细胞焦亡的发生机制及其在炎症性肠病中的作用
Mechanisms of Pyroptosis and Role in Inflammatory Bowel Disease
DOI: 10.12677/pi.2025.144032, PDF, HTML, XML,   
作者: 高 磊, 戴 岳*:中国药科大学中药学院,江苏 南京
关键词: 细胞焦亡溃疡性结肠炎克罗恩病Pyroptosis Ulcerative Colitis Crohn’s Disease
摘要: 细胞焦亡是由gasdermin家族蛋白介导的炎性细胞死亡方式,涉及细胞膜上孔的形成和炎性细胞因子的释放。细胞焦亡在宿主抵抗微生物感染中起着至关重要的作用,与自身免疫性疾病的发生发展密切相关。炎症性肠病包括溃疡性结肠炎和克罗恩病,是一类以肠道慢性炎症为特征的疾病,其发病机制涉及遗传、免疫、微生物及环境等。在炎症性肠病患者中,过度激活的细胞焦亡,导致炎症反应加剧、肠道屏障功能受损、肠道菌群失调以及免疫细胞异常活化等,从而推动疾病进程。本文旨在阐述细胞焦亡的分子机制及其在炎症性肠病中作用的研究进展,为炎症性肠病提供新的治疗思路。
Abstract: Pyroptosis is an inflammatory form of programmed cell death mediated by the gasdermin family of proteins, involving the formation of pores in the cell membrane and the release of inflammatory cytokines. Pyroptosis plays a crucial role in the host’s defense against microbial infections and is closely associated with the development of autoimmune diseases. Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is characterized by chronic intestinal inflammation. Its pathogenesis involves genetic, immune, microbial, and environmental factors. In patients with IBD, overactivated pyroptosis exacerbates the inflammatory response, impairs the intestinal barrier function, disrupts the gut microbiota, and leads to abnormal activation of immune cells, thereby promoting disease progression. This review aims to elaborate on the mechanisms of pyroptosis and the latest research progress on its role in IBD, providing novel therapeutic strategies for this disease.
文章引用:高磊, 戴岳. 细胞焦亡的发生机制及其在炎症性肠病中的作用[J]. 药物资讯, 2025, 14(4): 277-283. https://doi.org/10.12677/pi.2025.144032

1. 引言

炎症性肠病(IBD),包括溃疡性结肠炎(UC)和克罗恩病(CD),是慢性肠道炎性疾病[1]。预计到2025年,IBD的全球患者将多达3000万[2]。IBD是一类以肠道慢性炎症为特征的疾病,其发病机制涉及遗传、免疫、微生物及环境等多因素[1]。细胞焦亡作为一种新发现的细胞程序性死亡方式,广泛参与炎症性疾病的发生和发展,已有大量研究表明,细胞焦亡与IBD的发生发展密切相关,细胞焦亡释放的大量细胞内容物可以引起强烈的炎症反应,促使IBD的发生与发展[3]。深入探讨细胞焦亡的分子机制以及与IBD的关系有助于为IBD治疗提供新的思路。

2. 细胞焦亡的发生机制

最早关于细胞焦亡的研究可以追溯到1986年,Friedlander等发现,用炭疽毒素处理小鼠原代巨噬细胞会导致细胞死亡,并迅速释放细胞内容物[4]。目前,细胞焦亡被定义为削皮素(gasdermin, GSDM)蛋白介导的细胞程序性死亡[5]。GSDM蛋白是一类孔形成蛋白,在细胞焦亡过程中发挥关键作用。GSDM蛋白家族包括多个成员,如GSDMA、GSDMB、GSDMC、GSDMD、GSDME和pejvakin。这些成员在结构和功能上具有相似性,通常由两个主要结构域组成,即N端孔形成域(GSDM-N)和C端自抑制域(GSDM-C)。在未激活状态下,GSDM-C与GSDM-N结合,抑制其功能[6] [7]。当受到病原体感染或其他刺激时,GSDM蛋白被切割,释放出GSDM-N,后者能够在细胞膜上发生寡聚化,形成膜孔,最终引发细胞焦亡[8]

