与肿瘤深层浸润、淋巴结转移增多及临床分期进展显著相关。SAMD4A有望作为胃癌诊断和预后评估的有效生物标志物,并具有潜在治疗意义[56]。同时,胃癌患者胃癌组织中SAMD4A蛋白的阳性表达率显著高于患胃部良性病变患者胃组织。进一步分析显示,淋巴结转移状态、组织学分级以及肿瘤浸润深度是影响老年胃癌患者SAMD4A阳性表达的独立危险因素[57]

3.4. SAMD4与结直肠癌

结直肠癌的发生发展源于结肠上皮细胞的遗传和表观遗传异常,包括致癌基因激活与抑癌基因失活等关键事件[58] [59]。最新研究发现miR-451/SAMD4B调控轴在结直肠癌恶性表型调控中发挥核心作用:作为长度约22 nt的非编码RNA,miR-451通过特异性结合SAMD4B mRNA的3'-UTR (经双荧光素酶报告基因实验验证),介导转录后抑制并显著下调SAMD4B表达[60] [61]。功能研究表明,miR-451过表达可有效抑制结直肠癌细胞增殖并诱导凋亡,而SAMD4B的回复实验证实其能拮抗miR-451的抑癌作用——SAMD4B过表达不仅减弱miR-451诱导的凋亡效应,更显著促进肿瘤进展[60]。这些结果揭示了miR-451/SAMD4B轴作为结直肠癌治疗新靶点的潜力:通过靶向激活miR-451或抑制SAMD4B,可能实现对肿瘤恶性行为的精准干预。

3.5. SAMD4和肝癌

肝细胞癌(hepatocellular carcinoma, HCC)目前仍是人类常见的恶性肿瘤之一,然而许多HCC患者诊断时已为晚期,错失手术机会,现有HCC患者的化学治疗易出现耐药性且复发率较高,寻找有效的治疗靶点至关重要。TCC鸡尾酒疗法为[沙利度胺(THA) + 卡莫氟(CAR) + 斑蝥素(CAN)],为了探究TCC对HCC患者的C16 + C18簇(靶向簇)的作用机制,该研究分析了联合治疗组中的差异表达基因,发现SAMD4B是差异表达最显著的基因,而APOA2是单药治疗产生耐药性的原因中最显著的基因。并且随着联合治疗组浓度的逐渐增加而SAMD4B的表达水平逐渐升高,APOA2的表达水平逐渐降低。通过将SAMD4B和APOA2质粒转染到HEK293T细胞中,分别观察SAMD4B过表达和敲除对APOA2 mRNA不稳定性的影响以及对APOA2表达的影响。发现SAMD4B过表达通过2'-O-甲基化修饰下调APOA2的表达。SAMD4B在低表达时,免疫检查点PD-L1增多,导致无法发挥免疫调节作用的幼稚CD29+CD8+ T细胞增多。而高表达可增加APOA2 mRNA的不稳定性,进一步降低PD-L1,从而削弱肿瘤细胞对幼稚CD29+CD8+ T细胞的免疫逃逸,从而调控免疫微环境。因此推测三联疗法可能通过激活SAMD4B来调节免疫微环境,从而在免疫功能正常的C57BL6/J小鼠中发挥抗肿瘤作用。并且证明了TCC疗法在晚期HCC患者的临床治疗中比其他疗法具有更好的预后[62]

3.6. SAMD4和口腔癌

口腔癌是全球最常见的恶性肿瘤之一,也是受遗传和环境因素相互作用的复杂疾病。饮酒和吸烟是导致口腔癌的两个关键危险因素[63] [64]。研究人员对印度500例口腔癌患者进行了SAMD4A基因rs1957358的单核苷酸多态性(SNP)分析,发现野生型胸腺嘧啶(T)突变为胞嘧啶(C)显著降低口腔癌风险,如rs1957358 TT突变为rs1957358 TC,而rs1957358 TT则反映风险增加[65]。这一结果识别出了高危人群中与口腔癌易感性的SNP,使得通过SNP分析筛查口腔癌易感患者成为可能。

