[1]
|
La Gerche, A., Howden, E.J., Haykowsky, M.J., et al. (2022) Heart Failure with Preserved Ejection Fraction as an Exercise Deficiency Syndrome. Journal of the American College of Cardiology, 80, 1177-1191.
|
[2]
|
Paulus, W.J. (2010) Culprit Mechanism(s) for Exercise Intolerance in Heart Failure with Normal Ejection Fraction. Journal of the American College of Cardiology, 56, 864-866. https://doi.org/10.1016/j.jacc.2010.04.041
|
[3]
|
Haykowsky, M.J., Brubaker, P.H., Morgan, T.M., Kritchevsky, S., Eggebeen, J. and Kitzman, D.W. (2013) Impaired Aerobic Capacity and Physical Functional Performance in Older Heart Failure Patients with Preserved Ejection Fraction: Role of Lean Body Mass. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 968-975. https://doi.org/10.1093/gerona/glt011
|
[4]
|
Upadhya, B., Pisani, B. and Kitzman, D.W. (2017) Evolution of a Geriatric Syndrome: Pathophysiology and Treatment of Heart Failure with Preserved Ejection Fraction. Journal of the American Geriatrics Society, 65, 2431-2440. https://doi.org/10.1111/jgs.15141
|
[5]
|
Kitzman, D.W., Brubaker, P., Morgan, T., Haykowsky, M., Hundley, G., Kraus, W.E., et al. (2016) Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure with Preserved Ejection Fraction. JAMA, 315, 36-46. https://doi.org/10.1001/jama.2015.17346
|
[6]
|
Yamamoto, S., Okamura, M., Akashi, Y.J., Tanaka, S., Shimizu, M., Tsuchikawa, Y., et al. (2024) Impact of Long-Term Exercise-Based Cardiac Rehabilitation in Patients with Chronic Heart Failure—A Systematic Review and Meta-Analysis. Circulation Journal, 88, 1360-1371. https://doi.org/10.1253/circj.cj-23-0820
|
[7]
|
Brown, T.M., Pack, Q.R., Aberegg, E., Brewer, L.C., Ford, Y.R., Forman, D.E., et al. (2024) Core Components of Cardiac Rehabilitation Programs: 2024 Update: A Scientific Statement from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation, 150, e328-e347. https://doi.org/10.1161/cir.0000000000001289
|
[8]
|
Cheng, J.M., Akkerhuis, K.M., Battes, L.C., van Vark, L.C., Hillege, H.L., Paulus, W.J., et al. (2013) Biomarkers of Heart Failure with Normal Ejection Fraction: A Systematic Review. European Journal of Heart Failure, 15, 1350-1362. https://doi.org/10.1093/eurjhf/hft106
|
[9]
|
D’Elia, E., Vaduganathan, M., Gori, M., Gavazzi, A., Butler, J. and Senni, M. (2015) Role of Biomarkers in Cardiac Structure Phenotyping in Heart Failure with Preserved Ejection Fraction: Critical Appraisal and Practical Use. European Journal of Heart Failure, 17, 1231-1239. https://doi.org/10.1002/ejhf.430
|
[10]
|
Sanders‐van Wijk, S., van Empel, V., Davarzani, N., Maeder, M.T., Handschin, R., Pfisterer, M.E., et al. (2015) Circulating Biomarkers of Distinct Pathophysiological Pathways in Heart Failure with Preserved vs. Reduced Left Ventricular Ejection Fraction. European Journal of Heart Failure, 17, 1006-1014. https://doi.org/10.1002/ejhf.414
|
[11]
|
Santhanakrishnan, R., Chong, J.P.C., Ng, T.P., Ling, L.H., Sim, D., Toh G. Leong, K., et al. (2012) Growth Differentiation Factor 15, ST2, High‐Sensitivity Troponin T, and N‐Terminal Pro Brain Natriuretic Peptide in Heart Failure with Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 14, 1338-1347. https://doi.org/10.1093/eurjhf/hfs130
|
[12]
|
Westermann, D., Lindner, D., Kasner, M., Zietsch, C., Savvatis, K., Escher, F., et al. (2011) Cardiac Inflammation Contributes to Changes in the Extracellular Matrix in Patients with Heart Failure and Normal Ejection Fraction. Circulation: Heart Failure, 4, 44-52. https://doi.org/10.1161/circheartfailure.109.931451
|
[13]
|
Lavin, K.M., Perkins, R.K., Jemiolo, B., Raue, U., Trappe, S.W. and Trappe, T.A. (2020) Effects of Aging and Lifelong Aerobic Exercise on Basal and Exercise-Induced Inflammation. Journal of Applied Physiology, 128, 87-99. https://doi.org/10.1152/japplphysiol.00495.2019
|
[14]
|
Molina, A.J.A., Bharadwaj, M.S., Van Horn, C., Nicklas, B.J., Lyles, M.F., Eggebeen, J., et al. (2016) Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients with Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC: Heart Failure, 4, 636-645. https://doi.org/10.1016/j.jchf.2016.03.011
|
[15]
|
沈晨菲, 胡静芸, 冯钰, 等. 高强度间歇训练对小鼠心肌线粒体质量控制系统相关蛋白和糖代谢限速酶的影响[J]. 中国运动医学杂志, 2023, 42(3): 210-219.
