心脏康复运动对老年HFpEF患者生活质量影响的研究进展
Research Progress on the Impact of Cardiac Rehabilitation Exercise on the Quality of Life of Elderly Patients with HFpEF
DOI: 10.12677/acm.2025.1572118, PDF, HTML, XML,    科研立项经费支持
作者: 吕佳琪:延安大学医学院,陕西 延安;延安大学咸阳医院心血管内科,陕西 咸阳;王显利*:延安大学咸阳医院心血管内科,陕西 咸阳
关键词: 心脏康复运动训练射血分数保留型心衰生活质量Cardiac Rehabilitation Exercise Training Heart Failure with Preserved Ejection Fraction Quality of Life
摘要: 射血分数保留型心衰(Heart failure with preserved ejection fraction, HFpEF)是一种多器官的系统性疾病,具有死亡率高,生活质量差等特点,并且此病以老年患者居多。目前对老年HFpEF患者的相关研究越来越多,其治疗方式主要是以药物治疗为主,但目前心脏康复运动训练对老年HFpEF患者的影响也越来越受到临床研究的重视。该文主要对心脏康复运动训练对HFpEF可能的作用机制以及对老年HFpEF患者生活质量影响的研究进展作一综述。
Abstract: Heart failure with preserved ejection fraction (HFpEF) is a multi-organ systemic disease characterized by high mortality and poor quality of life, and it is more common in elderly patients. Currently, there are increasing studies on elderly HFpEF patients, and the main treatment approach is drug therapy. However, the impact of cardiac rehabilitation exercise training on elderly HFpEF patients is also receiving more attention in clinical research. This article mainly reviews the possible mechanisms of cardiac rehabilitation exercise training on HFpEF and the research progress on the quality of life of elderly HFpEF patients.
文章引用:吕佳琪, 王显利. 心脏康复运动对老年HFpEF患者生活质量影响的研究进展[J]. 临床医学进展, 2025, 15(7): 1234-1240. https://doi.org/10.12677/acm.2025.1572118

1. 引言

射血分数保留的心力衰竭(HFpEF)是一种具有多种不同风险因素和表型的临床综合征[1]。研究显示,有大约50%甚至更多的心力衰竭患者为射血分数保留型心衰[2] [3],它是65岁及65岁以上人群中最常见的心力衰竭形式[4]。由于人口老龄化等因素的影响,HFpEF是HF中增速最快的一种类型[5],这些患者承受着巨大的负担,包括运动不耐受、生活质量差、死亡率高、住院次数增加以及更高的医疗保健成本[6]。心脏康复(CR)可以降低心血管疾病(CVD)患者的死亡率,并且能够提高患者的生活质量,目前心脏康复训练已经得到了美国心脏病学会以及众多临床实践指南的支持[7]

2. 心脏康复运动训练改善老年HFpEF患者生活质量的可能机制

HFpEF患者通常存在有心脏结构的变化、血管功能障碍,同时也有心脏以外如骨骼肌、肺、肾脏和大脑等多个器官系统的受累,这些器官受损可能是由于HFpEF患者体内存在炎症、一氧化氮信号受损、肌节功能障碍以及线粒体和代谢缺陷引起,从而严重影响HFpEF患者的生活质量。以下主要阐述心脏康复运动训练改善HFpEF患者生活质量的可能机制。

2.1. 减轻机体炎症

有证据显示,HFpEF患者体内可溶性白细胞介素-1 (IL-1)受体样1、C反应蛋白和GDF 15等炎症介质的血浆水平较高[8]-[11],并且HFpEF患者的左心室肌内膜活检样本显示炎性内皮粘附分子(如VCAM 1)表达增加以及心肌中有大量的CD 3、CD 11和CD 45阳性的白细胞,并且炎性细胞TGF-β表达也有增加,这些证据表明HFpEF患者体内存在有炎症反应[12]。而炎症也与老年人的肌肉减少、肌肉萎缩以及伴随的功能缺陷有关。然而Kaleen M Lavin,Ryan K Perkins等人通过研究证实运动训练可以促进骨骼肌的抗炎效应,并且阻止血液和肌肉中的促炎反应,使患者体内的炎症介质以及炎性细胞下降,从而减轻患者的机体炎症[13]。因此,心脏康复运动训练可以通过加强机体的抗炎效应,抑制其促炎反应,减轻机体炎症。