2.1. 依赖于Caspase-1的经典途径

经典的细胞焦亡途径是由炎症小体组装介导的,炎症小体的组装伴随着GSDMD切割以及IL-1β和IL-18释放[9]。当宿主细胞被病原体感染引起免疫激活时,病原体和受损组织共同形成病原体相关分子模式,后者可被模式识别受体,包括Nod样受体家族、Aim2样受体和Toll样受体家族等识别,促进炎症小体以及下游分子的组装与激活[10]。炎症小体组装后,pro-caspase-1被水解为两个具有活性的caspase-1。一方面,caspase-1特异性地切割GSDMD蛋白形成GSDMD-N,GSDMD-N在细胞膜上发生寡聚并形成膜孔,导致细胞肿胀焦亡。另一方面,caspase-1剪切Pro-IL-1β和Pro-IL-18,产生成熟的IL-1β和IL-18,通过GSDMD在细胞膜上形成的孔道释放出来[11]

2.2. 非经典途径

人源性caspase-4/5和鼠源性caspase-11均可引起非经典途径的细胞焦亡[12]。当细菌感染宿主细胞时,细菌释放的LPS与caspase-4/5/11的CARD结构域结合,引起caspase活化,随后,GSDMD被激活的caspase4/5/11切割为GSDMD-N,GSDMD-N易位到细胞膜上形成寡聚体并在细胞膜上打孔[13]。然而caspase-4/5/11不能切割和加工IL-1β和IL-18的前体,他们需通过激活NLRP3炎症小体,活化caspase-1,随后切割和加工IL-1β和IL-18前体。最终,成熟的IL-1β和IL-18主要通过GSDMD形成的膜孔释放[14]

2.3. Caspase-3/8介导的途径

除了炎性caspase-1/4/5/11之外,一些凋亡caspase也可以诱导细胞焦亡,caspase-3/8有多种激活机制,最常见的机制是在化疗药物的刺激下,caspase-3/8被激活并剪切GSDMD蛋白[15]。例如,在化疗药物的刺激下,线粒体释放肿瘤相关诱导因子,激活caspase-3,活化的caspase-3切割GSDME,诱导肿瘤细胞焦亡或者凋亡,GSDME的表达水平决定了肿瘤细胞发生焦亡亦或是凋亡,当GSDME表达水平高时,caspase-3将GSDME剪切GSDME-N,GSDME-N易位到细胞膜并形成膜孔,介导细胞焦亡,当GSDME表达水平较低时,肿瘤细胞发生凋亡[16]。此外,在化疗药物依托泊苷的刺激下,caspase-3被激活,切割GSDME 270位点的天冬氨酸,诱导细胞焦亡[17]。在肿瘤坏死因子-α刺激下,caspase-8被激活,切割GSDMC产生GSDMC-N,并在细胞膜上形成膜孔,诱导细胞焦亡[18]

2.4. 颗粒酶介导的途径

颗粒酶是来自细胞毒性T淋巴细胞和自然杀伤细胞的细胞浆颗粒。主要功能是诱导靶细胞死亡。常见的颗粒酶包括颗粒酶B、颗粒酶A和颗粒酶K [19]。有研究表明,CAR T细胞通过释放颗粒酶B迅速激活靶细胞中caspase-3,随后,caspase-3剪切GSDME形成GSDME-N,介导细胞焦亡[20]。此外,有研究表明,自然杀伤细胞和细胞毒性T淋巴细胞通过释放颗粒酶A,切割GSDMB,介导细胞焦亡[21]

3. 细胞焦亡在UC中的作用

3.1. UC的病理特征以及与细胞焦亡的关联性概述

UC是一种慢性炎症性肠病[22]。近年来,随着社会经济的发展,UC的发病率在全球范围内呈上升趋势[23]。UC的病变主要从远端结肠开始,影响整个结肠和末端回肠。UC的临床表现为腹泻、腹痛、黏液和脓血便[24],发病机制涉及肠屏障破坏、免疫细胞的异常激活以及促炎细胞因子的过度释放[25]。细胞焦亡是一种程序性炎症性细胞死亡形式,近年来被发现其与UC的发病机制密切相关[26]

