[1]
|
Gilliland, A., Chan, J., De Wolfe, T., et al. (2024) Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology, 166, 44-58. Https://Doi.Org/10.1053/J.Gastro.2023.09.019
|
[2]
|
Kaplan, G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. Https://Doi.Org/10.1038/Nrgastro.2015.150
|
[3]
|
Chen, K., Shang, S., Yu, S., et al. (2022) Identification and Exploration of Pharmacological Pyroptosis-Related Biomarkers of Ulcerative Colitis. Frontiers in Immunology, 13, Article 998470. Https://Doi.Org/10.3389/Fimmu.2022.998470
|
[4]
|
Friedlander, A. (1986) Macrophages Are Sensitive to Anthrax Lethal toxin Through an Acid-Dependent Process. Journal of Biological Chemistry, 261, 7123-7126. Https://Doi.Org/10.1016/S0021-9258(17)38364-3
|
[5]
|
Panganiban, R., Nadeau, K. and Lu, Q. (2024) Pyroptosis, Gasdermins and Allergic Diseases. Allergy, 79, 2380-2395. Https://Doi.Org/10.1111/All.16236
|
[6]
|
Broz, P., PelegrÍN, P. and Shao, F. (2020) The Gasdermins, a Protein Family Executing Cell Death and Inflammation. Nature Reviews Immunology, 20, 143-157. Https://Doi.Org/10.1038/S41577-019-0228-2
|
[7]
|
Aglietti, R., Estevez, A., Gupta, A., et al. (2016) GSDMD p30 Elicited by Caspase-11 During Pyroptosis Forms Pores in Membranes. Proceedings of the National Academy of Sciences of the United States of America, 113, 7858-7863. Https://Doi.Org/10.1073/Pnas.1607769113
|
[8]
|
Coll, R., Schroder, K. and Pelegrín, P. (2022) NLRP3 and Pyroptosis Blockers for Treating Inflammatory Diseases. Trends in Pharmacological Sciences, 43, 653-668. Https://Doi.Org/10.1016/J.Tips.2022.04.003
|
[9]
|
Jackson, D. and Theiss, A. (2020) Gut Bacteria Signaling to Mitochondria in Intestinal Inflammation and Cancer. Gut microbiota, 11, 285-304. Https://Doi.Org/10.1080/19490976.2019.1592421
|
[10]
|
Mariathasan, S., Weiss, D., Newton, K., et al. (2006) Cryopyrin Activates the Inflammasome in Response to Toxins and ATP. Nature, 440, 228-232. Https://Doi.Org/10.1038/Nature04515
|
[11]
|
Rao, Z., Zhu, Y., Yang, P., et al. (2022) Pyroptosis in Inflammatory Diseases and Cancer. Theranostics, 12, 4310-4329. Https://Doi.Org/10.7150/Thno.71086
|
[12]
|
Hagar, J., Powell, D., Aachoui, Y., et al. (2013) Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock. Science, 341, 1250-1253. Https://Doi.Org/10.1126/Science.1240988
|
[13]
|
Chen, Y., Luo, R., Li, J., et al. (2022) Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis. ACS Nano, 16, 2429-2441. Https://Doi.Org/10.1021/Acsnano.1c08913
|
[14]
|
Rühl, S. and Broz, P. (2015) Caspase-11 Activates A Canonical NLRP3 Inflammasome by Promoting K+ Efflux. European Journal of Immunology, 45, 2927-2936. Https://Doi.Org/10.1002/Eji.201545772
|
[15]
|
Rogers, C., Fernandes-Alnemri, T., Mayes, L., et al. (2017) Cleavage of DFNA5 by Caspase-3 During Apoptosis Mediates Progression to Secondary Necrotic/Pyroptotic Cell Death. Nature Communications, 8, Article 14128. Https://Doi.Org/10.1038/Ncomms14128