2.2. 改善机体能量代谢异常

Anthony J A Molina,Manish S Bharadwaj等人研究发现老年HFpEF患者的线粒体含量和线粒体融合存在问题,与年龄匹配的健康对照组相比,他们的机体线粒体含量、氧化能力和融合均异常,这些机体的代谢异常会对老年HFpEF患者的运动耐量产生影响[14]。有动物研究显示,通过运动训练可以显著上调小鼠心肌线粒体氧化磷酸化复合物I、II、IV和V的基因表达,以及增加小鼠心肌PGC-1α、NRF1和TFAM蛋白的表达,这些蛋白与线粒体的生物发生过程相关,这几种蛋白表达增加可以增强线粒体的生物发生过程从而促进心肌线粒体数量的增加,有助于心肌线粒体ATP的产生[15]。因此运动训练可以增加线粒体蛋白质合成能力和改善线粒体质量控制,从而有助于改善患者的能量代谢异常。

2.3. 改善骨骼肌功能障碍

Mark J. Haykowsky等人研究显示老年HFpEF患者存在骨骼肌灌注和代谢受损[3],同时,在Dalane W. Kitzman,Barbara Nicklas等人进行的多变量分析中显示老年HFPEF患者的骨骼肌纤维类型分布发生改变,即I型纤维的百分比出现降低,以及毛细血管与肌纤维的比率出现降低,也能观察到存在骨骼肌肌肉减少症、毛细血管密度降低和肌间脂肪增加[16],这些研究都可以说明HFpEF患者的骨骼肌存在异常,而有研究显示通过心脏康复运动训练可以维持老年人骨骼肌中脂肪酸氧化酶活性,促进氧化磷酸化和三磷酸腺苷(ATP)的产生[17],并且维持老年人的骨骼肌再生能力,改善肌肉的质量、力量和运动功能[18]。在肌纤维水平上,运动训练可以逆转I型纤维的减少,增加骨骼肌线粒体体积密度,并且可以增加毛细血管密度[3],因此心脏康复运动训练通过影响骨骼肌的能量代谢、毛细血管密度以及肌纤维的数量来改善患者骨骼肌功能障碍,从而有助于提高患者的运动能力,改善HFpEF患者运动不耐受的症状。

2.4. 改善血管内皮功能障碍

大多数HFpEF患者都有冠状动脉微血管功能的受损[19],并且在HFpEF尸检标本中证实了存在冠状动脉微血管稀疏[20],冠状动脉微血管功能障碍可能导致静息时心肌损伤和运动时缺血,同时,HFpEF患者小血管内皮依赖性血管舒张受到抑制[21],连同心输出量的降低,进一步影响氧向组织的输送[22] [23]。在动物研究中,定期的运动锻炼可以增强冠状动脉内皮依赖性血管舒张[24],同时R Hambrecht,E Fiehn等人研究表明运动训练可以促进心力衰竭患者骨骼肌血管基础内皮一氧化氮(NO)的形成以及内皮依赖性血管舒张[25]。所以,通过规律的心脏康复运动训练可以使患者的血管内皮功能障碍得到纠正,从而改善患者的症状[26]

3. 心脏康复训练提高生活质量的两个主要方面

大多数老年HFpEF患者的生活质量较差,而生活质量的提高不仅仅只是身体症状的改善,同时还要关注患者的心理健康。因此以下主要阐述心脏康复运动训练改善HFpEF患者生活质量的两个主要方面。

3.1. 心脏康复运动训练可以改善HFpEF患者的身体症状

HFpEF的患者通常是老年人,他们的主要慢性症状是严重的运动不耐受,导致生活质量(QOL)降低[27] [28]。因此,提高运动能力是HFpEF患者的一个重要临床结果[29]。运动能力主要是通过患者的运动峰值摄氧量和6分钟步行试验来衡量。Shuhei Yamamoto等人研究显示尽管心脏康复运动训练并不能显著降低死亡率,但是如果坚持心脏康复训练,它可以提高HFpEF患者的运动峰值摄氧量和6分钟步行试验,并且可以有效降低患者的再住院率[6]。Hidekatsu Fukuta等人同样研究表示与对照组相比,运动训练组在峰值VO2和6MWD方面有明显的改善和提高[29]。这些研究结果说明通过心脏康复运动训练可以使HFpEF患者的运动能力得到显著提高,大大改善了这类患者的生活质量。

