克拉玛依市老年人认知减退、抑郁状态现状分析及影响因素的研究
A Study on the Current Status and Influencing Factors of Cognitive Decline and Depressive State among the Elderly in Karamay City
DOI: 10.12677/acm.2025.1572134, PDF, HTML, XML,    科研立项经费支持
作者: 冯 微, 张 炜, 何 莉, 殷振江*:克拉玛依市中心医院神经内科,新疆 克拉玛依;李志雄:克拉玛依市人民医院精神心理科,新疆 克拉玛依;袁 君:克拉玛依市中心医院组织人事科,新疆 克拉玛依;李丽娇:新疆维吾尔自治区人民医院肾病科,新疆 乌鲁木齐
关键词: 老年人认知障碍抑郁状态影响因素Older People Cognitive Impairment Depressive State Influencing Factors
摘要: 目的:本研究旨在探究克拉玛依市65岁以上老年人认知减退及抑郁状态的现状,并剖析其影响因素,为社区开展老年人认知减退及抑郁状态的早期干预提供科学依据。方法:研究采用简单随机抽样与分层抽样相结合的方式,选取13,286名65岁以上老人作为调查对象,借助AD8、PHQ-9自评工具进行手机问卷调查。结果:13,286名调查对象中,认知功能下降组有3819人(占比28.745%),认知功能正常组9467人(占比71.255%),认知功能下降组年龄显著高于正常组(P < 0.01);可能或已处于抑郁状态组1954人(占比14.707%),无抑郁组11,332人(占比85.293%),抑郁组年龄显著高于正常组(P < 0.01)。认知功能下降组和正常组在年龄、性别、婚姻状况、居住方式、家庭月收入、既往史、家人健康状况、文化程度方面存在显著差异(均P < 0.05)。单因素Logistic回归分析表明,年龄、性别、婚姻状况、居住方式、家庭月收入、既往史、家人健康状况、文化程度是认知功能下降的风险因素;多因素Logistic回归分析显示,年龄、家庭月收入、既往史、家人健康状况、文化程度是认知功能下降的风险因素。可能或已处于抑郁状态组和正常组在年龄、性别、婚姻状况、家庭月收入、既往史、家人健康状况、文化程度方面差异显著(均P < 0.05)。单因素Logistic回归分析显示,上述因素是可能或已处于抑郁状态的风险因素;多因素Logistic回归分析表明,婚姻状况、家庭月收入、既往史、家人健康状况、文化程度是可能或已处于抑郁状态的风险因素。结论:克拉玛依市老年人认知功能障碍患病率为28.745%,独居、家庭月收入低、有既往慢性病史、家人健康状况差、文化程度低是老年人认知功能下降的高危因素;可能或已处于抑郁状态患病率为14.707%,性别、婚姻状况、家庭月收入低、既往有慢性病史、家人健康状况差、文化程度低是抑郁障碍的风险因素,需重点关注。
Abstract: Objective: This study aims to explore the current status of cognitive decline and depressive state among the elderly over 65 years old in Karamay City and analyze its influencing factors, so as to provide a scientific basis for the early intervention of cognitive decline and depressive state among the elderly in the community. Methods: The study adopted a combination of simple random sampling and stratified sampling to select 13,286 elderly people over 65 years old as the research objects, and used self-assessment tools such as AD8 and PHQ-9 for mobile phone questionnaires. Results: Among the 13,286 respondents, there were 3819 people in the cognitive function decline group (accounting for 28.745%), and 9467 people in the normal cognitive function group (accounting for 71.255%). The age of the cognitive function decline group was significantly higher than that of the normal group (P < 0.01). There were 1954 people in the possible or existing depressive state group (accounting for 14.707%), and 11,332 people in the non-depressive group (accounting for 85.293%). The age of the depressive group was significantly higher than that of the normal group (P < 0.01). There were significant differences between the cognitive function decline group and the normal group in terms of age, gender, marital status, living method, monthly family income, past medical history, family members’ health status, and educational level (all P < 0.05). Univariate Logistic regression analysis showed that age, gender, marital status, living method, monthly family income, past medical history, family members’ health status, and educational level were risk factors for cognitive function decline. Multivariate Logistic regression analysis showed that age, monthly family income, past medical history, family members’ health status, and educational level were risk factors for cognitive function decline. There were significant differences between the possible or existing depressive state group and the normal group in terms of age, gender, marital status, monthly family income, past medical history, family members’ health status, and educational level (all P < 0.05). Univariate Logistic regression analysis showed that the above-mentioned factors were risk factors for the possible or existing depressive state. Multivariate Logistic regression analysis showed that marital status, monthly family income, past medical history, family members’ health status, and educational level were risk factors for the possible or existing depressive state. Conclusion: The prevalence of cognitive impairment among the elderly in Karamay City is 28.745%. Living alone, low monthly family income, past chronic medical history, poor health status of family members, and low educational level are high-risk factors for cognitive function decline among the elderly. The prevalence of a possible or existing depressive state is 14.707%. Gender, marital status, low monthly family income, past chronic medical history, poor health status of family members, and low educational level are risk factors for depressive disorders, which require key attention.
文章引用:冯微, 李志雄, 张炜, 袁君, 何莉, 李丽娇, 殷振江. 克拉玛依市老年人认知减退、抑郁状态现状分析及影响因素的研究[J]. 临床医学进展, 2025, 15(7): 1350-1357. https://doi.org/10.12677/acm.2025.1572134