|
[16]
|
Wang, Y., Gao, W., Shi, X., et al. (2017) Chemotherapy Drugs Induce Pyroptosis Through Caspase-3 Cleavage of A Gasdermin. Nature, 547, 99-103. Https://Doi.Org/10.1038/Nature22393
|
[17]
|
Jiang, M., Qi, L., Li, L., et al. (2020) The Caspase-3/GSDME Signal Pathway as a Switch Between Apoptosis and Pyroptosis in Cancer. Cell Death Discovery, 6, Article No. 112. Https://Doi.Org/10.1038/S41420-020-00349-0
|
[18]
|
Hou, J., Zhao, R., Xia, W., et al. (2020) PD-L1-Mediated Gasdermin C Expression Switches Apoptosis to Pyroptosis in Cancer Cells and Facilitates Tumour Necrosis. Nature Cell Biology, 22, 1264-1275. Https://Doi.Org/10.1038/S41556-020-0575-Z
|
[19]
|
Anthony, D., andrews, D., Watt, S., et al. (2010) Functional Dissection of The Granzyme Family: Cell Death and Inflammation. Immunological Reviews, 235, 73-92. Https://Doi.Org/10.1111/J.0105-2896.2010.00907.X
|
[20]
|
Liu, Y., Fang, Y., Chen, X., et al. (2020) Gasdermin E-Mediated Target Cell Pyroptosis by CAR T Cells Triggers Cytokine Release Syndrome. Science Immunology, 5, Eaax7969. Https://Doi.Org/10.1126/Sciimmunol.Aax7969
|
[21]
|
Zhou, Z., He, H., Wang, K., et al. (2020) Granzyme A From Cytotoxic Lymphocytes Cleaves GSDMB to Trigger Pyroptosis in Target Cells. Science, 368, Eaaz7548. Https://Doi.Org/10.1126/Science.Aaz7548
|
[22]
|
Krugliak, N., torres, J. and Rubin, D. (2022) What Does Disease Progression Look Like in Ulcerative Colitis, and How Might It Be Prevented? Gastroenterology, 162, 1396-1408. Https://Doi.Org/10.1053/J.Gastro.2022.01.023
|
[23]
|
Le, C., Honap, S. and Peyrin-Biroulet, L. (2023) Ulcerative Colitis. The Lancet., 402, 571-584. Https://Doi.Org/10.1016/S0140-6736(23)00966-2
|
[24]
|
Kobayashi, T., Siegmund, B., Le, C., et al. (2020) Ulcerative Colitis. Nature Reviews Disease Primers, 6, Article No. 74. Https://Doi.Org/10.1038/S41572-020-0205-X
|
[25]
|
Gros, B. and Kaplan, G. (2023) Ulcerative Colitis in Adults: A Review. JAMA., 330, 951-965. Https://Doi.Org/10.1001/Jama.2023.15389
|
[26]
|
Xavier, R. and Podolsky, D. (2007) Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature, 448, 427-434. Https://Doi.Org/10.1038/Nature06005
|
[27]
|
Tan, G., Huang, C., Chen, J., et al. (2020) HMGB1 Released From GSDME-Mediated Pyroptotic Epithelial Cells Participates in the Tumorigenesis of Colitis-Associated Colorectal Cancer Through the ERK1/2 Pathway. Journal of Hematology & Oncology, 13, Article No. 149. Https://Doi.Org/10.1186/S13045-020-00985-0
|
[28]
|
Friedrich, M., Pohin, M., Jackson, M., et al. (2021) IL-1-Driven Stromal-Neutrophil Interactions Define a Subset of Patients with Inflammatory Bowel Disease That Does Not Respond to Therapies. Nature Medicine, 27, 1970-1981. Https://Doi.Org/10.1038/S41591-021-01520-5
|
[29]
|
Pizarro, T., Michie, M., Bentz, M., et al. (1999) IL-18, A Novel Immunoregulatory Cytokine, Is Up-Regulated in Crohn’s Disease: Expression and Localization in Intestinal Mucosal Cells. Journal of Immunology, 162, 6829-6835. Https://Doi.Org/10.4049/Jimmunol.162.11.6829