3.2. 心脏康复运动训练可以提高HFpEF患者的心理健康

生活质量不仅仅是看身体是否存在疾病或症状,患者的心理健康或者对疾病的感知也是其重要组成部分[30]。有研究显示,HFpEF患者同样存在精神方面的受损以及抑郁症状增加[30] [31],这些症状有很大的不良影响。例如,患有心力衰竭和抑郁症状的患者死亡和再次住院的风险是没有抑郁症状的患者的两倍[32]。此外,患有抑郁症的心衰患者比没有抑郁症的患者有更大的风险进行多次全因入院再住院。[33],因此HFpEF患者的心理健康也应该得到重视。而有研究表明运动训练可以提高HFpEF患者的心理健康,Samuel B. Harvey等人研究表示如果所有参与者每周至少锻炼1小时,随访时发现12%的抑郁症病例可以被预防[34]。同时Kathleen Nolte等人研究发现运动训练后生活质量的心理维度和社会维度得到显著改善。因此,通过心脏康复运动训练可以提高患者的身体功能和运动耐量,可使患者感受到机体功能有了很大的提高,从而对疾病有了控制感,减轻了患者对于疾病的恐惧,可以转化为更好的总体健康[31]。此外,定期的心脏康复运动训练可以促使患者产生更加积极的情感和信心,并且有助于减少疲劳和增强活力,促进患者的心理健康。

4. 心脏康复运动训练的制定

有氧运动或耐力训练是运动训练(ET)的主要内容[35],有氧训练已被证明可以逆转临床稳定的心衰(HF)患者的左心室重塑,提高其有氧能力和峰值摄氧量,并改善其心血管疾病危险因素[36]。中度持续训练(MCT)是评价最高的运动训练方式,因为它具有高效、安全且心衰患者耐受性良好等优点[37]。但是制定运动处方之前首先要评估患者的运动能力,从而个体化的制定出适合患者的运动处方,运动能力的评估可以通过心肺运动试验来实现,它可用于确定患者是否可以安全运动,检查出患者是否存在异常血压反应、心血管缺血变化和严重心律失常[38]。无法进行心肺运动试验的机构可以使用分级运动试验或其他方式,如6分钟步行试验,来评估运动能力[39]。因为老年HFpEF患者大多都存在运动不耐受,因此“生活方式锻炼”,如步行、在可行的情况下走楼梯、跳舞,再结合结构化的活动和锻炼可能会更加有所帮助[40]。首次制定运动处方时:运动强度可以由Borg量表或心率储备法来进行评估,活动可以从低到中等强度开始,运动频率为每周3次,每隔天一次,运动持续时间可以每2至4周增加一次,直到每周总持续时间为45分钟。当患者耐受这种运动形式后,然后根据Borg量表、心率储备法或达到年龄预测最大心率的85%的目标时,逐渐增加强度、速度和坡度[39]。有研究显示,高强度间歇训练(HIIT)某些指标上明显优于中等强度持续训练(MCT),两种训练方式在提高通气效率、改善舒张功能及生活质量(QoL)方面效果相当。然而目前关于HFpEF运动训练获益的随机对照试验(RCT)数据仍有限,现有证据表明HIIT模式不仅安全有效,且即使在高血压或2型糖尿病患者中损伤风险也较低。

综上所述,尽管目前HFpEF的药物治疗已经取得显著进展,但是该类患者的生活质量仍然需要进一步得到改善。各项研究表明,心脏康复运动训练可以通过减轻HFpEF患者的机体炎症,改善其能量代谢障碍、骨骼肌功能障碍以及血管内皮障碍,从而改善HFpEF患者的运动能力,并且可以促进患者产生更加积极的情绪和信心从而改善患者的心理健康,最终提升患者总体的生活质量。

但是目前关于心脏康复训练的研究干预时间都较短,研究时间大多都不超过6个月,且关于最佳的训练模式(间歇式或持续式)以及强度(中等或高强度)仍存在分歧,不同训练策略间的直接比较开展不多,并且对于HFpEF患者症状发生早期就进行心脏康复运动训练也缺乏相应的研究,因此早期就进行心脏康复运动训练的干预并且延长干预时间是我们目前需要进一步研究的方向,同时也需对多种不同方式以及不同强度的运动方式进行对比研究。