3.2. 临床研究揭示UC患者细胞焦亡标志物表达上调

UC的病变主要涉及结肠粘膜,临床研究表明,与健康受试者相比,UC患者结肠粘膜中焦亡相关蛋白的表达水平显著升高,例如,GSDMD-N和GSDME-N。且随着UC严重程度增加,肠黏膜组织GSDMD-N表达显著上调。免疫荧光分析UC患者的结肠黏膜组织发现,相比于健康受试者,结肠上皮细胞内GSDME表达显著升高。Western blot分析结果显示,来自UC患者新鲜分离的结肠上皮细胞中GSDMD表达水平显著高于健康受试者[27]。此外,几项临床研究报道表明,UC患者的结肠固有层单核细胞分泌高水平的IL-1β,这与疾病的发生密切相关[28]。UC患者结肠组织的免疫组织化学分析的结果表明,IL-18在病变区域的巨噬细胞中大量表达[29]

3.3. 动物模型验证细胞焦亡在UC发病机制中的关键作用

上述的临床数据揭示了焦亡标志物与UC严重程度的相关性,研究者通过构建实验性结肠炎模型,进一步探讨细胞焦亡在UC发病机制中的关键作用。体内研究表明,相比于正常小鼠,葡聚糖硫酸钠(Dextran Sulfate Sodium salt, DSS)诱导的结肠炎小鼠的结肠巨噬细胞和结肠上皮细胞中GSDMD-N和GSDME-N表达显著升高,细胞焦亡水平显著升高[27] [30]。DSS诱导的结肠炎小鼠的结肠巨噬细胞分泌高水平的IL-1β,而重组IL-1RA可显著改善小鼠结肠炎[31]。在DSS所致小鼠结肠炎模型中,与野生型小鼠相比,GSDMD或者GSDME缺陷小鼠结肠炎疾病症状显著缓解[32] [33]

3.4. 靶向细胞焦亡的潜在治疗策略及机制

基于细胞焦亡在UC发病中的关键作用,许多研究通过靶向抑制结肠巨噬细胞和结肠上皮细胞焦亡,改善UC。UC的发病与肠道微生物菌群失调有关。已有研究表明,UC患者肠道内产生丁酸盐的细菌Roseburia infantis的丰度显著降低,Roseburia infantis的鞭毛蛋白可以通过抑制miR-223-3p/NLRP3信号通路,抑制巨噬细胞焦亡,减轻DSS诱导的小鼠结肠炎症状[34]。不同类型的巨噬细胞,如M1型和M2型,具有完全不同的生物学功能,并在UC的发病机制中起重要作用。有证据表明,靶向巨噬细胞极化有利于UC治疗,产乳酸的益生菌酿酒酵母可以抑制M1巨噬细胞的极化,进而抑制巨噬细胞焦亡和调节肠道菌群平衡,缓解DSS诱导的小鼠结肠炎[35]。肠道屏障在维持人体内外环境稳态方面发挥着至关重要的作用。研究表明,肠道屏障的异常是引发和推动IBD的主要因素之一,将4-辛基衣康酸靶向递送到结肠上皮细胞中,能够抑制GSDME介导的细胞焦亡,显著恢复肠道屏障功能[36]。激动AhR通过促进鸟氨酸脱羧酶1的转录来抑制巨噬细胞焦亡,从而增强多胺的生物合成,维持肠道稳态[37]。双硫仑是焦亡的抑制剂,其通过调节GSK-3β/Nrf2/NLRP3通路抑制氧化损伤相关的结肠上皮细胞焦亡,从而改善DSS诱导的小鼠结肠炎[38]。许多中药活性成分和中药复方通过抑制细胞焦亡改善UC症状,其作用机制涉及修复肠黏膜屏障,调节肠道微生物群和抑制氧化应激,阻止炎症因子释放[39]-[42]。例如:参苓白术散能够抑制MAPK/NF-κB信号通路,抑制结肠上皮细胞焦亡,恢复结肠紧密连接蛋白ZO-1和Occludin的表达水平,保护结肠屏障完整性,减轻DSS诱导的小鼠结肠炎症状[43]