1. 引言

在全球老龄化进程不断加快的当下,老年人的身心健康问题成为社会关注的焦点。我国老龄化形势也日益严峻,有研究预测,2020年中国老年人口达2.54亿人,2035年将攀升至4.12亿人,2050年更是高达4.80亿人[1]-[6]。伴随老龄化加剧,老年认知障碍、抑郁等心理疾病的发病率呈上升趋势,严重影响老年人的身心健康和生活质量。心理健康状况反映了个体对自身生活状态的综合评价,在老年群体中,不良心理状态易诱发躯体疾病,而躯体疾病带来的不适和生活不便又会进一步影响心理状态,形成身心交互的恶性循环,威胁老年人的整体健康。认知障碍及焦虑、抑郁障碍是我国老年人常见的心理健康问题,国内研究显示[7]-[13],老年人认知障碍患病率为14.5%,抑郁症患病率达25.55%。由于各地区文化、医疗水平和经济发展程度不同,老年人群的认知功能状态与抑郁状态发病情况存在差异。因此,本研究对克拉玛依市65岁及以上老年人群的认知和抑郁状况展开调查,分析影响因素,为提供精准心理服务提供参考。

2. 资料与方法

2.1. 调查对象

经克拉玛依市中心医院伦理委员会批准,于2023年4~10月开展研究。首先运用简单随机抽样抽取4个区,再依据城乡居民健康档案资料,采用分层抽样选取13,286例年龄大于65岁的老年人作为研究对象。

2.2. 相关定义及判定标准

认知功能下降的判定依据AD8痴呆早期筛查问卷,若个体得分达到2分及以上,表明其认知功能出现下降迹象。抑郁状态通过PHQ-9抑郁筛查自评问卷评估,得分0~4分表示情绪正常;5~9分提示可能存在抑郁情绪;10分及以上则判定为处于抑郁状态。

2.3. 方法

2.3.1. 调查方法

对选定社区的65岁及以上老年人进行全面问卷调查。问卷内容涵盖老年人基本信息、认知功能和抑郁状态相关情况。调查前,由资深精神科医生对工作人员进行统一培训,内容包括调查流程、沟通技巧和问卷理解。调查时,工作人员向老年人详细说明调查目的和意义,尊重其意愿并获取同意。问卷填写方式灵活,可由工作人员协助或具备书写能力的老人自行填写。调查员现场审核问卷,确保填写完整、数据准确。所有问卷均匿名测评,保护调查对象隐私,以获取真实数据。

2.3.2. 评价工具

借助微信、问卷星等平台,设计适用于克拉玛依市65岁及以上老年人的心理调研问卷,内容包含姓名、民族、年龄、性别、婚姻状态、月收入水平、居住模式、过往慢性病情况、家庭成员健康状态以及文化教育程度等。使用AD8条目痴呆筛查问卷进行认知功能自我评估,该问卷含8个条目,满分8分,2分及以上表示存在认知功能障碍风险。采用患者健康问卷抑郁症状群量表(PHQ-9)测评抑郁状态,量表共9个条目,满分27分,依据不同得分区间判断抑郁状态。

