|
[1]
|
Li, Y., Feng, A., Zheng, S., Chen, C. and Lyu, J. (2022) Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control, 29, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Laurén, P. (1965) The Two Histological Main Types of Gastric Carcinoma: Diffuse and So‐Called Intestinal‐Type Carcinoma. Acta Pathologica Microbiologica Scandinavica, 64, 31-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Pavlova, N.N. and Thompson, C.B. (2016) The Emerging Hallmarks of Cancer Metabolism. Cell Metabolism, 23, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Olguín-Martínez, M., Hernández-Espinosa, D.R. and Hernández-Muñoz, R. (2013) α-Tocopherol Administration Blocks Adaptive Changes in Cell NADH/NAD+ Redox State and Mitochondrial Function Leading to Inhibition of Gastric Mucosa Cell Proliferation in Rats. Free Radical Biology and Medicine, 65, 1090-1100. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ortiz-Ramírez, P., Hernández-Ochoa, B., Ortega-Cuellar, D., González-Valdez, A., Martínez-Rosas, V., Morales-Luna, L., et al. (2022) Biochemical and Kinetic Characterization of the Glucose-6-Phosphate Dehydrogenase from Helicobacter pylori Strain 29CaP. Microorganisms, 10, Article No. 1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, Y., Jin, Z., Qin, X. and Zheng, Q. (2020) Urinary Metabolomics Research for Huangqi Jianzhong Tang against Chronic Atrophic Gastritis Rats Based on 1H NMR and UPLC-Q/TOF Ms. Journal of Pharmacy and Pharmacology, 72, 748-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Patra, K.C. and Hay, N. (2014) The Pentose Phosphate Pathway and Cancer. Trends in Biochemical Sciences, 39, 347-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lv, G., Zhu, H., Zhou, F., Lin, Z., Lin, G. and Li, C. (2014) Amp-Activated Protein Kinase Activation Protects Gastric Epithelial Cells from Helicobacter pylori-Induced Apoptosis. Biochemical and Biophysical Research Communications, 453, 13-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, M., Pi, H., Li, M., Xu, S., Zhang, L., Xie, J., et al. (2016) From the Cover: Autophagy Induction Contributes to Cadmium Toxicity in Mesenchymal Stem Cells via AMPK/FOXO3a/BECN1 Signaling. Toxicological Sciences, 154, 101-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kim, Y.L., Lee, W., Chung, S.H., Yu, B.M., Lee, Y.C. and Hong, J. (2022) Metabolic Alterations of Short-Chain Fatty Acids and TCA Cycle Intermediates in Human Plasma from Patients with Gastric Cancer. Life Sciences, 309, Article ID: 121010. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hong, J., Zuo, W., Wang, A. and Lu, N. (2016) Helicobacter pylori Infection Synergistic with IL-1β Gene Polymorphisms Potentially Contributes to the Carcinogenesis of Gastric Cancer. International Journal of Medical Sciences, 13, 298-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, S., Tian, W., Liu, Y., Ni, J., Zhang, D., Pan, H., et al. (2022) Mechanism of N-Methyl-N-Nitroso-Urea-Induced Gastric Precancerous Lesions in Mice. Journal of Oncology, 2022, Article ID: 3780854. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tannahill, G.M., Curtis, A.M., Adamik, J., Palsson-McDermott, E.M., McGettrick, A.F., Goel, G., et al. (2013) Succinate Is an Inflammatory Signal That Induces IL-1β through HIF-1α. Nature, 496, 238-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, Y., Zhang, Z., Wang, J., Chen, C., Tang, X., Zhu, J., et al. (2019) Metabolic Reprogramming Results in Abnormal Glycolysis in Gastric Cancer: A Review. OncoTargets and Therapy, 12, 1195-1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jiang, L., Chen, Y., Min, G., Wang, J., Chen, W., Wang, H., et al. (2021) Bcl2-Associated Athanogene 4 Promotes the Invasion and Metastasis of Gastric Cancer Cells by Activating the PI3K/AKT/NF-κB/ZEB1 Axis. Cancer Letters, 520, 409-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yim, W.W. and Mizushima, N. (2020) Lysosome Biology in Autophagy. Cell Discovery, 6, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, L., Sung, J.J., Yu, J., Ng, S.C., Wong, S.H., Cho, C.H., et al. (2014) Xenophagy in Helicobacter pylori‐ and Epstein-Barr Virus-Induced Gastric Cancer. The Journal of Pathology, 233, 103-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Huang, Q., Ou, Y., Tao, Y., Yin, H. and Tu, P. (2016) Apoptosis and Autophagy Induced by Pyropheophorbide-Α Methyl Ester-Mediated Photodynamic Therapy in Human Osteosarcoma MG-63 Cells. Apoptosis, 21, 749-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Giguère, V. (2018) Canonical Signaling and Nuclear Activity of mTOR—A Teamwork Effort to Regulate Metabolism and Cell Growth. The FEBS Journal, 285, 1572-1588. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Qin, W., Li, C., Zheng, W., Guo, Q., Zhang, Y., Kang, M., et al. (2015) Inhibition of Autophagy Promotes Metastasis and Glycolysis by Inducing ROS in Gastric Cancer Cells. Oncotarget, 6, 39839-39854. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhao, H., Zhu, H., Lin, Z., Lin, G. and Lv, G. (2015) Compound 13, an Α1-Selective Small Molecule Activator of AMPK, Inhibits Helicobacter pylori-Induced Oxidative Stresses and Gastric Epithelial Cell Apoptosis. Biochemical and Biophysical Research Communications, 463, 510-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, F., Chen, C., Hu, J., Su, R., Zhang, J., Han, Z., et al. (2019) Molecular Mechanism of Helicobacter pylori-Induced Autophagy in Gastric Cancer (Review). Oncology Letters, 18, 6221-6227. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ahn, C.H., Jeong, E.G., Lee, J.W., Kim, M.S., Kim, S.H., Kim, S.S., et al. (2007) Expression of Beclin‐1, an Autophagy‐Related Protein, in Gastric and Colorectal Cancers. APMIS, 115, 1344-1349. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
He, C., Bian, Y., Xue, Y., Liu, Z., Zhou, K., Yao, C., et al. (2016) Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1. Scientific Reports, 6, Article No. 21524. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fattahi, S., Amjadi-Moheb, F., Tabaripour, R., Ashrafi, G.H. and Akhavan-Niaki, H. (2020) PI3K/AKT/mTOR Signaling in Gastric Cancer: Epigenetics and Beyond. Life Sciences, 262, Article ID: 118513. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhu, F., Xu, Y., Pan, J., Li, M., Chen, F. and Xie, G. (2021) Epigallocatechin Gallate Protects against MNNG-Induced Precancerous Lesions of Gastric Carcinoma in Rats via PI3K/AKT/mTOR Pathway. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 8846813. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Y., Zhou, Y., Xie, J., Zhang, X., Wang, S., Li, Q., et al. (2023) MAOA Suppresses the Growth of Gastric Cancer by Interacting with NDRG1 and Regulating the Warburg Effect through the PI3K/AKT/mTOR Pathway. Cellular Oncology, 46, 1429-1444. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wu, J., Yuan, M., Shen, J., Chen, Y., Zhang, R., Chen, X., et al. (2022) Effect of Modified Jianpi Yangzheng on Regulating Content of PKM2 in Gastric Cancer Cells-Derived Exosomes. Phytomedicine, 103, Article ID: 154229. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, J., Bao, S., Chen, J., Chen, T., Wei, H., Zhou, X., et al. (2023) Xiaojianzhong Decoction Prevents Gastric Precancerous Lesions in Rats by Inhibiting Autophagy and Glycolysis in Gastric Mucosal Cells. World Journal of Gastrointestinal Oncology, 15, 464-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wang, C., Jiang, J., Ji, J., Cai, Q., Chen, X., Yu, Y., et al. (2017) PKM2 Promotes Cell Migration and Inhibits Autophagy by Mediating PI3K/AKT Activation and Contributes to the Malignant Development of Gastric Cancer. Scientific Reports, 7, Article No. 2886. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cao, Y., Luo, Y., Zou, J., Ouyang, J., Cai, Z., Zeng, X., et al. (2019) Autophagy and Its Role in Gastric Cancer. Clinica Chimica Acta, 489, 10-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yun, S., Yun, C.W., Lee, J.H., Kim, S. and Lee, S.H. (2017) Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner. Biomolecules & Therapeutics, 26, 464-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Düvel, K., Yecies, J.L., Menon, S., Raman, P., Lipovsky, A.I., Souza, A.L., et al. (2010) Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1. Molecular Cell, 39, 171-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Gao, S., Chen, M., Wei, W., Zhang, X., Zhang, M., Yao, Y., et al. (2018) Crosstalk of mTOR/PKM2 and STAT3/c-Myc Signaling Pathways Regulate the Energy Metabolism and Acidic Microenvironment of Gastric Cancer. Journal of Cellular Biochemistry, 120, 1193-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Mossmann, D., Park, S. and Hall, M.N. (2018) mTOR Signalling and Cellular Metabolism Are Mutual Determinants in Cancer. Nature Reviews Cancer, 18, 744-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Nieto, M.A., Huang, R.Y., Jackson, R.A. and Thiery, J.P. (2016) EMT: 2016. Cell, 166, 21-45. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sung, J. and Cheong, J. (2021) Pan-Cancer Analysis Reveals Distinct Metabolic Reprogramming in Different Epithelial-mesenchymal Transition Activity States. Cancers, 13, Article No. 1778. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, Z., Wang, W., Shi, H., Meng, L., Jiang, X., Pang, S., et al. (2022) Gamma-Glutamyltransferase of Helicobacter pylori Alters the Proliferation, Migration, and Pluripotency of Mesenchymal Stem Cells by Affecting Metabolism and Methylation Status. Journal of Microbiology, 60, 627-639. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ngo, H., Lee, H.G., Piao, J., Zhong, X., Lee, H., Han, H., et al. (2016) Helicobacter pylori Induces Snail Expression through Ros-Mediated Activation of Erk and Inactivation of GSK-3β in Human Gastric Cancer Cells. Molecular Carcinogenesis, 55, 2236-2246. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., et al. (2004) Dual Regulation of Snail by GSK-3β-Mediated Phosphorylation in Control of Epithelial-Mesenchymal Transition. Nature Cell Biology, 6, 931-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, J., Wang, Y., Li, Q., Xue, J., Wang, Z., Yuan, X., et al. (2016) Downregulation of FBP1 Promotes Tumor Metastasis and Indicates Poor Prognosis in Gastric Cancer via Regulating Epithelial-Mesenchymal Transition. PLOS ONE, 11, e0167857. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ji, S., Zhang, B., Liu, J., Qin, Y., Liang, C., Shi, S., et al. (2016) ALDOA Functions as an Oncogene in the Highly Metastatic Pancreatic Cancer. Cancer Letters, 374, 127-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chen, L., Wu, Z., Guo, J., Wang, X., Zhao, Z., Liang, H., et al. (2022) Initial Clinical and Experimental Analyses of ALDOA in Gastric Cancer, as a Novel Prognostic Biomarker and Potential Therapeutic Target. Clinical and Experimental Medicine, 23, 2443-2456. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jiang, Z., Wang, X., Li, J., Yang, H. and Lin, X. (2018) Aldolase a as a Prognostic Factor and Mediator of Progression via Inducing Epithelial-Mesenchymal Transition in Gastric Cancer. Journal of Cellular and Molecular Medicine, 22, 4377-4386. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Dai, Y., Tang, Y., Zhu, H., Lv, L., Chu, Y., Zhou, Y., et al. (2012) ZEB2 Promotes the Metastasis of Gastric Cancer and Modulates Epithelial Mesenchymal Transition of Gastric Cancer Cells. Digestive Diseases and Sciences, 57, 1253-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhang, Y., Lin, S., Chen, Y., Yang, F. and Liu, S. (2018) LDH-A Promotes Epithelial-Mesenchymal Transition by Upregulating ZEB2 in Intestinal-Type Gastric Cancer. OncoTargets and Therapy, 11, 2363-2373. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
de Wit, R.H., Mujić-Delić, A., van Senten, J.R., Fraile-Ramos, A., Siderius, M. and Smit, M.J. (2016) Human Cytomegalovirus Encoded Chemokine Receptor US28 Activates the HIF-1α/PKM2 Axis in Glioblastoma Cells. Oncotarget, 7, 67966-67985. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, N., Meng, D., Xu, Y., Gao, L., Shen, F., Tie, X., et al. (2020) Pyruvate Kinase M2 Knockdown Suppresses Migration, Invasion, and Epithelial‐Mesenchymal Transition of Gastric Carcinoma via Hypoxia‐Inducible Factor Alpha/B‐Cell Lymphoma 6 Pathway. BioMed Research International, 2020, Article ID: 7467104. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lei, L., Hong, L., Ling, Z., Zhong, Y., Hu, X., Li, P., et al. (2021) A Potential Oncogenic Role for PFKFB3 Overexpression in Gastric Cancer Progression. Clinical and Translational Gastroenterology, 12, e00377. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