基金项目

延安大学咸阳医院科学研究基金项目(课题号:2024YK009)。

NOTES

*通讯作者。

参考文献

[1] La Gerche, A., Howden, E.J., Haykowsky, M.J., et al. (2022) Heart Failure with Preserved Ejection Fraction as an Exercise Deficiency Syndrome. Journal of the American College of Cardiology, 80, 1177-1191.
[2] Paulus, W.J. (2010) Culprit Mechanism(s) for Exercise Intolerance in Heart Failure with Normal Ejection Fraction. Journal of the American College of Cardiology, 56, 864-866.
https://doi.org/10.1016/j.jacc.2010.04.041
[3] Haykowsky, M.J., Brubaker, P.H., Morgan, T.M., Kritchevsky, S., Eggebeen, J. and Kitzman, D.W. (2013) Impaired Aerobic Capacity and Physical Functional Performance in Older Heart Failure Patients with Preserved Ejection Fraction: Role of Lean Body Mass. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 968-975.
https://doi.org/10.1093/gerona/glt011
[4] Upadhya, B., Pisani, B. and Kitzman, D.W. (2017) Evolution of a Geriatric Syndrome: Pathophysiology and Treatment of Heart Failure with Preserved Ejection Fraction. Journal of the American Geriatrics Society, 65, 2431-2440.
https://doi.org/10.1111/jgs.15141
[5] Kitzman, D.W., Brubaker, P., Morgan, T., Haykowsky, M., Hundley, G., Kraus, W.E., et al. (2016) Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure with Preserved Ejection Fraction. JAMA, 315, 36-46.
https://doi.org/10.1001/jama.2015.17346
[6] Yamamoto, S., Okamura, M., Akashi, Y.J., Tanaka, S., Shimizu, M., Tsuchikawa, Y., et al. (2024) Impact of Long-Term Exercise-Based Cardiac Rehabilitation in Patients with Chronic Heart Failure—A Systematic Review and Meta-Analysis. Circulation Journal, 88, 1360-1371.
https://doi.org/10.1253/circj.cj-23-0820
[7] Brown, T.M., Pack, Q.R., Aberegg, E., Brewer, L.C., Ford, Y.R., Forman, D.E., et al. (2024) Core Components of Cardiac Rehabilitation Programs: 2024 Update: A Scientific Statement from the American Heart Association and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation, 150, e328-e347.
https://doi.org/10.1161/cir.0000000000001289
[8] Cheng, J.M., Akkerhuis, K.M., Battes, L.C., van Vark, L.C., Hillege, H.L., Paulus, W.J., et al. (2013) Biomarkers of Heart Failure with Normal Ejection Fraction: A Systematic Review. European Journal of Heart Failure, 15, 1350-1362.
https://doi.org/10.1093/eurjhf/hft106
[9] D’Elia, E., Vaduganathan, M., Gori, M., Gavazzi, A., Butler, J. and Senni, M. (2015) Role of Biomarkers in Cardiac Structure Phenotyping in Heart Failure with Preserved Ejection Fraction: Critical Appraisal and Practical Use. European Journal of Heart Failure, 17, 1231-1239.
https://doi.org/10.1002/ejhf.430
[10] Sanders‐van Wijk, S., van Empel, V., Davarzani, N., Maeder, M.T., Handschin, R., Pfisterer, M.E., et al. (2015) Circulating Biomarkers of Distinct Pathophysiological Pathways in Heart Failure with Preserved vs. Reduced Left Ventricular Ejection Fraction. European Journal of Heart Failure, 17, 1006-1014.
https://doi.org/10.1002/ejhf.414
[11] Santhanakrishnan, R., Chong, J.P.C., Ng, T.P., Ling, L.H., Sim, D., Toh G. Leong, K., et al. (2012) Growth Differentiation Factor 15, ST2, High‐Sensitivity Troponin T, and N‐Terminal Pro Brain Natriuretic Peptide in Heart Failure with Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 14, 1338-1347.
https://doi.org/10.1093/eurjhf/hfs130
[12] Westermann, D., Lindner, D., Kasner, M., Zietsch, C., Savvatis, K., Escher, F., et al. (2011) Cardiac Inflammation Contributes to Changes in the Extracellular Matrix in Patients with Heart Failure and Normal Ejection Fraction. Circulation: Heart Failure, 4, 44-52.
https://doi.org/10.1161/circheartfailure.109.931451
[13] Lavin, K.M., Perkins, R.K., Jemiolo, B., Raue, U., Trappe, S.W. and Trappe, T.A. (2020) Effects of Aging and Lifelong Aerobic Exercise on Basal and Exercise-Induced Inflammation. Journal of Applied Physiology, 128, 87-99.