2.4. 质量控制

在研究设计阶段开展小范围预调查,及时发现问题并优化设计方案。制定详细调查手册,组织工作人员培训,培训后进行考核,考核合格者才能参与现场调查。安排巡视人员监督调查过程,确保准确性。调查结束后,专人负责问卷收集和检查,剔除漏填或逻辑不合理的数据。积极开展宣传工作,提高研究对象的参与率和依从性。数据整理时采用双人核查机制,保证数据质量。

2.5. 统计学方法

运用SPSS 22.0统计软件进行数据分析。对于计量资料,先通过Kolmogorov-Smirnov正态性检验判断是否呈正态分布。呈正态分布的计量资料用均值 ± 标准差表示,组间比较采用t检验;非正态分布的计量资料用中位数(四分位数间距)描述,组间比较采用Mann-Whitney U检验。计数资料以频数(频率)描述,组间比较采用卡方检验。通过单因素及多因素Logistic回归分析,探究认知功能下降、可能或已处于抑郁状态与各研究因素的关系,计算比值比(OR)和95%置信区间(CI)。所有统计分析采用双侧检验,P < 0.05为差异具有统计学意义。

3. 结果

3.1. 研究对象基本情况分析

本研究共纳入13,286名65岁以上居民,其中认知功能下降者3819人(28.745%),认知功能正常者9467人(71.255%),认知功能下降组年龄显著高于正常组(P < 0.01)。可能或已处于抑郁状态者1954人(14.707%),无抑郁者11,332人(85.293%),抑郁组年龄显著高于正常组(P < 0.01)。认知功能下降组和正常组在年龄、性别、婚姻状况、居住方式、家庭月收入、既往史、家人健康状况、文化程度方面差异显著(均P < 0.05)。具体数据见表1

Table 1. Basic characteristics of the study subjects

1. 研究对象基本情况

项目

例数

认知减退 (n = 3819)

认知正常 (n = 9467)

χ2/t值

P值

可能或已经抑郁状态(n = 1954)

无抑郁 (n = 11,332)

χ2/t值

P值

年龄

-

-

75.150 ± 12.649

72.852 ± 13.568

−9.008

0.000

75.219 ± 7.207

73.218 ± 14.122

−6.126

0.000

性别

5814

1522 (26.178)

4292 (73.822)

33.32

<0.01

701

5113

58.123

<0.01

7472

2297 (30.741)

5175 (69.259)

1253

6219

婚姻状况

已婚

10,527

2846

7681

28.53

<0.01

1357

9170

135.624

<0.01

未婚

55

18

37

11

44

离异

164

38

126

30

134

丧偶

2540

917

1623

556

1984

居住方式

独居

2546

836

1710

32.31

<0.01

486

2060

3.135

0.077

和配偶

8703

2294

6409

1105

7598

和配偶及子女

732

198

534

109

623

和子女

1305

491

814

254

1051

家庭月收入

<4000元

4224

1460

2764

89.70

<0.01

764

3460

70.032

<0.01

4000~8000元

6377

1830

4547

909

5468

>8000元

2685

529

2156

281

2404

既往史

健康

4217

933

3284

133.49

<0.01

360

3857

190.161

<0.01

有慢性病

9069

2886

6183

1594

7475

家人健康 状况

良好

6970

1625

5345

84.59

<0.01

671

6299

465.055

<0.01

一般

5712

1919

3793

1050

4662

较差

554

252

302

208

346

很差

50

23

27

25

25

文化程度

文盲

1441

562

879

57.11

<0.01

308

1133

141.384

<0.01

小学

4388

1500

2888

790

3598

初中

4386

1161

3225

550

3836

高中、中专、职高

2210

433

1777

227

1983

大专

652

120

532

50

602

本科

209

43

166

29

180

3.2. 研究对象认知功能下降、可能或已抑郁状态的单因素Logistic回归分析

单因素Logistic回归分析结果显示,年龄、性别、婚姻状况、居住方式、家庭月收入、既往史、家人健康状况以及文化程度,均为认知功能下降的风险因素。同时,这些因素也是可能或已处于抑郁状态的风险因素,且差异均具有统计学意义(所有P值均<0.05)。具体数据见表2

