[1]
|
Smibert, C.A., Wilson, J.E., Kerr, K. and Macdonald, P.M. (1996) Smaug Protein Represses Translation of Unlocalized Nanos mRNA in the Drosophila Embryo. Genes & Development, 10, 2600-2609. https://doi.org/10.1101/gad.10.20.2600
|
[2]
|
Dahanukar, A., Walker, J.A. and Wharton, R.P. (1999) Smaug, a Novel RNA-Binding Protein That Operates a Translational Switch in Drosophila. Molecular Cell, 4, 209-218. https://doi.org/10.1016/s1097-2765(00)80368-8
|
[3]
|
Aviv, T., Lin, Z., Lau, S., Rendl, L.M., Sicheri, F. and Smibert, C.A. (2003) The RNA-Binding SAM Domain of Smaug Defines a New Family of Post-Transcriptional Regulators. Nature Structural & Molecular Biology, 10, 614-621. https://doi.org/10.1038/nsb956
|
[4]
|
Tadros, W., Goldman, A.L., Babak, T., Menzies, F., Vardy, L., Orr-Weaver, T., et al. (2007) SMAUG Is a Major Regulator of Maternal mRNA Destabilization in Drosophila and Its Translation Is Activated by the PAN GU Kinase. Developmental Cell, 12, 143-155. https://doi.org/10.1016/j.devcel.2006.10.005
|
[5]
|
Chen, L., Dumelie, J.G., Li, X., Cheng, M.H., Yang, Z., Laver, J.D., et al. (2014) Global Regulation of mRNA Translation and Stability in the Early Drosophilaembryo by the Smaug RNA-Binding Protein. Genome Biology, 15, R4. https://doi.org/10.1186/gb-2014-15-1-r4
|
[6]
|
Smibert, C.A., Lie, Y.S., Shillinglaw, W., Henzel, W.J. and Macdonald, P.M. (1999) Smaug, a Novel and Conserved Protein, Contributes to Repression of Nanos mRNA Translation in Vitro. RNA, 5, 1535-1547. https://doi.org/10.1017/s1355838299991392
|
[7]
|
Green, J.B., Gardner, C.D., Wharton, R.P. and Aggarwal, A.K. (2003) RNA Recognition via the SAM Domain of Smaug. Molecular Cell, 11, 1537-1548. https://doi.org/10.1016/s1097-2765(03)00178-3
|
[8]
|
Aviv, T., Lin, Z., Ben-Ari, G., Smibert, C.A. and Sicheri, F. (2006) Sequence-Specific Recognition of RNA Hairpins by the SAM Domain of VTS1P. Nature Structural & Molecular Biology, 13, 168-176. https://doi.org/10.1038/nsmb1053
|
[9]
|
Johnson, P.E. and Donaldson, L.W. (2006) RNA Recognition by the VTS1P SAM Domain. Nature Structural & Molecular Biology, 13, 177-178. https://doi.org/10.1038/nsmb1039
|
[10]
|
Zhou, M., Wang, B., Li, H., Han, J., Li, A. and Lu, W. (2021) RNA‐Binding Protein SAMD4A Inhibits Breast Tumor Angiogenesis by Modulating the Balance of Angiogenesis Program. Cancer Science, 112, 3835-3845. https://doi.org/10.1111/cas.15053
|
[11]
|
Luo, N., Li, G., Li, Y., Fan, X., Wang, Y., Ye, X., et al. (2010) SAMD4B, a Novel SAM-Containing Protein, Inhibits AP-1-, p53-and p21-Mediated Transcriptional Activity. BMB Reports, 43, 355-362. https://doi.org/10.5483/bmbrep.2010.43.5.355
|
[12]
|
Tang, X., Orlicky, S., Lin, Z., Willems, A., Neculai, D., Ceccarelli, D., et al. (2007) Suprafacial Orientation of the Scfcdc4 Dimer Accommodates Multiple Geometries for Substrate Ubiquitination. Cell, 129, 1165-1176. https://doi.org/10.1016/j.cell.2007.04.042
|
[13]
|
Chen, Z., Holland, W., Shelton, J.M., Ali, A., Zhan, X., Won, S., et al. (2014) Mutation of Mouse samd4 Causes Leanness, Myopathy, Uncoupled Mitochondrial Respiration, and Dysregulated mTORC1 Signaling. Proceedings of the National Academy of Sciences, 111, 7367-7372. https://doi.org/10.1073/pnas.1406511111