https://doi.org/10.1152/japplphysiol.00495.2019
[14] Molina, A.J.A., Bharadwaj, M.S., Van Horn, C., Nicklas, B.J., Lyles, M.F., Eggebeen, J., et al. (2016) Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients with Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC: Heart Failure, 4, 636-645.
https://doi.org/10.1016/j.jchf.2016.03.011
[15] 沈晨菲, 胡静芸, 冯钰, 等. 高强度间歇训练对小鼠心肌线粒体质量控制系统相关蛋白和糖代谢限速酶的影响[J]. 中国运动医学杂志, 2023, 42(3): 210-219.
[16] Kitzman, D.W., Nicklas, B., Kraus, W.E., Lyles, M.F., Eggebeen, J., Morgan, T.M., et al. (2014) Skeletal Muscle Abnormalities and Exercise Intolerance in Older Patients with Heart Failure and Preserved Ejection Fraction. American Journal of Physiology-Heart and Circulatory Physiology, 306, H1364-H1370.
https://doi.org/10.1152/ajpheart.00004.2014
[17] Thonusin, C., Pantiya, P., Kongkaew, A., Nawara, W., Arunsak, B., Sriwichaiin, S., et al. (2023) Exercise and Caloric Restriction Exert Different Benefits on Skeletal Muscle Metabolism in Aging Condition. Nutrients, 15, Article No. 5004.
https://doi.org/10.3390/nu15235004
[18] Leenders, M., Verdijk, L.B., van der Hoeven, L., van Kranenburg, J., Nilwik, R. and van Loon, L.J.C. (2012) Elderly Men and Women Benefit Equally from Prolonged Resistance-Type Exercise Training. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 68, 769-779.
https://doi.org/10.1093/gerona/gls241
[19] Shah, S.J., Lam, C.S.P., Svedlund, S., Saraste, A., Hage, C., Tan, R., et al. (2018) Prevalence and Correlates of Coronary Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction: PROMIS-HFpEF. European Heart Journal, 39, 3439-3450.
https://doi.org/10.1093/eurheartj/ehy531
[20] Mohammed, S.F., Hussain, S., Mirzoyev, S.A., Edwards, W.D., Maleszewski, J.J. and Redfield, M.M. (2015) Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction. Circulation, 131, 550-559.
https://doi.org/10.1161/circulationaha.114.009625
[21] Borlaug, B.A., Olson, T.P., Lam, C.S.P., Flood, K.S., Lerman, A., Johnson, B.D., et al. (2010) Global Cardiovascular Reserve Dysfunction in Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 56, 845-854.
https://doi.org/10.1016/j.jacc.2010.03.077
[22] Reddy, Y.N.V., Andersen, M.J., Obokata, M., Koepp, K.E., Kane, G.C., Melenovsky, V., et al. (2017) Arterial Stiffening with Exercise in Patients with Heart Failure and Preserved Ejection Fraction. Journal of the American College of Cardiology, 70, 136-148.
https://doi.org/10.1016/j.jacc.2017.05.029
[23] Shah, S.J., Borlaug, B.A., Kitzman, D.W., McCulloch, A.D., Blaxall, B.C., Agarwal, R., et al. (2020) Research Priorities for Heart Failure with Preserved Ejection Fraction. Circulation, 141, 1001-1026.
https://doi.org/10.1161/circulationaha.119.041886
[24] Sessa, W.C., Pritchard, K., Seyedi, N., Wang, J. and Hintze, T.H. (1994) Chronic Exercise in Dogs Increases Coronary Vascular Nitric Oxide Production and Endothelial Cell Nitric Oxide Synthase Gene Expression. Circulation Research, 74, 349-353.
https://doi.org/10.1161/01.res.74.2.349
[25] Hambrecht, R., Fiehn, E., Weigl, C., Gielen, S., Hamann, C., Kaiser, R., et al. (1998) Regular Physical Exercise Corrects Endothelial Dysfunction and Improves Exercise Capacity in Patients with Chronic Heart Failure. Circulation, 98, 2709-2715.
https://doi.org/10.1161/01.cir.98.24.2709
[26] Linke, A., Schoene, N., Gielen, S., Hofer, J., Erbs, S., Schuler, G., et al. (2001) Endothelial Dysfunction in Patients with Chronic Heart Failure: Systemic Effects of Lower-Limb Exercise Training. Journal of the American College of Cardiology, 37, 392-397.
https://doi.org/10.1016/s0735-1097(00)01108-6