Table 2. Univariate Logistic regression analysis

2. 单因素Logistic回归分析

变量

认知减退

可能或已经抑郁状态

β

标准误

Waldχ2

OR值(95% CI)

P值

β

标准误

Waldχ2

OR值(95% CI)

P值

年龄

0.035

0.003

0.159

1.036

0.000

0.014

0.004

15.452

1.014

0.000

性别

0.224

0.039

33.186

1.252

0.000

0.385

0.051

57.419

1.470

0.000

婚姻状况

0.136

0.016

76.631

1.145

0.000

0.213

0.019

131.219

1.237

0.000

居住方式

0.075

0.018

17.698

1.078

0.000

0.040

0.023

3.312

0.1041

0.077

家庭月收入

−0.256

0.019

172.834

0.814

0.000

−0.215

0.025

72.760

0.807

0.000

既往史

0.496

0.043

130.796

1.643

0.000

0.826

0.062

179.730

2.285

0.000

家人健康状况

0.493

0.032

240.853

1.637

0.000

0.807

0.039

420.479

2.240

0.000

文化程度

−0.295

0.019

252.937

0.745

0.000

−0.281

0.024

138.275

0.755

0.000

3.3. 研究对象认知功能下降、可能或已抑郁状态的多因素Logistic回归分析

多因素Logistic回归分析表明,年龄、家庭月收入、既往史、家人健康状况以及文化程度,都是导致认知功能下降的风险因素。同时,婚姻状况、家庭月收入、既往史、家人健康状况和文化程度,是引发可能或已存在抑郁状态的风险因素,差异均具有统计学意义(P均<0.05)。具体数据见表3

Table 3. Multivariate Logistic regression analysis

3. 多因素Logistic回归分析

变量

认知减退

可能或已经抑郁状态组

β

标准误

Waldχ2

OR值(95% CI)

P值

β

标准误

Waldχ2

OR值(95% CI)

P值

年龄

0.015

0.003

23.152

1.015

0.000

0.002

0.001

2.583

1.002

0.108

性别

0.011

0.043

0.066

1.001

0.797

0.145

0.056

6.622

1.156

0.010

婚姻状况

−0.004

0.018

0.057

0.996

0.812

0.098

0.021

21.422

1.103

0.000

居住方式

0.033

0.018

3.347

1.033

0.067

-

-

-

-

-

家庭月收入

−0.204

0.021

91.035

0.816

0.000

−0.131

0.028

21.929

0.878

0.000

既往史

0.323

0.046

49.787

1.382

0.000

0.552

0.064

74.179

1.737

0.000

家人健康状况

0.446

0.033

177.893

1.562

0.000

0.736

0.041

321.120

2.089

0.000

文化程度

−0.216

0.020

112.940

0.100

0.000

−0.199

0.026

59.839

0.047

0.000

4. 讨论

认知功能下降和抑郁状态在老年人中较为常见,严重影响其生活质量。本研究结果显示,克拉玛依市65岁以上老年人认知功能障碍患病率为28.745%,可能或已处于抑郁状态患病率为14.707%。

年龄是认知功能下降和抑郁状态的重要危险因素。随着年龄增长,老年人脑组织结构和功能发生退行性变化,神经递质失衡,导致认知功能减退。同时,身体机能衰退、慢性疾病增多,使老年人心理压力增大,易出现抑郁情绪。本研究中,认知功能下降组和可能或已处于抑郁状态组年龄均显著高于正常组,与国内外研究结果一致[14]-[19]

家庭月收入低与认知功能下降和抑郁状态相关[20]-[22]。经济状况差可能限制老年人获取医疗资源、营养支持和参与社交活动,增加认知功能下降风险。经济压力也会导致心理负担加重,引发抑郁情绪。

既往有慢性病史是认知功能下降和抑郁状态的风险因素[23]-[25]。慢性疾病如高血压、糖尿病、心血管疾病等,会影响脑血液循环和代谢,损害认知功能。长期患病带来的身体不适和生活不便,易使老年人产生无助、绝望情绪,诱发抑郁。本研究中,认知功能下降组和可能或已处于抑郁状态组既往有慢性病史的比例显著高于正常组,与相关研究相符。