4. 细胞焦亡在克罗恩病中的作用

4.1. CD的病理特征以及与细胞焦亡的关联性概述

CD是一种慢性胃肠道炎症性疾病。它可以影响到整个胃肠道,尤其是末端回肠和近端结肠[44]。CD的发病群体主要在20~30岁之间,且发病率在全球范围内不断增加[45]。常见症状包括腹泻、腹痛、疲劳和体重减轻。CD的发病机制是多因素的,涉及免疫失调、肠道菌群失调、遗传和环境因素等[46]

4.2. 临床研究揭示CD患者细胞焦亡标志物表达上调

细胞焦亡是CD发生和发展的关键参与者[47]。临床研究表明,与健康受试者相比,CD患者结肠黏膜中GSDME-N的表达水平显着增加。GSDME-N明显存在于CD患者发炎的结肠黏膜中,但不存在于健康受试者或CD患者的未发炎黏膜中,caspase-8和caspase-3在CD患者发炎的结肠黏膜中显著活化,表明GSDME介导的细胞焦亡在CD的发生发展中起重要作用[48]。此外,免疫组化分析结果显示,CD患者的结肠黏膜相比于健康受试者,焦亡相关蛋白GSDMD,NLRP3以及caspase-1在结肠上皮细胞和结肠固有层淋巴细胞中表达水平明显升高,尤其是在结肠上皮细胞中[47]。在CD患者结肠黏膜巨噬细胞中,焦亡相关蛋白caspase-1,NLRP3,IL-1β以及IL-18表达水平明显升高[29]

4.3. 动物模型验证细胞焦亡在CD发病机制中的关键作用

为进一步明确细胞焦亡在CD发生发展中的重要参与,研究者通过构建多种实验性结肠炎模型进行研究。在三硝基苯磺酸(2, 4, 6-trinitrobenzenesulfonic acid, TNBS)、DSS诱导的小鼠结肠炎模型和IL-10缺陷诱导的小鼠自发性结肠炎模型中,相比于正常组小鼠,模型组小鼠结肠组织中焦亡相关蛋白GSDMD,NLRP3,caspase-1和GSDME表达水平明显升高[46] [49]。GSDMD和GSDME介导的细胞焦亡在CD的发生与发展中起重要作用。GSDME缺陷小鼠与WT对照小鼠相比,显著缓解TNBS诱导的小鼠结肠炎症状。结肠上皮细胞中GSDME缺陷可以保护小鼠免受TNBS诱导结肠炎的影响[48]

4.4. 靶向细胞焦亡的CD多维度治疗策略

已有研究表明,抑制结肠巨噬细胞和结肠上皮细胞焦亡能够有效缓解CD症状。肠道微生物群和其代谢物的改变是IBD发生的关键驱动因素[50]。在肠道微生物群的代谢物中,包括丁酸盐在内的短链脂肪酸是肠道稳态不可或缺的一部分,与CD的发病相关。丁酸盐通过在体内和体外抑制CGAS-STING通路,抑制结肠上皮细胞焦亡,改善TNBS诱导的小鼠实验性结肠炎[47]。母鼠西式饮食能够改变其肠道菌群,进而升高脱氧胆酸水平,触发GSDMD依赖的巨噬细胞焦亡和IL-1β分泌,加剧TNBS诱导的小鼠结肠炎[51]。结肠黏膜炎症是CD的关键诱发因素,GSDME介导的结肠上皮细胞焦亡通过释放促炎因子-HMGB1,加剧TNBS诱导的小鼠结肠炎中的黏膜炎症[48]。Mincle-/-可以抑制巨噬细胞焦亡,改善DSS诱导的实验性结肠炎[52]。肠道屏障在维持人体内外环境稳态方面发挥着至关重要的作用。CircGMCL1通过上调miR-124-3p,促进自噬,从而抑制GSDMD介导的结肠上皮细胞焦亡,保护肠道屏障功能,改善IL-10缺陷诱导的小鼠自发性结肠炎[51]