4. 总结与展望

SAMD4家族蛋白作为一类高度保守的RNA结合蛋白,通过调控mRNA稳定性、翻译抑制及信号通路网络,在多种肿瘤的发生、发展和转移中发挥关键作用。研究表明,SAMD4A和SAMD4B在不同肿瘤类型中呈现差异表达模式,并通过与特定mRNA的相互作用影响肿瘤细胞的增殖、凋亡、侵袭及免疫逃逸等恶性生物学行为。目前关于SAMD4在肿瘤中的作用机制及信号通道进展不一,具体涉及的信号通路靶点还有待更多的实验加以验证。SAMD4通过不同的信号转导通路在多种恶性肿瘤中发挥作用,随着研究的深入,关于SAMD4及相关的信号通路有望成为治疗恶性肿瘤新的药物靶点。

NOTES

*通讯作者。

参考文献

[1] Smibert, C.A., Wilson, J.E., Kerr, K. and Macdonald, P.M. (1996) Smaug Protein Represses Translation of Unlocalized Nanos mRNA in the Drosophila Embryo. Genes & Development, 10, 2600-2609.
https://doi.org/10.1101/gad.10.20.2600
[2] Dahanukar, A., Walker, J.A. and Wharton, R.P. (1999) Smaug, a Novel RNA-Binding Protein That Operates a Translational Switch in Drosophila. Molecular Cell, 4, 209-218.
https://doi.org/10.1016/s1097-2765(00)80368-8
[3] Aviv, T., Lin, Z., Lau, S., Rendl, L.M., Sicheri, F. and Smibert, C.A. (2003) The RNA-Binding SAM Domain of Smaug Defines a New Family of Post-Transcriptional Regulators. Nature Structural & Molecular Biology, 10, 614-621.
https://doi.org/10.1038/nsb956
[4] Tadros, W., Goldman, A.L., Babak, T., Menzies, F., Vardy, L., Orr-Weaver, T., et al. (2007) SMAUG Is a Major Regulator of Maternal mRNA Destabilization in Drosophila and Its Translation Is Activated by the PAN GU Kinase. Developmental Cell, 12, 143-155.
https://doi.org/10.1016/j.devcel.2006.10.005
[5] Chen, L., Dumelie, J.G., Li, X., Cheng, M.H., Yang, Z., Laver, J.D., et al. (2014) Global Regulation of mRNA Translation and Stability in the Early Drosophilaembryo by the Smaug RNA-Binding Protein. Genome Biology, 15, R4.
https://doi.org/10.1186/gb-2014-15-1-r4
[6] Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. and Macdonald, P.M. (1999) Smaug, a Novel and Conserved Protein, Contributes to Repression of Nanos mRNA Translation in Vitro. RNA, 5, 1535-1547.
https://doi.org/10.1017/s1355838299991392
[7] Green, J.B., Gardner, C.D., Wharton, R.P. and Aggarwal, A.K. (2003) RNA Recognition via the SAM Domain of Smaug. Molecular Cell, 11, 1537-1548.
https://doi.org/10.1016/s1097-2765(03)00178-3
[8] Aviv, T., Lin, Z., Ben-Ari, G., Smibert, C.A. and Sicheri, F. (2006) Sequence-Specific Recognition of RNA Hairpins by the SAM Domain of VTS1P. Nature Structural & Molecular Biology, 13, 168-176.
https://doi.org/10.1038/nsmb1053
[9] Johnson, P.E. and Donaldson, L.W. (2006) RNA Recognition by the VTS1P SAM Domain. Nature Structural & Molecular Biology, 13, 177-178.
https://doi.org/10.1038/nsmb1039
[10] Zhou, M., Wang, B., Li, H., Han, J., Li, A. and Lu, W. (2021) RNA‐Binding Protein SAMD4A Inhibits Breast Tumor Angiogenesis by Modulating the Balance of Angiogenesis Program. Cancer Science, 112, 3835-3845.
https://doi.org/10.1111/cas.15053
[11] Luo, N., Li, G., Li, Y., Fan, X., Wang, Y., Ye, X., et al. (2010) SAMD4B, a Novel SAM-Containing Protein, Inhibits AP-1-, p53-and p21-Mediated Transcriptional Activity. BMB Reports, 43, 355-362.
https://doi.org/10.5483/bmbrep.2010.43.5.355
[12] Tang, X., Orlicky, S., Lin, Z., Willems, A., Neculai, D., Ceccarelli, D., et al. (2007) Suprafacial Orientation of the Scfcdc4 Dimer Accommodates Multiple Geometries for Substrate Ubiquitination. Cell, 129, 1165-1176.