家人健康状况差与认知功能下降和抑郁状态有关[26] [27]。家人健康问题会给老年人带来心理压力,分散其注意力,影响认知功能。同时,担心家人健康、照顾家人的负担,可能导致老年人心理失衡,出现抑郁情绪。

文化程度低是认知功能下降和抑郁状态的风险因素[28] [29]。文化程度低的老年人知识储备少,认知储备不足,对认知功能下降的抵抗力弱。文化程度低可能限制社交圈子和信息获取,使老年人难以有效应对生活压力,增加抑郁风险。

婚姻状况与抑郁状态相关。丧偶、离异等婚姻变故会使老年人失去情感支持,生活方式改变,孤独感增加,从而易陷入抑郁状态。

独居与认知功能下降相关,大量研究表明[30] [31],长期独居可能导致记忆力下降、注意力分散、思维迟缓等问题。独居者往往社交活动匮乏,缺乏与他人的交流和互动。而社交互动能为大脑提供丰富的刺激,促进神经元之间的连接和信息传递。缺少这种刺激,大脑活跃度会降低,影响认知功能,例如可能导致记忆力减退,难以记住新的事物和信息,或在规划、组织和执行任务时遇到困难。独居容易引发孤独感和抑郁情绪等心理问题。这些负面情绪会干扰大脑的正常功能,影响神经递质的分泌,如5-羟色胺、多巴胺等,进而对认知功能产生负面影响。长期处于孤独和抑郁状态下,大脑对情感处理、信息整合等能力会下降,导致注意力不集中,思维变得迟缓。独自生活时,人们容易出现生活不规律的情况,如饮食不均衡、睡眠质量差等。不良的饮食习惯会导致大脑缺乏必要的营养支持,影响其正常运转。而睡眠不足或睡眠质量差会干扰大脑对白天信息的整理和存储,长期下去会损害记忆力等认知功能。

本研究存在一定局限性。调查采用手机问卷调查,可能存在部分老年人因不会使用手机或视力、听力问题导致问卷填写不准确的情况。研究为横断面调查,无法确定因素间的因果关系。未来研究可采用多种调查方式,结合纵向研究,深入探究老年人认知功能下降和抑郁状态的影响因素及机制。