|
[14]
|
Bruzzone, L., Argüelles, C., Sanial, M., Miled, S., Alvisi, G., Gonçalves‐Antunes, M., et al. (2020) Regulation of the RNA‐Binding Protein Smaug by the GPCR Smoothened via the Kinase Fused. EMBO Reports, 21, e48425. https://doi.org/10.15252/embr.201948425
|
[15]
|
Ponting, C.P. (1995) SAM: A Novel Motif in Yeast Sterile and Drosophila Polyhomeotic Proteins. Protein Science, 4, 1928-1930. https://doi.org/10.1002/pro.5560040927
|
[16]
|
Nelson, M.R., Leidal, A.M. and Smibert, C.A. (2003) Drosophila Cup Is an eIF4E-Binding Protein That Functions in Smaug-Mediated Translational Repression. The EMBO Journal, 23, 150-159. https://doi.org/10.1038/sj.emboj.7600026
|
[17]
|
de Haro, M., Al-Ramahi, I., Jones, K.R., Holth, J.K., Timchenko, L.T. and Botas, J. (2013) Smaug/SAMD4A Restores Translational Activity of CUGBP1 and Suppresses CUG-Induced Myopathy. PLOS Genetics, 9, e1003445. https://doi.org/10.1371/journal.pgen.1003445
|
[18]
|
Pinder, B.D. and Smibert, C.A. (2012) microRNA‐Independent Recruitment of Argonaute 1 to Nanos mRNA through the Smaug RNA‐Binding Protein. EMBO Reports, 14, 80-86. https://doi.org/10.1038/embor.2012.192
|
[19]
|
Oberstrass, F.C., Lee, A., Stefl, R., Janis, M., Chanfreau, G. and Allain, F.H. (2006) Shape-Specific Recognition in the Structure of the Vts1p SAM Domain with RNA. Nature Structural & Molecular Biology, 13, 160-167. https://doi.org/10.1038/nsmb1038
|
[20]
|
Edwards, T.A., Butterwick, J.A., Zeng, L., Gupta, Y.K., Wang, X., Wharton, R.P., et al. (2006) Solution Structure of the Vts1 SAM Domain in the Presence of RNA. Journal of Molecular Biology, 356, 1065-1072. https://doi.org/10.1016/j.jmb.2005.12.004
|
[21]
|
Wang, X. and Zhang, L. (2023) RNA Binding Protein SAMD4: Current Knowledge and Future Perspectives. Cell & Bioscience, 13, Article No. 21. https://doi.org/10.1186/s13578-023-00968-x
|
[22]
|
Ravindranathan, S., Oberstrass, F.C. and Allain, F.H.T. (2010) Increase in Backbone Mobility of the VTS1p-SAM Domain on Binding to Sre-RNA. Journal of Molecular Biology, 396, 732-746. https://doi.org/10.1016/j.jmb.2009.12.004
|
[23]
|
Semotok, J.L., Cooperstock, R.L., Pinder, B.D., Vari, H.K., Lipshitz, H.D. and Smibert, C.A. (2005) Smaug Recruits the CCR4/POP2/NOT Deadenylase Complex to Trigger Maternal Transcript Localization in the Early Drosophila Embryo. Current Biology, 15, 284-294. https://doi.org/10.1016/j.cub.2005.01.048
|
[24]
|
Ferreira, H.J., Davalos, V., de Moura, M.C., Soler, M., Perez-Salvia, M., Bueno-Costa, A., et al. (2018) Circular RNA CpG Island Hypermethylation-Associated Silencing in Human Cancer. Oncotarget, 9, 29208-29219. https://doi.org/10.18632/oncotarget.25673
|
[25]
|
Feng, Z., Li, L., Tu, Y., Shu, X., Zhang, Y., Zeng, Q., et al. (2022) Identification of Circular RNA-Based Immunomodulatory Networks in Colorectal Cancer. Frontiers in Oncology, 11, Article ID: 779706. https://doi.org/10.3389/fonc.2021.779706
|
[26]
|