5. 总结与展望

本综述从细胞焦亡的发生机制入手,探讨了细胞焦亡在IBD中作用的研究进展,揭示了结肠巨噬细胞焦亡和结肠上皮细胞焦亡是IBD发生与发展的关键参与者。中药在IBD治疗中已显示出一定的优势,研究细胞焦亡在其作用中的参与和重要性具有重要的临床价值,为构建新型IBD治疗策略提供思路。

NOTES

*通讯作者。

参考文献

[1] Gilliland, A., Chan, J., De Wolfe, T., et al. (2024) Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology, 166, 44-58. Https://Doi.Org/10.1053/J.Gastro.2023.09.019
[2] Kaplan, G. (2015) The Global Burden of IBD: From 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12, 720-727. Https://Doi.Org/10.1038/Nrgastro.2015.150
[3] Chen, K., Shang, S., Yu, S., et al. (2022) Identification and Exploration of Pharmacological Pyroptosis-Related Biomarkers of Ulcerative Colitis. Frontiers in Immunology, 13, Article 998470. Https://Doi.Org/10.3389/Fimmu.2022.998470
[4] Friedlander, A. (1986) Macrophages Are Sensitive to Anthrax Lethal toxin Through an Acid-Dependent Process. Journal of Biological Chemistry, 261, 7123-7126. Https://Doi.Org/10.1016/S0021-9258(17)38364-3
[5] Panganiban, R., Nadeau, K. and Lu, Q. (2024) Pyroptosis, Gasdermins and Allergic Diseases. Allergy, 79, 2380-2395. Https://Doi.Org/10.1111/All.16236
[6] Broz, P., PelegrÍN, P. and Shao, F. (2020) The Gasdermins, a Protein Family Executing Cell Death and Inflammation. Nature Reviews Immunology, 20, 143-157. Https://Doi.Org/10.1038/S41577-019-0228-2
[7] Aglietti, R., Estevez, A., Gupta, A., et al. (2016) GSDMD p30 Elicited by Caspase-11 During Pyroptosis Forms Pores in Membranes. Proceedings of the National Academy of Sciences of the United States of America, 113, 7858-7863. Https://Doi.Org/10.1073/Pnas.1607769113
[8] Coll, R., Schroder, K. and Pelegrín, P. (2022) NLRP3 and Pyroptosis Blockers for Treating Inflammatory Diseases. Trends in Pharmacological Sciences, 43, 653-668. Https://Doi.Org/10.1016/J.Tips.2022.04.003
[9] Jackson, D. and Theiss, A. (2020) Gut Bacteria Signaling to Mitochondria in Intestinal Inflammation and Cancer. Gut microbiota, 11, 285-304. Https://Doi.Org/10.1080/19490976.2019.1592421
[10] Mariathasan, S., Weiss, D., Newton, K., et al. (2006) Cryopyrin Activates the Inflammasome in Response to Toxins and ATP. Nature, 440, 228-232. Https://Doi.Org/10.1038/Nature04515
[11] Rao, Z., Zhu, Y., Yang, P., et al. (2022) Pyroptosis in Inflammatory Diseases and Cancer. Theranostics, 12, 4310-4329. Https://Doi.Org/10.7150/Thno.71086
[12] Hagar, J., Powell, D., Aachoui, Y., et al. (2013) Cytoplasmic LPS Activates Caspase-11: Implications in TLR4-Independent Endotoxic Shock. Science, 341, 1250-1253. Https://Doi.Org/10.1126/Science.1240988
[13] Chen, Y., Luo, R., Li, J., et al. (2022) Intrinsic Radical Species Scavenging Activities of Tea Polyphenols Nanoparticles Block Pyroptosis in Endotoxin-Induced Sepsis. ACS Nano, 16, 2429-2441. Https://Doi.Org/10.1021/Acsnano.1c08913
[14] Rühl, S. and Broz, P. (2015) Caspase-11 Activates A Canonical NLRP3 Inflammasome by Promoting K+ Efflux. European Journal of Immunology, 45, 2927-2936. Https://Doi.Org/10.1002/Eji.201545772