|
[30]
|
Yang, W., Wang, Y., Wang, T., et al. (2023) Protective Effects of IRG1/Itaconate on Acute Colitis Through the Inhibition of Gasdermins-Mediated Pyroptosis and Inflammation Response. Genes & Diseases, 10, 1552-1563. Https://Doi.Org/10.1016/J.Gendis.2022.05.039
|
[31]
|
Maeda, S., Hsu, L., Liu, H., et al. (2005) Nod2 Mutation in Crohn’s Disease Potentiates NF-kB Activity and IL-1β Processing. Science, 307, 734-738. Https://Doi.Org/10.1126/Science.1103685
|
[32]
|
Bulek, K., Zhao, J., Liao, Y., et al. (2020) Epithelial-Derived Gasdermin D Mediates Nonlytic IL-1β Release During Experimental Colitis. Journal of Clinical Investigation, 130, 4218-4234. Https://Doi.Org/10.1172/JCI138103
|
[33]
|
Xiao, J., Sun, K., Wang, C., et al. (2022) Compound Loss of GSDMD and GSDME Function Is Necessary to Achieve Maximal Therapeutic Effect in Colitis. Journal of Translational Autoimmunity, 5, Article 100162. Https://Doi.Org/10.1016/J.Jtauto.2022.100162
|
[34]
|
Wu, X., Pan, S., Luo, W., et al. (2020) Roseburia Intestinalis-Derived Flagellin Ameliorates Colitis by Targeting miR-223-3p-Mediated Activation of NLRP3 Inflammasome and Pyroptosis. Molecular Medicine Reports, 22, 2695-2704. Https://Doi.Org/10.3892/Mmr.2020.11351
|
[35]
|
Sun, S., Xu, X., Liang, L., et al. (2021) Lactic Acid-Producing Probiotic Saccharomyces Cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Frontiers in Immunology, 12, Article 777665. Https://Doi.Org/10.3389/Fimmu.2021.777665
|
[36]
|
Li, W., Chen, D., Zhu, Y., et al. (2024) Alleviating Pyroptosis of Intestinal Epithelial Cells to Restore Mucosal Integrity in Ulcerative Ccolitis by Targeting Delivery of 4-Octyl-Itaconate. ACS Nano, 18, 16658-16673. Https://Doi.Org/10.1021/Acsnano.4c01520
|
[37]
|
Gao, Y., Liu, K., Xiao, W., et al. (2024) Aryl Hydrocarbon Receptor Confers Protection Against Macrophage Pyroptosis and Intestinal Inflammation Through Regulating Polyamine Biosynthesis. Theranostics, 14, 4218-4239. Https://Doi.Org/10.7150/Thno.95749
|
[38]
|
Chi, F., Zhang, G., Ren, N., et al. (2022) The Anti-Alcoholism Drug Disulfiram Effectively Ameliorates Ulcerative Colitis Through Suppressing Oxidative Stresses-Associated Pyroptotic Cell Death and Cellular Inflammation in Colonic Cells. International Immunopharmacology, 111, Article 109117. Https://Doi.Org/10.1016/J.Intimp.2022.109117
|
[39]
|
Liu, X., Zhou, M., Dai, Z., et al. (2023) Salidroside Alleviates Ulcerative Colitis via Inhibiting Macrophage Pyroptosis and Repairing the Dysbacteriosis-Associated Th17/Treg Imbalance. Phytotherapy Research, 37, 367-382. Https://Doi.Org/10.1002/Ptr.7636
|
[40]
|
Wei, Y., Fan, Y., Ga, Y., et al. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation Through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article 153743. Https://Doi.Org/10.1016/J.Phymed.2021.153743