He, X., Cheng, X., Ding, J., Xiong, M., Chen, B. and Cao, G. (2022) Hyperglycemia Induces miR-26-5p Down-Regulation to Overexpress PFKFB3 and Accelerate Epithelial-Mesenchymal Transition in Gastric Cancer. Bioengineered, 13, 2902-2917. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, M., Chen, Y., Xu, H., Zhan, J., Suo, D., Wang, J., et al. (2023) HKDC1 Upregulation Promotes Glycolysis and Disease Progression, and Confers Chemoresistance onto Gastric Cancer. Cancer Science, 114, 1365-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhao, J., Tian, M., Zhang, S., Delfarah, A., Gao, R., Rao, Y., et al. (2020) Deamidation Shunts Rela from Mediating Inflammation to Aerobic Glycolysis. Cell Metabolism, 31, 937-955.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chen, X., Zhu, Z., Li, X., Yao, X. and Luo, L. (2021) The Ferroptosis-Related Noncoding RNA Signature as a Novel Prognostic Biomarker in the Tumor Microenvironment, Immunotherapy, and Drug Screening of Gastric Adenocarcinoma. Frontiers in Oncology, 11, Article 778557. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhao, Y., Zhao, J., Ma, H., Han, Y., Xu, W., Wang, J., et al. (2023) High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis. Biomedicines, 11, Article No. 2338. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Guo, S., Deng, J., Wang, P., Kou, F., Wu, Z., Zhang, N., et al. (2023) The Malignancy Suppression and Ferroptosis Facilitation of BCL6 in Gastric Cancer Mediated by FZD7 Repression Are Strengthened by RNF180/RhoC Pathway. Cell & Bioscience, 13, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Liu, X., Olszewski, K., Zhang, Y., Lim, E.W., Shi, J., Zhang, X., et al. (2020) Cystine Transporter Regulation of Pentose Phosphate Pathway Dependency and Disulfide Stress Exposes a Targetable Metabolic Vulnerability in Cancer. Nature Cell Biology, 22, 476-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Seco-Cervera, M., González-Cabo, P., Pallardó, F., Romá-Mateo, C. and García-Giménez, J. (2020) Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich’s Ataxia. Antioxidants, 9, Article No. 1257. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Deng, H., Jia, Q., Ming, X., Sun, Y., Lu, Y., Liu, L., et al. (2023) Hippo Pathway in Intestinal Diseases: Focusing on Ferroptosis. Frontiers in Cell and Developmental Biology, 11, Article 1291686. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., et al. (2022) Wnt/Beta-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer. Cell Death & Differentiation, 29, 2190-2202. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ouyang, S., Li, H., Lou, L., Huang, Q., Zhang, Z., Mo, J., et al. (2022) Inhibition of STAT3-Ferroptosis Negative Regulatory Axis Suppresses Tumor Growth and Alleviates Chemoresistance in Gastric Cancer. Redox Biology, 52, Article ID: 102317. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Gorrini, C., Harris, I.S. and Mak, T.W. (2013) Modulation of Oxidative Stress as an Anticancer Strategy. Nature Reviews Drug Discovery, 12, 931-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Liu, Y., Shi, Y., Han, R., Liu, C., Qin, X., Li, P., et al. (2023) Signaling Pathways of Oxidative Stress Response: The Potential Therapeutic Targets in Gastric Cancer. Frontiers in Immunology, 14, Article 1139589. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Ansari, A., Rahman, M.S., Saha, S.K., Saikot, F.K., Deep, A. and Kim, K. (2016) Function of the SIRT3 Mitochondrial Deacetylase in Cellular Physiology, Cancer, and Neurodegenerative Disease. Aging Cell, 16, 4-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Cui, Y., Qin, L., Wu, J., Qu, X., Hou, C., Sun, W., et al. (2015) SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells. PLOS ONE, 10, e0129834. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Morales-Luna, L., Hernández-Ochoa, B., Martínez-Rosas, V., González-Valdez, A., Cárdenas-Rodríguez, N., Enríquez-Flores, S., et al. (2021) Cloning, Purification, and Characterization of the 6-Phosphogluconate Dehydrogenase (6 PGDH) from Giardia Lamblia. Molecular and Biochemical Parasitology, 244, Article ID: 111383. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Chen, C., Du, P., Zhang, Z. and Bao, D. (2023) 6-Phosphogluconate Dehydrogenase Inhibition Arrests Growth and Induces Apoptosis in Gastric Cancer via AMPK Activation and Oxidative Stress. Open Life Sciences, 18, Article ID: 20220514. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Collatuzzo, G., Pelucchi, C., Negri, E., López‐Carrillo, L., Tsugane, S., Hidaka, A., et al. (2021) Exploring the Interactions between Helicobacter pylori (Hp) Infection and Other Risk Factors of Gastric Cancer: A Pooled Analysis in the Stomach Cancer Pooling (StoP) Project. International Journal of Cancer, 149, 1228-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Yanaoka, K., Oka, M., Yoshimura, N., Deguchi, H., Mukoubayashi, C., Enomoto, S., et al. (2009) Preventive Effects of Etodolac, a Selective Cyclooxygenase‐2 Inhibitor, on Cancer Development in Extensive Metaplastic Gastritis, a Helicobacter pylori‐Negative Precancerous Lesion. International Journal of Cancer, 126, 1467-1473. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhou, Y., Chen, S., Yang, F., Zhang, Y., Xiong, L., Zhao, J., et al. (2021) Rabeprazole Suppresses Cell Proliferation in Gastric Epithelial Cells by Targeting Stat3-Mediated Glycolysis. Biochemical Pharmacology, 188, Article ID: 114525. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Peng, C., Sang, S., Shen, X., Zhang, W., Yan, J., Chen, P., et al. (2022) In Vitro Anti-Helicobacter pylori Activity of Syzygium aromaticum and the Preliminary Mechanism of Action. Journal of Ethnopharmacology, 288, Article ID: 114995. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Guo, Q., Lu, T., Zhang, M., Wang, Q., Zhao, M., Wang, T., et al. (2024) Protective Effect of Berberine on Acute Gastric Ulcer by Promotion of Tricarboxylic Acid Cycle-Mediated Arachidonic Acid Metabolism. Journal of Inflammation Research, 17, 15-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Zhen, B., Cai, Q. and Li, F. (2023) Chemical Components and Protective Effects of Atractylodes japonica Koidz. ex Kitam against Acetic Acid-Induced Gastric Ulcer in Rats. World Journal of Gastroenterology, 29, 5848-5864. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Piazuelo, M.B., Bravo, L.E., Mera, R.M., Camargo, M.C., Bravo, J.C., Delgado, A.G., et al. (2021) The Colombian Chemoprevention Trial: 20-Year Follow-Up of a Cohort of Patients with Gastric Precancerous Lesions. Gastroenterology, 160, 1106-1117.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Liu, W., Pan, H., Yang, L., Zhao, Z., Yuan, D., Liu, Y., et al. (2020) Panax ginseng C.A. Meyer (Rg3) Ameliorates Gastric Precancerous Lesions in Atp4a−/− Mice via Inhibition of Glycolysis through PI3K/AKT/miRNA-21 Pathway. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 2672648. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Yang, L., Li, J., Hu, Z., Fan, X., Cai, T., et al. (2020) A Systematic Review of the Mechanisms Underlying Treatment of Gastric Precancerous Lesions by Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 9154738. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
He, R., Ma, R., Jin, Z., Zhu, Y., Yang, F., Hu, F., et al. (2022) Proteomics and Metabolomics Unveil Codonopsis pilosula (Franch.) Nannf. Ameliorates Gastric Precancerous Lesions via Regulating Energy Metabolism. Frontiers in Pharmacology, 13, Article 933096. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Cai, T., Zhang, C., Zeng, X., Zhao, Z., Yan, Y., Yu, X., et al. (2019) Protective Effects of Weipixiao Decoction against MNNG-Induced Gastric Precancerous Lesions in Rats. Biomedicine & Pharmacotherapy, 120, Article ID: 109427. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Zhu, Y., Ma, R., Cheng, W., Qin, M., Guo, W., Qi, Y., et al. (2024) Sijunzi Decoction Ameliorates Gastric Precancerous Lesions via Regulating Oxidative Phosphorylation Based on Proteomics and Metabolomics. Journal of Ethnopharmacology, 318, Article ID: 116925. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Li, X., Li, A., Li, K., Qin, X. and Liu, Y. (2020) Metabonomics Approach Reveals the Vital Role of Huangqi in Huangqi Jianzhong Tang against Chronic Atrophic Gastritis Coupled with Molecular Docking and BAWP. Chemometrics and Intelligent Laboratory Systems, 200, Article ID: 103984. [Google Scholar] [CrossRef]
|
|
[81]
|
Liu, Y., Xu, W., Wang, G. and Qin, X. (2018) Material Basis Research for Huangqi Jianzhong Tang against Chronic Atrophic Gastritis Rats through Integration of Urinary Metabonomics and Systemsdock. Journal of Ethnopharmacology, 223, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
叶芸, 李春灵, 等. 乐胃饮加味方通过PI3K/AKT/mTOR信号通路调控糖酵解干预慢性萎缩性胃炎[J]. 中国中西医结合杂志, 2025, 45(2): 190-197.