|
[16]
|
Kitzman, D.W., Nicklas, B., Kraus, W.E., Lyles, M.F., Eggebeen, J., Morgan, T.M., et al. (2014) Skeletal Muscle Abnormalities and Exercise Intolerance in Older Patients with Heart Failure and Preserved Ejection Fraction. American Journal of Physiology-Heart and Circulatory Physiology, 306, H1364-H1370. https://doi.org/10.1152/ajpheart.00004.2014
|
[17]
|
Thonusin, C., Pantiya, P., Kongkaew, A., Nawara, W., Arunsak, B., Sriwichaiin, S., et al. (2023) Exercise and Caloric Restriction Exert Different Benefits on Skeletal Muscle Metabolism in Aging Condition. Nutrients, 15, Article No. 5004. https://doi.org/10.3390/nu15235004
|
[18]
|
Leenders, M., Verdijk, L.B., van der Hoeven, L., van Kranenburg, J., Nilwik, R. and van Loon, L.J.C. (2012) Elderly Men and Women Benefit Equally from Prolonged Resistance-Type Exercise Training. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 769-779. https://doi.org/10.1093/gerona/gls241
|
[19]
|
Shah, S.J., Lam, C.S.P., Svedlund, S., Saraste, A., Hage, C., Tan, R., et al. (2018) Prevalence and Correlates of Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF. European Heart Journal, 39, 3439-3450. https://doi.org/10.1093/eurheartj/ehy531
|
[20]
|
Mohammed, S.F., Hussain, S., Mirzoyev, S.A., Edwards, W.D., Maleszewski, J.J. and Redfield, M.M. (2015) Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction. Circulation, 131, 550-559. https://doi.org/10.1161/circulationaha.114.009625
|
[21]
|
Borlaug, B.A., Olson, T.P., Lam, C.S.P., Flood, K.S., Lerman, A., Johnson, B.D., et al. (2010) Global Cardiovascular Reserve Dysfunction in Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 56, 845-854. https://doi.org/10.1016/j.jacc.2010.03.077
|
[22]
|
Reddy, Y.N.V., Andersen, M.J., Obokata, M., Koepp, K.E., Kane, G.C., Melenovsky, V., et al. (2017) Arterial Stiffening with Exercise in Patients with Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology, 70, 136-148. https://doi.org/10.1016/j.jacc.2017.05.029
|
[23]
|
Shah, S.J., Borlaug, B.A., Kitzman, D.W., McCulloch, A.D., Blaxall, B.C., Agarwal, R., et al. (2020) Research Priorities for Heart Failure with Preserved Ejection Fraction. Circulation, 141, 1001-1026. https://doi.org/10.1161/circulationaha.119.041886
|
[24]
|
Sessa, W.C., Pritchard, K., Seyedi, N., Wang, J. and Hintze, T.H. (1994) Chronic Exercise in Dogs Increases Coronary Vascular Nitric Oxide Production and Endothelial Cell Nitric Oxide Synthase Gene Expression. Circulation Research, 74, 349-353. https://doi.org/10.1161/01.res.74.2.349
|
[25]
|
Hambrecht, R., Fiehn, E., Weigl, C., Gielen, S., Hamann, C., Kaiser, R., et al. (1998) Regular Physical Exercise Corrects Endothelial Dysfunction and Improves Exercise Capacity in Patients with Chronic Heart Failure. Circulation, 98, 2709-2715. https://doi.org/10.1161/01.cir.98.24.2709
|
[26]
|
Linke, A., Schoene, N., Gielen, S., Hofer, J., Erbs, S., Schuler, G., et al. (2001) Endothelial Dysfunction in Patients with Chronic Heart Failure: Systemic Effects of Lower-Limb Exercise Training. Journal of the American College of Cardiology, 37, 392-397. https://doi.org/10.1016/s0735-1097(00)01108-6
|
[27]
|
Kitzman, D.W. (2002) Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. JAMA, 288, 2144-2150. https://doi.org/10.1001/jama.288.17.2144
|
[28]
|