[15] Rogers, C., Fernandes-Alnemri, T., Mayes, L., et al. (2017) Cleavage of DFNA5 by Caspase-3 During Apoptosis Mediates Progression to Secondary Necrotic/Pyroptotic Cell Death. Nature Communications, 8, Article 14128. Https://Doi.Org/10.1038/Ncomms14128
[16] Wang, Y., Gao, W., Shi, X., et al. (2017) Chemotherapy Drugs Induce Pyroptosis Through Caspase-3 Cleavage of A Gasdermin. Nature, 547, 99-103. Https://Doi.Org/10.1038/Nature22393
[17] Jiang, M., Qi, L., Li, L., et al. (2020) The Caspase-3/GSDME Signal Pathway as a Switch Between Apoptosis and Pyroptosis in Cancer. Cell Death Discovery, 6, Article No. 112. Https://Doi.Org/10.1038/S41420-020-00349-0
[18] Hou, J., Zhao, R., Xia, W., et al. (2020) PD-L1-Mediated Gasdermin C Expression Switches Apoptosis to Pyroptosis in Cancer Cells and Facilitates Tumour Necrosis. Nature Cell Biology, 22, 1264-1275. Https://Doi.Org/10.1038/S41556-020-0575-Z
[19] Anthony, D., andrews, D., Watt, S., et al. (2010) Functional Dissection of The Granzyme Family: Cell Death and Inflammation. Immunological Reviews, 235, 73-92. Https://Doi.Org/10.1111/J.0105-2896.2010.00907.X
[20] Liu, Y., Fang, Y., Chen, X., et al. (2020) Gasdermin E-Mediated Target Cell Pyroptosis by CAR T Cells Triggers Cytokine Release Syndrome. Science Immunology, 5, Eaax7969. Https://Doi.Org/10.1126/Sciimmunol.Aax7969
[21] Zhou, Z., He, H., Wang, K., et al. (2020) Granzyme A From Cytotoxic Lymphocytes Cleaves GSDMB to Trigger Pyroptosis in Target Cells. Science, 368, Eaaz7548. Https://Doi.Org/10.1126/Science.Aaz7548
[22] Krugliak, N., torres, J. and Rubin, D. (2022) What Does Disease Progression Look Like in Ulcerative Colitis, and How Might It Be Prevented? Gastroenterology, 162, 1396-1408. Https://Doi.Org/10.1053/J.Gastro.2022.01.023
[23] Le, C., Honap, S. and Peyrin-Biroulet, L. (2023) Ulcerative Colitis. The Lancet., 402, 571-584. Https://Doi.Org/10.1016/S0140-6736(23)00966-2
[24] Kobayashi, T., Siegmund, B., Le, C., et al. (2020) Ulcerative Colitis. Nature Reviews Disease Primers, 6, Article No. 74. Https://Doi.Org/10.1038/S41572-020-0205-X
[25] Gros, B. and Kaplan, G. (2023) Ulcerative Colitis in Adults: A Review. JAMA., 330, 951-965. Https://Doi.Org/10.1001/Jama.2023.15389
[26] Xavier, R. and Podolsky, D. (2007) Unravelling the Pathogenesis of Inflammatory Bowel Disease. Nature, 448, 427-434. Https://Doi.Org/10.1038/Nature06005
[27] Tan, G., Huang, C., Chen, J., et al. (2020) HMGB1 Released From GSDME-Mediated Pyroptotic Epithelial Cells Participates in the Tumorigenesis of Colitis-Associated Colorectal Cancer Through the ERK1/2 Pathway. Journal of Hematology & Oncology, 13, Article No. 149. Https://Doi.Org/10.1186/S13045-020-00985-0
[28] Friedrich, M., Pohin, M., Jackson, M., et al. (2021) IL-1-Driven Stromal-Neutrophil Interactions Define a Subset of Patients with Inflammatory Bowel Disease That Does Not Respond to Therapies. Nature Medicine, 27, 1970-1981. Https://Doi.Org/10.1038/S41591-021-01520-5