Xie, C., Chen, B., Wu, B., Guo, J., Shi, Y. and Cao, Y. (2020) CircSAMD4A Regulates Cell Progression and Epithelial-Mesenchymal Transition by Sponging miR‑342‑3p via the Regulation of FZD7 Expression in Osteosarcoma. International Journal of Molecular Medicine, 46, 107-118. https://doi.org/10.3892/ijmm.2020.4585
|
[27]
|
Lynn Zimmerman, J., Petri, W. and Meselson, M. (1983) Accumulation of a Specific Subset of D. melanogaster Heat Shock mRNAs in Normal Development without Heat Shock. Cell, 32, 1161-1170. https://doi.org/10.1016/0092-8674(83)90299-4
|
[28]
|
Baez, M.V. and Boccaccio, G.L. (2005) Mammalian Smaug Is a Translational Repressor That Forms Cytoplasmic Foci Similar to Stress Granules. Journal of Biological Chemistry, 280, 43131-43140. https://doi.org/10.1074/jbc.m508374200
|
[29]
|
Wang, Y., Fan, X., Song, Y., Liu, Y., Liu, R., Wu, J., et al. (2020) SAMD4 Family Members Suppress Human Hepatitis B Virus by Directly Binding to the Smaug Recognition Region of Viral RNA. Cellular & Molecular Immunology, 18, 1032-1044. https://doi.org/10.1038/s41423-020-0431-x
|
[30]
|
Gerstberger, S., Hafner, M. and Tuschl, T. (2014) A Census of Human RNA-Binding Proteins. Nature Reviews Genetics, 15, 829-845. https://doi.org/10.1038/nrg3813
|
[31]
|
Tadros, W. and Lipshitz, H.D. (2005) Setting the Stage for Development: mRNA Translation and Stability during Oocyte Maturation and Egg Activation in Drosophila. Developmental Dynamics, 232, 593-608. https://doi.org/10.1002/dvdy.20297
|
[32]
|
Bashirullah, A., Halsell, S.R., Cooperstock, R.L., Kloc, M., Karaiskakis, A., Fisher, W.W., et al. (1999) Joint Action of Two RNA Degradation Pathways Controls the Timing of Maternal Transcript Elimination at the Midblastula Transition in Drosophila Melanogaster. The EMBO Journal, 18, 2610-2620. https://doi.org/10.1093/emboj/18.9.2610
|
[33]
|
Semotok, J.L., Luo, H., Cooperstock, R.L., Karaiskakis, A., Vari, H.K., Smibert, C.A., et al. (2008) Drosophila Maternal Hsp83 mRNA Destabilization Is Directed by Multiple SMAUG Recognition Elements in the Open Reading Frame. Molecular and Cellular Biology, 28, 6757-6772. https://doi.org/10.1128/mcb.00037-08
|
[34]
|
Yan, Y. (2014) Deadenylation: Enzymes, Regulation, and Functional Implications. WIREs RNA, 5, 421-443. https://doi.org/10.1002/wrna.1221
|
[35]
|
Hammell, C.M. (2008) The mRNA-Argonaute Complex: A Platform for mRNA Modulation. RNA Biology, 5, 123-127. https://doi.org/10.4161/rna.5.3.6570
|
[36]
|
Pinder, B.D. and Smibert, C.A. (2013) Smaug: An Unexpected Journey into the Mechanisms of Post-Transcriptional Regulation. Fly, 7, 142-145. https://doi.org/10.4161/fly.24336
|
[37]
|
Niu, N., Xiang, J., Yang, Q., Wang, L., Wei, Z., Chen, L., et al. (2017) RNA-Binding Protein SAMD4 Regulates Skeleton Development through Translational Inhibition of Mig6 Expression. Cell Discovery, 3, Article No. 16050. https://doi.org/10.1038/celldisc.2016.50
|
[38]
|
Amadei, G., Zander, M.A., Yang, G., Dumelie, J.G., Vessey, J.P., Lipshitz, H.D., et al. (2015) A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. The Journal of Neuroscience, 35, 15666-15681. https://doi.org/10.1523/jneurosci.2172-15.2015
|
[39]
|
Gaston, K. and Jayaraman, P.-. (2003) Transcriptional Repression in Eukaryotes: Repressors and Repression Mechanisms. Cellular and Molecular Life Sciences (CMLS), 60, 721-741. https://doi.org/10.1007/s00018-003-2260-3