Bhella, P.S., Prasad, A., Heinicke, K., Hastings, J.L., Arbab-Zadeh, A., Adams-Huet, B., et al. (2011) Abnormal Haemodynamic Response to Exercise in Heart Failure with Preserved Ejection Fraction. European Journal of Heart Failure, 13, 1296-1304. https://doi.org/10.1093/eurjhf/hfr133
|
[29]
|
Fukuta, H., Goto, T., Wakami, K., Kamiya, T. and Ohte, N. (2019) Effects of Exercise Training on Cardiac Function, Exercise Capacity, and Quality of Life in Heart Failure with Preserved Ejection Fraction: A Meta-Analysis of Randomized Controlled Trials. Heart Failure Reviews, 24, 535-547. https://doi.org/10.1007/s10741-019-09774-5
|
[30]
|
Hobbs, F. (2002) Impact of Heart Failure and Left Ventricular Systolic Dysfunction on Quality of Life. a Cross-Sectional Study Comparing Common Chronic Cardiac and Medical Disorders and a Representative Adult Population. European Heart Journal, 23, 1867-1876. https://doi.org/10.1053/euhj.2002.3255
|
[31]
|
Nolte, K., Herrmann-Lingen, C., Wachter, R., Gelbrich, G., Düngen, H., Duvinage, A., et al. (2014) Effects of Exercise Training on Different Quality of Life Dimensions in Heart Failure with Preserved Ejection Fraction: The Ex-Dhf-P Trial. European Journal of Preventive Cardiology, 22, 582-593. https://doi.org/10.1177/2047487314526071
|
[32]
|
Rutledge, T., Reis, V.A., Linke, S.E., Greenberg, B.H. and Mills, P.J. (2006) Depression in Heart Failure. Journal of the American College of Cardiology, 48, 1527-1537. https://doi.org/10.1016/j.jacc.2006.06.055
|
[33]
|
Moser, D.K., Arslanian-Engoren, C., Biddle, M.J., Chung, M.L., Dekker, R.L., Hammash, M.H., et al. (2016) Psychological Aspects of Heart Failure. Current Cardiology Reports, 18, Article No. 119. https://doi.org/10.1007/s11886-016-0799-5
|
[34]
|
Harvey, S.B., Øverland, S., Hatch, S.L., Wessely, S., Mykletun, A. and Hotopf, M. (2018) Exercise and the Prevention of Depression: Results of the HUNT Cohort Study. American Journal of Psychiatry, 175, 28-36. https://doi.org/10.1176/appi.ajp.2017.16111223
|
[35]
|
Balady, G.J., Williams, M.A., Ades, P.A., Bittner, V., Comoss, P., Foody, J.M., et al. (2007) Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update. Circulation, 115, 2675-2682. https://doi.org/10.1161/circulationaha.106.180945
|
[36]
|
Haykowsky, M.J., Liang, Y., Pechter, D., Jones, L.W., McAlister, F.A. and Clark, A.M. (2007) A Meta-Analysis of the Effect of Exercise Training on Left Ventricular Remodeling in Heart Failure Patients. Journal of the American College of Cardiology, 49, 2329-2336. https://doi.org/10.1016/j.jacc.2007.02.055
|
[37]
|
O’Connor, C.M., Whellan, D.J., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2009) Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure. JAMA, 301, 1439-1450. https://doi.org/10.1001/jama.2009.454
|
[38]
|
Whellan, D.J., O’Connor, C.M., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2007) Heart Failure and a Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION): Design and Rationale. American Heart Journal, 153, 201-211. https://doi.org/10.1016/j.ahj.2006.11.007
|
[39]
|
Bozkurt, B., Fonarow, G.C., Goldberg, L.R., Guglin, M., Josephson, R.A., Forman, D.E., et al. (2021) Cardiac Rehabilitation for Patients with Heart Failure. Journal of the American College of Cardiology, 77, 1454-1469. https://doi.org/10.1016/j.jacc.2021.01.030
|
[40]
|
Singh, R., Pattisapu, A. and Emery, M.S. (2020) US Physical Activity Guidelines: Current State, Impact and Future Directions. Trends in Cardiovascular Medicine, 30, 407-412. https://doi.org/10.1016/j.tcm.2019.10.002
|