[29] Pizarro, T., Michie, M., Bentz, M., et al. (1999) IL-18, A Novel Immunoregulatory Cytokine, Is Up-Regulated in Crohn’s Disease: Expression and Localization in Intestinal Mucosal Cells. Journal of Immunology, 162, 6829-6835. Https://Doi.Org/10.4049/Jimmunol.162.11.6829
[30] Yang, W., Wang, Y., Wang, T., et al. (2023) Protective Effects of IRG1/Itaconate on Acute Colitis Through the Inhibition of Gasdermins-Mediated Pyroptosis and Inflammation Response. Genes & Diseases, 10, 1552-1563. Https://Doi.Org/10.1016/J.Gendis.2022.05.039
[31] Maeda, S., Hsu, L., Liu, H., et al. (2005) Nod2 Mutation in Crohn’s Disease Potentiates NF-kB Activity and IL-1β Processing. Science, 307, 734-738. Https://Doi.Org/10.1126/Science.1103685
[32] Bulek, K., Zhao, J., Liao, Y., et al. (2020) Epithelial-Derived Gasdermin D Mediates Nonlytic IL-1β Release During Experimental Colitis. Journal of Clinical Investigation, 130, 4218-4234. Https://Doi.Org/10.1172/JCI138103
[33] Xiao, J., Sun, K., Wang, C., et al. (2022) Compound Loss of GSDMD and GSDME Function Is Necessary to Achieve Maximal Therapeutic Effect in Colitis. Journal of Translational Autoimmunity, 5, Article 100162. Https://Doi.Org/10.1016/J.Jtauto.2022.100162
[34] Wu, X., Pan, S., Luo, W., et al. (2020) Roseburia Intestinalis-Derived Flagellin Ameliorates Colitis by Targeting miR-223-3p-Mediated Activation of NLRP3 Inflammasome and Pyroptosis. Molecular Medicine Reports, 22, 2695-2704. Https://Doi.Org/10.3892/Mmr.2020.11351
[35] Sun, S., Xu, X., Liang, L., et al. (2021) Lactic Acid-Producing Probiotic Saccharomyces Cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Frontiers in Immunology, 12, Article 777665. Https://Doi.Org/10.3389/Fimmu.2021.777665
[36] Li, W., Chen, D., Zhu, Y., et al. (2024) Alleviating Pyroptosis of Intestinal Epithelial Cells to Restore Mucosal Integrity in Ulcerative Ccolitis by Targeting Delivery of 4-Octyl-Itaconate. ACS Nano, 18, 16658-16673. Https://Doi.Org/10.1021/Acsnano.4c01520
[37] Gao, Y., Liu, K., Xiao, W., et al. (2024) Aryl Hydrocarbon Receptor Confers Protection Against Macrophage Pyroptosis and Intestinal Inflammation Through Regulating Polyamine Biosynthesis. Theranostics, 14, 4218-4239. Https://Doi.Org/10.7150/Thno.95749
[38] Chi, F., Zhang, G., Ren, N., et al. (2022) The Anti-Alcoholism Drug Disulfiram Effectively Ameliorates Ulcerative Colitis Through Suppressing Oxidative Stresses-Associated Pyroptotic Cell Death and Cellular Inflammation in Colonic Cells. International Immunopharmacology, 111, Article 109117. Https://Doi.Org/10.1016/J.Intimp.2022.109117
[39] Liu, X., Zhou, M., Dai, Z., et al. (2023) Salidroside Alleviates Ulcerative Colitis via Inhibiting Macrophage Pyroptosis and Repairing the Dysbacteriosis-Associated Th17/Treg Imbalance. Phytotherapy Research, 37, 367-382. Https://Doi.Org/10.1002/Ptr.7636