|
[40]
|
Müller-McNicoll, M., Rossbach, O., Hui, J. and Medenbach, J. (2019) Auto-Regulatory Feedback by RNA-Binding Proteins. Journal of Molecular Cell Biology, 11, 930-939. https://doi.org/10.1093/jmcb/mjz043
|
[41]
|
Kishore, S., Luber, S. and Zavolan, M. (2010) Deciphering the Role of RNA-Binding Proteins in the Post-Transcriptional Control of Gene Expression. Briefings in Functional Genomics, 9, 391-404. https://doi.org/10.1093/bfgp/elq028
|
[42]
|
Levine, A.J., Hu, W. and Feng, Z. (2006) The P53 Pathway: What Questions Remain to Be Explored? Cell Death & Differentiation, 13, 1027-1036. https://doi.org/10.1038/sj.cdd.4401910
|
[43]
|
Baez, M.V., Luchelli, L., Maschi, D., Habif, M., Pascual, M., Thomas, M.G., et al. (2011) Smaug1 mRNA-Silencing Foci Respond to NMDA and Modulate Synapse Formation. Journal of Cell Biology, 195, 1141-1157. https://doi.org/10.1083/jcb.201108159
|
[44]
|
Fernández-Alvarez, A.J., Pascual, M.L., Boccaccio, G.L. and Thomas, M.G. (2016) Smaug Variants in Neural and Non-Neuronal Cells. Communicative & Integrative Biology, 9, e1139252. https://doi.org/10.1080/19420889.2016.1139252
|
[45]
|
Pascual, M.L., Luchelli, L., Habif, M. and Boccaccio, G.L. (2012) Synaptic Activity Regulated mRNA-Silencing foci for the Fine Tuning of Local Protein Synthesis at the Synapse. Communicative & Integrative Biology, 5, 388-392. https://doi.org/10.4161/cib.20257
|
[46]
|
Thomas, M.G. and Boccaccio, G.L. (2016) Novel mRNA-Silencing Bodies at the Synapse: A Never-Ending Story. Communicative & Integrative Biology, 9, e1139251. https://doi.org/10.1080/19420889.2016.1139251
|
[47]
|
Fernández-Alvarez, A.J., Gabriela Thomas, M., Pascual, M.L., Habif, M., Pimentel, J., Corbat, A.A., et al. (2022) Smaug1 Membrane-Less Organelles Respond to AMPK and mTOR and Affect Mitochondrial Function. Journal of Cell Science, 135, jcs253591. https://doi.org/10.1242/jcs.253591
|
[48]
|
Chartier, A., Klein, P., Pierson, S., Barbezier, N., Gidaro, T., Casas, F., et al. (2015) Mitochondrial Dysfunction Reveals the Role of mRNA Poly(a) Tail Regulation in Oculopharyngeal Muscular Dystrophy Pathogenesis. PLOS Genetics, 11, e1005092. https://doi.org/10.1371/journal.pgen.1005092
|
[49]
|
Schapira, A.H. (2012) Mitochondrial Diseases. The Lancet, 379, 1825-1834. https://doi.org/10.1016/s0140-6736(11)61305-6
|
[50]
|
Srinivasan, S., Guha, M., Kashina, A. and Avadhani, N.G. (2017) Mitochondrial Dysfunction and Mitochondrial Dynamics—The Cancer Connection. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1858, 602-614. https://doi.org/10.1016/j.bbabio.2017.01.004
|
[51]
|
Staker, B.L., Hjerrild, K., Feese, M.D., Behnke, C.A., Burgin, A.B. and Stewart, L. (2002) The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proceedings of the National Academy of Sciences, 99, 15387-15392. https://doi.org/10.1073/pnas.242259599
|
[52]
|
Klejewski, A., Świerczewska, M., Zaorska, K., et al. (2017) New and Old Genes Associated with Topotecan Resistance Development in Ovarian Cancer Cell Lines. Anticancer Research, 37, 1625-1636.