|
|
[83]
|
Alzahrani, A.S. (2019) PI3K/AKT/mTOR Inhibitors in Cancer: At the Bench and Bedside. Seminars in Cancer Biology, 59, 125-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Tixier, F., Hatt, M., Le Rest, C.C., Le Pogam, A., Corcos, L. and Visvikis, D. (2012) Reproducibility of Tumor Uptake Heterogeneity Characterization through Textural Feature Analysis in 18F-FDG PET. Journal of Nuclear Medicine, 53, 693-700. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Takizawa, K., Muramatsu, K., Maruyama, K., Urakami, K., Sugino, T., Kusuhara, M., et al. (2020) Metabolic Profiling of Human Gastric Cancer Cells Treated with Salazosulfapyridine. Technology in Cancer Research & Treatment, 19, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
MaruYama, T., Miyazaki, H., Lim, Y., Gu, J., Ishikawa, M., Yoshida, T., et al. (2023) Pyrolyzed Deketene Curcumin Controls Regulatory T Cell Generation and Gastric Cancer Metabolism Cooperate with 2-Deoxy-d-glucose. Frontiers in Immunology, 14, Article 1049713. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Guan, Z., Chen, J., Li, X. and Dong, N. (2020) Tanshinone IIA Induces Ferroptosis in Gastric Cancer Cells through p53-Mediated SLC7A11 Down-Regulation. Bioscience Reports, 40, BSR20201807. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Wang, X., He, R., Geng, L., Yuan, J. and Fan, H. (2022) Ginsenoside Rg3 Alleviates Cisplatin Resistance of Gastric Cancer Cells through Inhibiting SOX2 and the PI3K/AKT/mTOR Signaling Axis by Up-Regulating miR-429. Frontiers in Genetics, 13, Article 823182. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Tao, H., Ding, X., Wu, J., Liu, S., Sun, W., Nie, M., et al. (2020) β‐Asarone Increases Chemosensitivity by Inhibiting Tumor Glycolysis in Gastric Cancer. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 6981520. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
傅敏. 黄连-干姜药对化学成分分析及其抗胃癌药效作用研究[D]: [硕士学位论文]. 武汉: 湖北中医药大学, 2022.
|
|
[91]
|
Dai, Z., Zhang, X., Li, W., Tang, J., Pan, T., Ma, C., et al. (2021) Salidroside Induces Apoptosis in Human Gastric Cancer Cells via the Downregulation of ENO1/PKM2/GLUT1 Expression. Biological and Pharmaceutical Bulletin, 44, 1724-1731. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Wu, J., Zhang, X., Wang, Y., Sun, Q., Chen, M., Liu, S., et al. (2017) Licochalcone A Suppresses Hexokinase 2-Mediated Tumor Glycolysis in Gastric Cancer via Downregulation of the Akt Signaling Pathway. Oncology Reports, 39, 1181-1190. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Sun, Q., Yuan, M., Wang, H., Zhang, X., Zhang, R., Wang, H., et al. (2021) PKM2 Is the Target of a Multi-Herb-Combined Decoction during the Inhibition of Gastric Cancer Progression. Frontiers in Oncology, 11, Article 767116. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Cao, Y., Wang, D., Mo, G., Peng, Y. and Li, Z. (2023) Gastric Precancerous Lesions: Occurrence, Development Factors, and Treatment. Frontiers in Oncology, 13, Article 1226652. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Takeuchi, K. (2012) Pathogenesis of NSAID-Induced Gastric Damage: Importance of Cyclooxygenase Inhibition and Gastric Hypermotility. World Journal of Gastroenterology, 18, 2147-2160. [Google Scholar] [CrossRef] [PubMed]
|