https://doi.org/10.1016/j.cell.2007.04.042
[13] Chen, Z., Holland, W., Shelton, J.M., Ali, A., Zhan, X., Won, S., et al. (2014) Mutation of Mouse samd4 Causes Leanness, Myopathy, Uncoupled Mitochondrial Respiration, and Dysregulated mTORC1 Signaling. Proceedings of the National Academy of Sciences, 111, 7367-7372.
https://doi.org/10.1073/pnas.1406511111
[14] Bruzzone, L., Argüelles, C., Sanial, M., Miled, S., Alvisi, G., Gonçalves‐Antunes, M., et al. (2020) Regulation of the RNA‐Binding Protein Smaug by the GPCR Smoothened via the Kinase Fused. EMBO Reports, 21, e48425.
https://doi.org/10.15252/embr.201948425
[15] Ponting, C.P. (1995) SAM: A Novel Motif in Yeast Sterile and Drosophila Polyhomeotic Proteins. Protein Science, 4, 1928-1930.
https://doi.org/10.1002/pro.5560040927
[16] Nelson, M.R., Leidal, A.M. and Smibert, C.A. (2003) Drosophila Cup Is an eIF4E-Binding Protein That Functions in Smaug-Mediated Translational Repression. The EMBO Journal, 23, 150-159.
https://doi.org/10.1038/sj.emboj.7600026
[17] de Haro, M., Al-Ramahi, I., Jones, K.R., Holth, J.K., Timchenko, L.T. and Botas, J. (2013) Smaug/SAMD4A Restores Translational Activity of CUGBP1 and Suppresses CUG-Induced Myopathy. PLOS Genetics, 9, e1003445.
https://doi.org/10.1371/journal.pgen.1003445
[18] Pinder, B.D. and Smibert, C.A. (2012) microRNA‐Independent Recruitment of Argonaute 1 to Nanos mRNA through the Smaug RNA‐Binding Protein. EMBO Reports, 14, 80-86.
https://doi.org/10.1038/embor.2012.192
[19] Oberstrass, F.C., Lee, A., Stefl, R., Janis, M., Chanfreau, G. and Allain, F.H. (2006) Shape-Specific Recognition in the Structure of the Vts1p SAM Domain with RNA. Nature Structural & Molecular Biology, 13, 160-167.
https://doi.org/10.1038/nsmb1038
[20] Edwards, T.A., Butterwick, J.A., Zeng, L., Gupta, Y.K., Wang, X., Wharton, R.P., et al. (2006) Solution Structure of the Vts1 SAM Domain in the Presence of RNA. Journal of Molecular Biology, 356, 1065-1072.
https://doi.org/10.1016/j.jmb.2005.12.004
[21] Wang, X. and Zhang, L. (2023) RNA Binding Protein SAMD4: Current Knowledge and Future Perspectives. Cell & Bioscience, 13, Article No. 21.
https://doi.org/10.1186/s13578-023-00968-x
[22] Ravindranathan, S., Oberstrass, F.C. and Allain, F.H.T. (2010) Increase in Backbone Mobility of the VTS1p-SAM Domain on Binding to Sre-RNA. Journal of Molecular Biology, 396, 732-746.
https://doi.org/10.1016/j.jmb.2009.12.004
[23] Semotok, J.L., Cooperstock, R.L., Pinder, B.D., Vari, H.K., Lipshitz, H.D. and Smibert, C.A. (2005) Smaug Recruits the CCR4/POP2/NOT Deadenylase Complex to Trigger Maternal Transcript Localization in the Early Drosophila Embryo. Current Biology, 15, 284-294.
https://doi.org/10.1016/j.cub.2005.01.048
[24] Ferreira, H.J., Davalos, V., de Moura, M.C., Soler, M., Perez-Salvia, M., Bueno-Costa, A., et al. (2018) Circular RNA CpG Island Hypermethylation-Associated Silencing in Human Cancer. Oncotarget, 9, 29208-29219.
https://doi.org/10.18632/oncotarget.25673
[25] Feng, Z., Li, L., Tu, Y., Shu, X., Zhang, Y., Zeng, Q., et al. (2022) Identification of Circular RNA-Based Immunomodulatory Networks in Colorectal Cancer. Frontiers in Oncology, 11, Article ID: 779706.
