|
[1]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析门[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
|
|
[3]
|
罗庆, 罗银波, 龚言红, 等. 海南省农村妇女宫颈癌认知和筛查行为及影响因素分析[J]. 中国社会医学杂志, 2020, 37(1): 74-78.
|
|
[4]
|
van der Waal, D., Bekkers, R.L.M., Dick, S., Lenselink, C.H., Massuger, L.F.A.G., Melchers, W.J.G., et al. (2020) Risk Prediction of Cervical Abnormalities: The Value of Sociodemographic and Lifestyle Factors in Addition to HPV Status. Preventive Medicine, 130, Article ID: 105927. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ali, M.M., Ahmed, K., Bui, F.M., Paul, B.K., Ibrahim, S.M., Quinn, J.M.W., et al. (2021) Machine Learning-Based Statistical Analysis for Early Stage Detection of Cervical Cancer. Computers in Biology and Medicine, 139, Article ID: 104985. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ijaz, M.F., Attique, M. and Son, Y. (2020) Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods. Sensors, 20, Article 2809. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Suman, S.K. and Hooda, N. (2019) Predicting Risk of Cervical Cancer: A Case Study of Machine Learning. Journal of Statistics and Management Systems, 22, 689-696. [Google Scholar] [CrossRef]
|
|
[8]
|
Akazawa, M. and Hashimoto, K. (2021) Artificial Intelligence in Gynecologic Cancers: Current Status and Future Challenges—A Systematic Review. Artificial Intelligence in Medicine, 120, Article ID: 102164. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Riley, R.D., Ensor, J., Snell, K.I.E., Harrell, F.E., Martin, G.P., Reitsma, J.B., et al. (2020) Calculating the Sample Size Required for Developing a Clinical Prediction Model. BMJ, 368, m441. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
William, W., Ware, A., Basaza-Ejiri, A.H. and Obungoloch, J. (2018) A Review of Image Analysis and Machine Learning Techniques for Automated Cervical Cancer Screening from Pap-Smear Images. Computer Methods and Programs in Biomedicine, 164, 15-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bao, H., Sun, X., Zhang, Y., Pang, B., Li, H., Zhou, L., et al. (2020) The Artificial Intelligence‐Assisted Cytology Diagnostic System in Large‐Scale Cervical Cancer Screening: A Population‐based Cohort Study of 0.7 Million Women. Cancer Medicine, 9, 6896-6906. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bao, H., Bi, H., Zhang, X., Zhao, Y., Dong, Y., Luo, X., et al. (2020) Artificial Intelligence-Assisted Cytology for Detection of Cervical Intraepithelial Neoplasia or Invasive Cancer: A Multicenter, Clinical-Based, Observational Study. Gynecologic Oncology, 159, 171-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
朱孝辉, 李晓鸣, 张文丽, 等. 人工智能辅助诊断在宫颈液基薄层细胞学中的应用[J]. 中华病理学杂志, 2021, 50(4): 333-338.
|
|
[14]
|
吕京澴, 樊祥山, 沈勤, 等. 人工智能辅助宫颈液基细胞学诊断可行性的多中心研究[J]. 中华病理学杂志, 2021, 50(4): 353-357.
|
|
[15]
|
张小松, 杜芸, 董燕, 等. 《人工智能辅助宫颈细胞学诊断技术的应用及质量控制专家共识》解读[J]. 中国妇幼健康研究, 2024, 35(3): 1-4.
|
|
[16]
|
Sato, M., Horie, K., Hara, A., Miyamoto, Y., Kurihara, K., Tomio, K., et al. (2018) Application of Deep Learning to the Classification of Images from Colposcopy. Oncology Letters, 15, 3518-3523. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
王梦家. 肾透明细胞癌WHO/ISUP分级能谱CT影像组学与Ki-67相关性[D]: [硕士学位论文]. 唐山: 华北理工大学, 2024.
|
|
[18]
|
Xue, P., Tang, C., Li, Q., Li, Y., Shen, Y., Zhao, Y., et al. (2020) Development and Validation of an Artificial Intelligence System for Grading Colposcopic Impressions and Guiding Biopsies. BMC Medicine, 18, Article No. 406. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
潘育, 周东华, 范菊花, 等. 人工智能辅助诊断系统与计算机辅助阅片系统在子宫颈癌筛查中应用的对比观察[J]. 山东医药, 2024, 64(4): 55-57.
|
|
[20]
|
Urushibara, A., Saida, T., Mori, K., Ishiguro, T., Sakai, M., Masuoka, S., et al. (2021) Diagnosing Uterine Cervical Cancer on a Single T2-Weighted Image: Comparison between Deep Learning versus Radiologists. European Journal of Radiology, 135, Article ID: 109471. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tian, X., Sun, C., Liu, Z., Li, W., Duan, H., Wang, L., et al. (2020) Prediction of Response to Preoperative Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer Using Multicenter CT-Based Radiomic Analysis. Frontiers in Oncology, 10, Article 77. [Google Scholar] [CrossRef] [PubMed]
|