|
[41]
|
Sun, J., Wang, S., Zhao, Z., et al. (2024) Oxymatrine Attenuates Ulcerative Colitis Through Inhibiting Pyroptosis Mediated by The NLRP3 Inflammasome. Molecules, 29, Article 2897. Https://Doi.Org/10.3390/Molecules29122897
|
[42]
|
Zhao, P., Ning, J., Huang, J., et al. (2024) Mechanism of Resveratrol On LPS/ATP-Induced Pyroptosis and Inflammatory Response in HT29 Cells. Autoimmunity, 57, Article 2427094. Https://Doi.Org/10.1080/08916934.2024.2427094
|
[43]
|
Chao, L., Li, Z., Zhou, J., et al. (2020) Shen-Ling-Bai-Zhu-San Improves Dextran Sodium Sulfate-Induced Colitis by Inhibiting Caspase-1/Caspase-11-Mediated Pyroptosis. Frontiers in Pharmacology, 11, Article 814. Https://Doi.Org/10.3389/Fphar.2020.00814
|
[44]
|
Dolinger, M., Torres, J. and Vermeire, S. (2024) Crohn’s Disease. The Lancet, 403, 1177-1191. Https://Doi.Org/10.1016/S0140-6736(23)02586-2
|
[45]
|
Cockburn, E., Kamal, S., Chan, A., et al. (2023) Crohn’s Disease: An Update. Clinical Medicine, 23, 549-557. Https://Doi.Org/10.7861/Clinmed.2023-0493
|
[46]
|
Zhao, J., Zhao, Z., Ying, P., et al. (2023) METTL3-Mediated M6A Modification of circPRKAR1B Promotes Crohn’s Colitis by Inducing Pyroptosis via Autophagy Inhibition. Clinical and Translational Medicine, 13, E1405. Https://Doi.Org/10.1002/Ctm2.1405
|
[47]
|
Xu, X., Huang, Z., Huang, Z., et al. (2024) Butyrate Attenuates Intestinal Inflammation in Crohn’s Disease by Suppressing Pyroptosis of Intestinal Epithelial Cells via the cGSA-STING-NLRP3 Axis. International Immunopharmacology, 143, Article 113305. Https://Doi.Org/10.1016/J.Intimp.2024.113305
|
[48]
|
Tan, G., Huang, C., Chen, J., et al. (2021) Gasdermin-E-Mediated Pyroptosis Participates in the Pathogenesis of Crohn’s Disease by Promoting Intestinal Inflammation. Cell Reports, 35, Article 109265. Https://Doi.Org/10.1016/J.Celrep.2021.109265
|
[49]
|
Zhao, J., Sun, Y., Yang, H., et al. (2022) PLGA-Microspheres-Carried CircGMCL1 Protects Against Crohn’s Colitis Through Alleviating NLRP3 Inflammasome-Induced Pyroptosis by Promoting Autophagy. Cell Death & Disease, 13, Article No. 782. Https://Doi.Org/10.1038/S41419-022-05226-5
|
[50]
|
RodrÍGuez, C., Romero, E., Garrido-Sanchez, L., et al. (2020) Microbiota Insights in Clostridium Difficile Infection and Inflammatory Bowel Disease. Gut Microbes, 12, Article 1725220. Https://Doi.Org/10.1080/19490976.2020.1725220
|
[51]
|
Huang, C., Tan, H., Song, M., et al. (2023) Maternal Western Diet Mediates Susceptibility of Offspring to Crohn’s-Like Colitis by Deoxycholate Generation. Microbiome, 11, Article No. 96. Https://Doi.Org/10.1186/S40168-023-01546-6
|
[52]
|
Gong, W., Zheng, T., Guo, K., et al. (2020) Mincle/Syk Signalling Promotes Intestinal Mucosal Inflammation Through Induction of Macrophage Pyroptosis in Crohn’s Disease. Journal of Crohn’s and Colitis, 14, 1734-1747. Https://Doi.Org/10.1093/Ecco-Jcc/Jjaa088
|