基金项目

新疆维吾尔自治区天山英才青年拔尖人才项目(编号:2024TSYCJC0025)。

NOTES

*通讯作者。

参考文献

[1] 杜鹏, 李龙. 新时代中国人口老龄化长期趋势预测[J]. 中国人民大学学报, 2021, 35(1): 96-109.
[2] 汪斌. 中国老年人口健康现状、变动趋势及其社会经济影响——基于“七普”数据的分析[J]. 云南民族大学学报(哲学社会科学版), 2022, 39(5): 68-75.
[3] 张玲, 徐勇, 聂宏伟. 2000-2010年中国老年人抑郁患病率的Meta分析[J]. 中国老年学杂志, 2011, 31(17): 3349-3352.
[4] 聂晓璐, 吕晓珍, 卓琳, 等. 2001-2015年中国轻度认知功能障碍患病率的Meta分析[J]. 中华精神科杂志, 2016, 49(5): 298-306.
[5] Herber, C.C.L.M., Lott-Sandkamp, L.L., Straub, E.R. and Tuschen-Caffier, B. (2024) The Role of Affective Control, Strategy Repertoire and Subjective Emotion Regulation Success in Developmental Internalising Psychopathology. Scientific Reports, 14, Article No. 21224.
https://doi.org/10.1038/s41598-024-72336-9
[6] Wu, X., Zhang, N., Chao, J., Liu, Y. and Zhang, B. (2024) Sex-Specific in the Association between Depressive Symptoms and Risk of Cognitive Impairment in Chinese Older Adults. Archives of Psychiatric Nursing, 52, 69-75.
https://doi.org/10.1016/j.apnu.2024.07.012
[7] Li, X., Wei, C., Hu, K., Sun, J., Gao, X. and Yang, J. (2024) Regional Differences in the Association of Healthy Aging with the Incidence of Falls: An Analysis Based on the China Health and Retirement Longitudinal Study from 2011 to 2020. Frontiers in Public Health, 12, Article 1416214.
https://doi.org/10.3389/fpubh.2024.1416214
[8] Imarisio, A., Yahyavi, I., Gasparri, C., Hassan, A., Avenali, M., Di Maio, A., et al. (2024) Serum Dysregulation of Serine and Glycine Metabolism as Predictive Biomarker for Cognitive Decline in Frail Elderly Subjects. Translational Psychiatry, 14, Article No. 281.
https://doi.org/10.1038/s41398-024-02991-z
[9] Kim, A., Chu, S.H., Oh, S.S., Lee, E., Choi, J. and Kim, W.J. (2024) Subjective Cognitive Decline in Community-Dwelling Older Adults with Objectively Normal Cognition: Mediation by Depression and Instrumental Activities of Daily Living. Psychiatry Investigation, 21, 583-589.
https://doi.org/10.30773/pi.2023.0403
[10] Porricelli, D., Tecilla, M., Pucci, V., Di Rosa, E., Mondini, S. and Cappelletti, M. (2024) Cognitive Reserve Modulates Mental Health in Adulthood. Aging Clinical and Experimental Research, 36, Article No. 139.
https://doi.org/10.1007/s40520-024-02776-w
[11] Khan, H., Farhana, F., Mostafa, F., Rafiq, A., Nizia, E.W., Razzaq, R., et al. (2024) Comparative Study of Risk Factors Associated with Normal Cognition and Cognitive Impairment in Rural West Elderly Texans. Journal of Alzheimers Disease Reports, 8, 1133-1151.
https://doi.org/10.3233/adr-240092
[12] Ojagbemi, A., Daley, S., Feeney, Y. and Gureje, O. (2024) The Care of Older People with Depression in Nigeria: Qualitative Exploration of the Experience of Lay Providers in Primary Care Settings. International Journal of Geriatric Psychiatry, 39, e6147.
https://doi.org/10.1002/gps.6147
[13] Shakil, S., Ghosh, J., Singh, K. and Chaudhury, S.R. (2024) Comparative Analysis of Nutritional Status among Institutionalised and Community-Dwelling Elderly Women and Its Association with Mental Health Status and Cognitive Function. Journal of Family Medicine and Primary Care, 13, 3078-3083.
https://doi.org/10.4103/jfmpc.jfmpc_1932_23
[14] Ding, R., Ding, P., Tian, L., Kuang, X., Huang, B. and Lin, C. (2024) Associations between Sleep Duration, Depression Status, and Cognitive Function among Chinese Elderly: A Community-Based Study. Journal of Affective Disorders, 366, 273-282.
https://doi.org/10.1016/j.jad.2024.08.200
[15] Didikoglu, A., Guler, E.S., Turk, H.K., Can, K., Erim, A.N., Payton, A., et al. (2024) Depression in Older Adults and Its Associations with Sleep and Synaptic Density. Journal of Affective Disorders, 366, 379-385.
https://doi.org/10.1016/j.jad.2024.08.186
[16] Xue, S., Lu, A., Chen, W., Li, J., Ke, X. and An, Y. (2024) A Latent Profile Analysis and Network Analysis of Anxiety and Depression Symptoms in Chinese Widowed Elderly. Journal of Affective Disorders, 366, 172-180.
https://doi.org/10.1016/j.jad.2024.08.181
[17] Szota, M., Rogowska, A.M., Kwaśnicka, A. and Chilicka-Hebel, K. (2024) The Indirect Effect of Future Anxiety on the Relationship between Self-Efficacy and Depression in a Convenience Sample of Adults: Revisiting Social Cognitive Theory. Journal of Clinical Medicine, 13, Article 4897.