https://doi.org/10.3389/fonc.2021.779706
[26] Xie, C., Chen, B., Wu, B., Guo, J., Shi, Y. and Cao, Y. (2020) CircSAMD4A Regulates Cell Progression and Epithelial-Mesenchymal Transition by Sponging miR‑342‑3p via the Regulation of FZD7 Expression in Osteosarcoma. International Journal of Molecular Medicine, 46, 107-118.
https://doi.org/10.3892/ijmm.2020.4585
[27] Lynn Zimmerman, J., Petri, W. and Meselson, M. (1983) Accumulation of a Specific Subset of D. melanogaster Heat Shock mRNAs in Normal Development without Heat Shock. Cell, 32, 1161-1170.
https://doi.org/10.1016/0092-8674(83)90299-4
[28] Baez, M.V. and Boccaccio, G.L. (2005) Mammalian Smaug Is a Translational Repressor That Forms Cytoplasmic Foci Similar to Stress Granules. Journal of Biological Chemistry, 280, 43131-43140.
https://doi.org/10.1074/jbc.m508374200
[29] Wang, Y., Fan, X., Song, Y., Liu, Y., Liu, R., Wu, J., et al. (2020) SAMD4 Family Members Suppress Human Hepatitis B Virus by Directly Binding to the Smaug Recognition Region of Viral RNA. Cellular & Molecular Immunology, 18, 1032-1044.
https://doi.org/10.1038/s41423-020-0431-x
[30] Gerstberger, S., Hafner, M. and Tuschl, T. (2014) A Census of Human RNA-Binding Proteins. Nature Reviews Genetics, 15, 829-845.
https://doi.org/10.1038/nrg3813
[31] Tadros, W. and Lipshitz, H.D. (2005) Setting the Stage for Development: mRNA Translation and Stability during Oocyte Maturation and Egg Activation in Drosophila. Developmental Dynamics, 232, 593-608.
https://doi.org/10.1002/dvdy.20297
[32] Bashirullah, A., Halsell, S.R., Cooperstock, R.L., Kloc, M., Karaiskakis, A., Fisher, W.W., et al. (1999) Joint Action of Two RNA Degradation Pathways Controls the Timing of Maternal Transcript Elimination at the Midblastula Transition in Drosophila Melanogaster. The EMBO Journal, 18, 2610-2620.
https://doi.org/10.1093/emboj/18.9.2610
[33] Semotok, J.L., Luo, H., Cooperstock, R.L., Karaiskakis, A., Vari, H.K., Smibert, C.A., et al. (2008) Drosophila Maternal Hsp83 mRNA Destabilization Is Directed by Multiple SMAUG Recognition Elements in the Open Reading Frame. Molecular and Cellular Biology, 28, 6757-6772.
https://doi.org/10.1128/mcb.00037-08
[34] Yan, Y. (2014) Deadenylation: Enzymes, Regulation, and Functional Implications. WIREs RNA, 5, 421-443.
https://doi.org/10.1002/wrna.1221
[35] Hammell, C.M. (2008) The mRNA-Argonaute Complex: A Platform for mRNA Modulation. RNA Biology, 5, 123-127.
https://doi.org/10.4161/rna.5.3.6570
[36] Pinder, B.D. and Smibert, C.A. (2013) Smaug: An Unexpected Journey into the Mechanisms of Post-Transcriptional Regulation. Fly, 7, 142-145.
https://doi.org/10.4161/fly.24336
[37] Niu, N., Xiang, J., Yang, Q., Wang, L., Wei, Z., Chen, L., et al. (2017) RNA-Binding Protein SAMD4 Regulates Skeleton Development through Translational Inhibition of Mig6 Expression. Cell Discovery, 3, Article No. 16050.
https://doi.org/10.1038/celldisc.2016.50
[38] Amadei, G., Zander, M.A., Yang, G., Dumelie, J.G., Vessey, J.P., Lipshitz, H.D., et al. (2015) A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. The Journal of Neuroscience, 35, 15666-15681.