[27] Kitzman, D.W. (2002) Pathophysiological Characterization of Isolated Diastolic Heart Failure in Comparison to Systolic Heart Failure. JAMA, 288, 2144-2150.
https://doi.org/10.1001/jama.288.17.2144
[28] Bhella, P.S., Prasad, A., Heinicke, K., Hastings, J.L., Arbab-Zadeh, A., Adams-Huet, B., et al. (2011) Abnormal Haemodynamic Response to Exercise in Heart Failure with Preserved Ejection Fraction. European Journal of Heart Failure, 13, 1296-1304.
https://doi.org/10.1093/eurjhf/hfr133
[29] Fukuta, H., Goto, T., Wakami, K., Kamiya, T. and Ohte, N. (2019) Effects of Exercise Training on Cardiac Function, Exercise Capacity, and Quality of Life in Heart Failure with Preserved Ejection Fraction: A Meta-Analysis of Randomized Controlled Trials. Heart Failure Reviews, 24, 535-547.
https://doi.org/10.1007/s10741-019-09774-5
[30] Hobbs, F. (2002) Impact of Heart Failure and Left Ventricular Systolic Dysfunction on Quality of Life. a Cross-Sectional Study Comparing Common Chronic Cardiac and Medical Disorders and a Representative Adult Population. European Heart Journal, 23, 1867-1876.
https://doi.org/10.1053/euhj.2002.3255
[31] Nolte, K., Herrmann-Lingen, C., Wachter, R., Gelbrich, G., Düngen, H., Duvinage, A., et al. (2014) Effects of Exercise Training on Different Quality of Life Dimensions in Heart Failure with Preserved Ejection Fraction: The Ex-Dhf-P Trial. European Journal of Preventive Cardiology, 22, 582-593.
https://doi.org/10.1177/2047487314526071
[32] Rutledge, T., Reis, V.A., Linke, S.E., Greenberg, B.H. and Mills, P.J. (2006) Depression in Heart Failure. Journal of the American College of Cardiology, 48, 1527-1537.
https://doi.org/10.1016/j.jacc.2006.06.055
[33] Moser, D.K., Arslanian-Engoren, C., Biddle, M.J., Chung, M.L., Dekker, R.L., Hammash, M.H., et al. (2016) Psychological Aspects of Heart Failure. Current Cardiology Reports, 18, Article No. 119.
https://doi.org/10.1007/s11886-016-0799-5
[34] Harvey, S.B., Øverland, S., Hatch, S.L., Wessely, S., Mykletun, A. and Hotopf, M. (2018) Exercise and the Prevention of Depression: Results of the HUNT Cohort Study. American Journal of Psychiatry, 175, 28-36.
https://doi.org/10.1176/appi.ajp.2017.16111223
[35] Balady, G.J., Williams, M.A., Ades, P.A., Bittner, V., Comoss, P., Foody, J.M., et al. (2007) Core Components of Cardiac Rehabilitation/Secondary Prevention Programs: 2007 Update. Circulation, 115, 2675-2682.
https://doi.org/10.1161/circulationaha.106.180945
[36] Haykowsky, M.J., Liang, Y., Pechter, D., Jones, L.W., McAlister, F.A. and Clark, A.M. (2007) A Meta-Analysis of the Effect of Exercise Training on Left Ventricular Remodeling in Heart Failure Patients. Journal of the American College of Cardiology, 49, 2329-2336.
https://doi.org/10.1016/j.jacc.2007.02.055
[37] O’Connor, C.M., Whellan, D.J., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2009) Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure. JAMA, 301, 1439-1450.
https://doi.org/10.1001/jama.2009.454
[38] Whellan, D.J., O’Connor, C.M., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2007) Heart Failure and a Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION): Design and Rationale. American Heart Journal, 153, 201-211.
https://doi.org/10.1016/j.ahj.2006.11.007
[39] Bozkurt, B., Fonarow, G.C., Goldberg, L.R., Guglin, M., Josephson, R.A., Forman, D.E., et al. (2021) Cardiac Rehabilitation for Patients with Heart Failure. Journal of the American College of Cardiology, 77, 1454-1469.
https://doi.org/10.1016/j.jacc.2021.01.030
[40] Singh, R., Pattisapu, A. and Emery, M.S. (2020) US Physical Activity Guidelines: Current State, Impact and Future Directions. Trends in Cardiovascular Medicine, 30, 407-412.
https://doi.org/10.1016/j.tcm.2019.10.002