[40] Wei, Y., Fan, Y., Ga, Y., et al. (2021) Shaoyao Decoction Attenuates DSS-Induced Ulcerative Colitis, Macrophage and NLRP3 Inflammasome Activation Through the MKP1/NF-κB Pathway. Phytomedicine, 92, Article 153743. Https://Doi.Org/10.1016/J.Phymed.2021.153743
[41] Sun, J., Wang, S., Zhao, Z., et al. (2024) Oxymatrine Attenuates Ulcerative Colitis Through Inhibiting Pyroptosis Mediated by The NLRP3 Inflammasome. Molecules, 29, Article 2897. Https://Doi.Org/10.3390/Molecules29122897
[42] Zhao, P., Ning, J., Huang, J., et al. (2024) Mechanism of Resveratrol On LPS/ATP-Induced Pyroptosis and Inflammatory Response in HT29 Cells. Autoimmunity, 57, Article 2427094. Https://Doi.Org/10.1080/08916934.2024.2427094
[43] Chao, L., Li, Z., Zhou, J., et al. (2020) Shen-Ling-Bai-Zhu-San Improves Dextran Sodium Sulfate-Induced Colitis by Inhibiting Caspase-1/Caspase-11-Mediated Pyroptosis. Frontiers in Pharmacology, 11, Article 814. Https://Doi.Org/10.3389/Fphar.2020.00814
[44] Dolinger, M., Torres, J. and Vermeire, S. (2024) Crohn’s Disease. The Lancet, 403, 1177-1191. Https://Doi.Org/10.1016/S0140-6736(23)02586-2
[45] Cockburn, E., Kamal, S., Chan, A., et al. (2023) Crohn’s Disease: An Update. Clinical Medicine, 23, 549-557. Https://Doi.Org/10.7861/Clinmed.2023-0493
[46] Zhao, J., Zhao, Z., Ying, P., et al. (2023) METTL3-Mediated M6A Modification of circPRKAR1B Promotes Crohn’s Colitis by Inducing Pyroptosis via Autophagy Inhibition. Clinical and Translational Medicine, 13, E1405. Https://Doi.Org/10.1002/Ctm2.1405
[47] Xu, X., Huang, Z., Huang, Z., et al. (2024) Butyrate Attenuates Intestinal Inflammation in Crohn’s Disease by Suppressing Pyroptosis of Intestinal Epithelial Cells via the cGSA-STING-NLRP3 Axis. International Immunopharmacology, 143, Article 113305. Https://Doi.Org/10.1016/J.Intimp.2024.113305
[48] Tan, G., Huang, C., Chen, J., et al. (2021) Gasdermin-E-Mediated Pyroptosis Participates in the Pathogenesis of Crohn’s Disease by Promoting Intestinal Inflammation. Cell Reports, 35, Article 109265. Https://Doi.Org/10.1016/J.Celrep.2021.109265
[49] Zhao, J., Sun, Y., Yang, H., et al. (2022) PLGA-Microspheres-Carried CircGMCL1 Protects Against Crohn’s Colitis Through Alleviating NLRP3 Inflammasome-Induced Pyroptosis by Promoting Autophagy. Cell Death & Disease, 13, Article No. 782. Https://Doi.Org/10.1038/S41419-022-05226-5
[50] RodrÍGuez, C., Romero, E., Garrido-Sanchez, L., et al. (2020) Microbiota Insights in Clostridium Difficile Infection and Inflammatory Bowel Disease. Gut Microbes, 12, Article 1725220. Https://Doi.Org/10.1080/19490976.2020.1725220
[51] Huang, C., Tan, H., Song, M., et al. (2023) Maternal Western Diet Mediates Susceptibility of Offspring to Crohn’s-Like Colitis by Deoxycholate Generation. Microbiome, 11, Article No. 96. Https://Doi.Org/10.1186/S40168-023-01546-6
[52] Gong, W., Zheng, T., Guo, K., et al. (2020) Mincle/Syk Signalling Promotes Intestinal Mucosal Inflammation Through Induction of Macrophage Pyroptosis in Crohn’s Disease. Journal of Crohns and Colitis, 14, 1734-1747. Https://Doi.Org/10.1093/Ecco-Jcc/Jjaa088