https://doi.org/10.1523/jneurosci.2172-15.2015
[39] Gaston, K. and Jayaraman, P.-. (2003) Transcriptional Repression in Eukaryotes: Repressors and Repression Mechanisms. Cellular and Molecular Life Sciences (CMLS), 60, 721-741.
https://doi.org/10.1007/s00018-003-2260-3
[40] Müller-McNicoll, M., Rossbach, O., Hui, J. and Medenbach, J. (2019) Auto-Regulatory Feedback by RNA-Binding Proteins. Journal of Molecular Cell Biology, 11, 930-939.
https://doi.org/10.1093/jmcb/mjz043
[41] Kishore, S., Luber, S. and Zavolan, M. (2010) Deciphering the Role of RNA-Binding Proteins in the Post-Transcriptional Control of Gene Expression. Briefings in Functional Genomics, 9, 391-404.
https://doi.org/10.1093/bfgp/elq028
[42] Levine, A.J., Hu, W. and Feng, Z. (2006) The P53 Pathway: What Questions Remain to Be Explored? Cell Death & Differentiation, 13, 1027-1036.
https://doi.org/10.1038/sj.cdd.4401910
[43] Baez, M.V., Luchelli, L., Maschi, D., Habif, M., Pascual, M., Thomas, M.G., et al. (2011) Smaug1 mRNA-Silencing Foci Respond to NMDA and Modulate Synapse Formation. Journal of Cell Biology, 195, 1141-1157.
https://doi.org/10.1083/jcb.201108159
[44] Fernández-Alvarez, A.J., Pascual, M.L., Boccaccio, G.L. and Thomas, M.G. (2016) Smaug Variants in Neural and Non-Neuronal Cells. Communicative & Integrative Biology, 9, e1139252.
https://doi.org/10.1080/19420889.2016.1139252
[45] Pascual, M.L., Luchelli, L., Habif, M. and Boccaccio, G.L. (2012) Synaptic Activity Regulated mRNA-Silencing foci for the Fine Tuning of Local Protein Synthesis at the Synapse. Communicative & Integrative Biology, 5, 388-392.
https://doi.org/10.4161/cib.20257
[46] Thomas, M.G. and Boccaccio, G.L. (2016) Novel mRNA-Silencing Bodies at the Synapse: A Never-Ending Story. Communicative & Integrative Biology, 9, e1139251.
https://doi.org/10.1080/19420889.2016.1139251
[47] Fernández-Alvarez, A.J., Gabriela Thomas, M., Pascual, M.L., Habif, M., Pimentel, J., Corbat, A.A., et al. (2022) Smaug1 Membrane-Less Organelles Respond to AMPK and mTOR and Affect Mitochondrial Function. Journal of Cell Science, 135, jcs253591.
https://doi.org/10.1242/jcs.253591
[48] Chartier, A., Klein, P., Pierson, S., Barbezier, N., Gidaro, T., Casas, F., et al. (2015) Mitochondrial Dysfunction Reveals the Role of mRNA Poly(a) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLOS Genetics, 11, e1005092.
https://doi.org/10.1371/journal.pgen.1005092
[49] Schapira, A.H. (2012) Mitochondrial Diseases. The Lancet, 379, 1825-1834.
https://doi.org/10.1016/s0140-6736(11)61305-6
[50] Srinivasan, S., Guha, M., Kashina, A. and Avadhani, N.G. (2017) Mitochondrial Dysfunction and Mitochondrial Dynamics—The Cancer Connection. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1858, 602-614.
https://doi.org/10.1016/j.bbabio.2017.01.004
[51] Staker, B.L., Hjerrild, K., Feese, M.D., Behnke, C.A., Burgin, A.B. and Stewart, L. (2002) The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proceedings of the National Academy of Sciences, 99, 15387-15392.
https://doi.org/10.1073/pnas.242259599