|
[53]
|
Januchowski, R., Sterzyńska, K., Zawierucha, P., Ruciński, M., Świerczewska, M., Partyka, M., et al. (2017) Microarray-Based Detection and Expression Analysis of New Genes Associated with Drug Resistance in Ovarian Cancer Cell Lines. Oncotarget, 8, 49944-49958. https://doi.org/10.18632/oncotarget.18278
|
[54]
|
Viens, L., Perin, D., Senkomago, V., Neri, A. and Saraiya, M. (2017) Questions about Cervical and Breast Cancer Screening Knowledge, Practice, and Outcomes: A Review of Demographic and Health Surveys. Journal of Women’s Health, 26, 403-412. https://doi.org/10.1089/jwh.2017.6441
|
[55]
|
Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., et al. (2020) The Role of Microenvironment in Tumor Angiogenesis. Journal of Experimental & Clinical Cancer Research, 39, Article No. 204. https://doi.org/10.1186/s13046-020-01709-5
|
[56]
|
Li, D., Qi, T. and Chen, J. (2023) SAMD4A Serves as a Negative Prognostic Marker for Gastric Cancer Patients. Tissue and Cell, 84, Article ID: 102167. https://doi.org/10.1016/j.tice.2023.102167
|
[57]
|
施雨花, 许凤, 龚苗. 老年胃癌患者SAMD4A和MDM2的表达及其临床意义[J]. 临床和实验医学杂志, 2024, 23(10): 1025-1029.
|
[58]
|
Das, V., Kalita, J. and Pal, M. (2017) Predictive and Prognostic Biomarkers in Colorectal Cancer: A Systematic Review of Recent Advances and Challenges. Biomedicine & Pharmacotherapy, 87, 8-19. https://doi.org/10.1016/j.biopha.2016.12.064
|
[59]
|
Wang, F., Cao, C., Han, K., Zhao, Y., Cai, M., Xiang, Z., et al. (2019) APC-Activated Long Noncoding RNA Inhibits Colorectal Carcinoma Pathogenesis through Reduction of Exosome Production. Journal of Clinical Investigation, 129, 727-743. https://doi.org/10.1172/jci122478
|
[60]
|
Wu, C., Liu, X., Li, B., Sun, G., Peng, C. and Xiang, D. (2021) miR-451 Suppresses the Malignant Characteristics of Colorectal Cancer via Targeting SAMD4B. Molecular Medicine Reports, 24, Article No. 557. https://doi.org/10.3892/mmr.2021.12196
|
[61]
|
Chen, C., Li, L., Lodish, H.F. and Bartel, D.P. (2004) MicroRNAs Modulate Hematopoietic Lineage Differentiation. Science, 303, 83-86. https://doi.org/10.1126/science.1091903
|
[62]
|
Qi, F., Zhang, J., Li, J., Li, D., Gao, N., Qi, Z., et al. (2024) Author Correction: Synergistic Immunochemotherapy Targeted SAMD4B-APOA2-PD-L1 Axis Potentiates Antitumor Immunity in Hepatocellular Carcinoma. Cell Death & Disease, 15, 510. https://doi.org/10.1038/s41419-024-06877-2
|
[63]
|
Montero, P.H. and Patel, S.G. (2015) Cancer of the Oral Cavity. Surgical Oncology Clinics of North America, 24, 491-508. https://doi.org/10.1016/j.soc.2015.03.006
|
[64]
|
Nagao, T. and Warnakulasuriya, S. (2020) Screening for Oral Cancer: Future Prospects, Research and Policy Development for Asia. Oral Oncology, 105, Article ID: 104632. https://doi.org/10.1016/j.oraloncology.2020.104632
|
[65]
|
D’Souza, W., Pradhan, S. and Saranath, D. (2017) Multiple Single Nucleotide Polymorphism Analysis and Association of Specific Genotypes in FHIT, SAMD4A, and ANKRD17 in Indian Patients with Oral Cancer. Head & Neck, 39, 1586-1595. https://doi.org/10.1002/hed.24798
|