https://doi.org/10.3390/jcm13164897
[18] Xiang, X., Turner, S., Ruiz-Sierra, S., Zheng, C., Ash, S., Kodkany, N., et al. (2024) Older Adults Experience with a Layperson-Supported Digital Mental Health Intervention for Depression: Qualitative Insights on Engagement. Clinical Gerontologist.
https://doi.org/10.1080/07317115.2024.2395890
[19] Dhawale, K.K. and Tidake, P. (2024) Cataract Surgery and Mental Health: A Comprehensive Review on Outcomes in the Elderly. Cureus, 16, e65469.
https://doi.org/10.7759/cureus.65469
[20] Götze, H., Friedrich, M., Taubenheim, S., Dietz, A., Lordick, F. and Mehnert, A. (2019) Depression and Anxiety in Long-Term Survivors 5 and 10 Years after Cancer Diagnosis. Supportive Care in Cancer, 28, 211-220.
https://doi.org/10.1007/s00520-019-04805-1
[21] Jia, F., Wang, J., Wei, N., Sun, D. and Cao, F. (2021) Depression, Cognitive Reserve Markers, and Dementia Risk in the General Population. Aging & Mental Health, 26, 2006-2013.
https://doi.org/10.1080/13607863.2021.1972932
[22] Banjongrewadee, M., Wongpakaran, N., Wongpakaran, T., Pipanmekaporn, T., Punjasawadwong, Y. and Mueankwan, S. (2020) The Role of Perceived Stress and Cognitive Function on the Relationship between Neuroticism and Depression among the Elderly: A Structural Equation Model Approach. BMC Psychiatry, 20, Article No. 25.
https://doi.org/10.1186/s12888-020-2440-9
[23] Huang, W., Zhu, W., Chen, H., Li, F., Huang, J., Zhou, Y., et al. (2022) Longitudinal Association between Depressive Symptoms and Cognitive Decline among Middle-Aged and Elderly Population. Journal of Affective Disorders, 303, 18-23.
https://doi.org/10.1016/j.jad.2022.01.107
[24] Lin, L., Jing, X., Lv, S., Liang, J., Tian, L., Li, H., et al. (2020) Mobile Device Use and the Cognitive Function and Depressive Symptoms of Older Adults Living in Residential Care Homes. BMC Geriatrics, 20, Article No. 41.
https://doi.org/10.1186/s12877-020-1427-1
[25] Cole, S., Hua, C., Peng, S. and Wang, W. (2024) Exploring the Relationship of Leisure Travel with Loneliness, Depression, and Cognitive Function in Older Adults. International Journal of Environmental Research and Public Health, 21, Article 498.
https://doi.org/10.3390/ijerph21040498
[26] McClintock, S.M., Minto, L., Denney, D.A., Bailey, K.C., Cullum, C.M. and Dotson, V.M. (2021) Clinical Neuropsychological Evaluation in Older Adults with Major Depressive Disorder. Current Psychiatry Reports, 23, Article No. 55.
https://doi.org/10.1007/s11920-021-01267-3
[27] Mougias, A., Christidi, F., Synetou, M., Kotrotsou, I., Valkimadi, P. and Politis, A. (2019) Differential Effect of Demographics, Processing Speed, and Depression on Cognitive Function in 755 Non-Demented Community-Dwelling Elderly Individuals. Cognitive and Behavioral Neurology, 32, 236-246.
https://doi.org/10.1097/wnn.0000000000000211
[28] Lee, J.E., Kahana, E., Kahana, B. and Zarit, S. (2020) The Role of Goal and Meaning in Life for Older Adults Facing Interpersonal Stress. Aging & Mental Health, 26, 149-158.
https://doi.org/10.1080/13607863.2020.1849020
[29] Ahn, S., Mathiason, M.A. and Yu, F. (2021) Longitudinal Cognitive Profiles by Anxiety and Depressive Symptoms in American Older Adults with Subjective Cognitive Decline. Journal of Nursing Scholarship, 53, 698-708.
https://doi.org/10.1111/jnu.12692
[30] Biasutti, M. and Mangiacotti, A. (2019) Music Training Improves Depressed Mood Symptoms in Elderly People: A Randomized Controlled Trial. The International Journal of Aging and Human Development, 92, 115-133.
https://doi.org/10.1177/0091415019893988
[31] Santos, A.P.B., Zajdenverg, L., Guimarães, H.C., Beato, R.G., de Almeida, M.A., Ritter, S.R.F., et al. (2021) Diabetes and Impaired Fasting Glucose in a Population-Based Sample of Individuals Aged 75+ Years: Associations with Cognition, Major Depressive Disorder, Functionality and Quality of Life—The Pietà Study. Neurological Sciences, 42, 3663-3671.
https://doi.org/10.1007/s10072-020-05008-x