[52] Klejewski, A., Świerczewska, M., Zaorska, K., et al. (2017) New and Old Genes Associated with Topotecan Resistance Development in Ovarian Cancer Cell Lines. Anticancer Research, 37, 1625-1636.
[53] Januchowski, R., Sterzyńska, K., Zawierucha, P., Ruciński, M., Świerczewska, M., Partyka, M., et al. (2017) Microarray-Based Detection and Expression Analysis of New Genes Associated with Drug Resistance in Ovarian Cancer Cell Lines. Oncotarget, 8, 49944-49958.
https://doi.org/10.18632/oncotarget.18278
[54] Viens, L., Perin, D., Senkomago, V., Neri, A. and Saraiya, M. (2017) Questions about Cervical and Breast Cancer Screening Knowledge, Practice, and Outcomes: A Review of Demographic and Health Surveys. Journal of Womens Health, 26, 403-412.
https://doi.org/10.1089/jwh.2017.6441
[55] Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., et al. (2020) The Role of Microenvironment in Tumor Angiogenesis. Journal of Experimental & Clinical Cancer Research, 39, Article No. 204.
https://doi.org/10.1186/s13046-020-01709-5
[56] Li, D., Qi, T. and Chen, J. (2023) SAMD4A Serves as a Negative Prognostic Marker for Gastric Cancer Patients. Tissue and Cell, 84, Article ID: 102167.
https://doi.org/10.1016/j.tice.2023.102167
[57] 施雨花, 许凤, 龚苗. 老年胃癌患者SAMD4A和MDM2的表达及其临床意义[J]. 临床和实验医学杂志, 2024, 23(10): 1025-1029.
[58] Das, V., Kalita, J. and Pal, M. (2017) Predictive and Prognostic Biomarkers in Colorectal Cancer: A Systematic Review of Recent Advances and Challenges. Biomedicine & Pharmacotherapy, 87, 8-19.
https://doi.org/10.1016/j.biopha.2016.12.064
[59] Wang, F., Cao, C., Han, K., Zhao, Y., Cai, M., Xiang, Z., et al. (2019) APC-Activated Long Noncoding RNA Inhibits Colorectal Carcinoma Pathogenesis through Reduction of Exosome Production. Journal of Clinical Investigation, 129, 727-743.
https://doi.org/10.1172/jci122478
[60] Wu, C., Liu, X., Li, B., Sun, G., Peng, C. and Xiang, D. (2021) miR-451 Suppresses the Malignant Characteristics of Colorectal Cancer via Targeting SAMD4B. Molecular Medicine Reports, 24, Article No. 557.
https://doi.org/10.3892/mmr.2021.12196
[61] Chen, C., Li, L., Lodish, H.F. and Bartel, D.P. (2004) MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science, 303, 83-86.
https://doi.org/10.1126/science.1091903
[62] Qi, F., Zhang, J., Li, J., Li, D., Gao, N., Qi, Z., et al. (2024) Author Correction: Synergistic Immunochemotherapy Targeted SAMD4B-APOA2-PD-L1 Axis Potentiates Antitumor Immunity in Hepatocellular Carcinoma. Cell Death & Disease, 15, 510.
https://doi.org/10.1038/s41419-024-06877-2
[63] Montero, P.H. and Patel, S.G. (2015) Cancer of the Oral Cavity. Surgical Oncology Clinics of North America, 24, 491-508.
https://doi.org/10.1016/j.soc.2015.03.006
[64] Nagao, T. and Warnakulasuriya, S. (2020) Screening for Oral Cancer: Future Prospects, Research and Policy Development for Asia. Oral Oncology, 105, Article ID: 104632.
https://doi.org/10.1016/j.oraloncology.2020.104632
[65] D’Souza, W., Pradhan, S. and Saranath, D. (2017) Multiple Single Nucleotide Polymorphism Analysis and Association of Specific Genotypes in FHIT, SAMD4A, and ANKRD17 in Indian Patients with Oral Cancer. Head & Neck, 39, 1586-1595.
https://doi.org/10.1002/hed.24798