[1]
|
Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125. https://doi.org/10.2174/1570159x18666200528142429
|
[2]
|
Bai, H. and Zhang, Q. (2021) Activation of NLRP3 Inflammasome and Onset of Alzheimer’s Disease. Frontiers in Immunology, 12, Article 701282. https://doi.org/10.3389/fimmu.2021.701282
|
[3]
|
Shippy, D.C., Evered, A.H. and Ulland, T.K. (2024) Ketone Body Metabolism and the NLRP3 Inflammasome in Alzheimer’s Disease. Immunological Reviews, 329, e13365. https://doi.org/10.1111/imr.13365
|
[4]
|
Fu, J. and Wu, H. (2023) Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annual Review of Immunology, 41, 301-316. https://doi.org/10.1146/annurev-immunol-081022-021207
|
[5]
|
Jose, S., Groves, N.J., Roper, K.E. and Gordon, R. (2022) Mechanisms of NLRP3 Activation and Pathology during Neurodegeneration. The International Journal of Biochemistry & Cell Biology, 151, Article ID: 106273. https://doi.org/10.1016/j.biocel.2022.106273
|
[6]
|
Singh, D. (2022) Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer’s Disease. Journal of Neuroinflammation, 19, Article No. 206. https://doi.org/10.1186/s12974-022-02565-0
|
[7]
|
Qiao, O., Ji, H., Zhang, Y., Zhang, X., Zhang, X., Liu, N., et al. (2021) New Insights in Drug Development for Alzheimer’s Disease Based on Microglia Function. Biomedicine & Pharmacotherapy, 140, Article ID: 111703. https://doi.org/10.1016/j.biopha.2021.111703
|
[8]
|
Merighi, S., Nigro, M., Travagli, A. and Gessi, S. (2022) Microglia and Alzheimer’s Disease. International Journal of Molecular Sciences, 23, Article 12990. https://doi.org/10.3390/ijms232112990
|
[9]
|
Liu, D., Zhong, Z. and Karin, M. (2022) NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines, 10, Article 1250. https://doi.org/10.3390/biomedicines10061250
|
[10]
|
Lu, R., Zhang, L. and Yang, X. (2022) Interaction between Autophagy and the NLRP3 Inflammasome in Alzheimer’s and Parkinson’s Disease. Frontiers in Aging Neuroscience, 14, Article 1018848. https://doi.org/10.3389/fnagi.2022.1018848
|
[11]
|
Terzioglu, G. and Young-Pearse, T.L. (2023) Microglial Function, INPP5D/SHIP1 Signaling, and NLRP3 Inflammasome Activation: Implications for Alzheimer’s Disease. Molecular Neurodegeneration, 18, Article No. 89. https://doi.org/10.1186/s13024-023-00674-9
|
[12]
|
Wu, A., Zhou, X., Qiao, G., Yu, L., Tang, Y., Yan, L., et al. (2021) Targeting Microglial Autophagic Degradation in NLRP3 Inflammasome-Mediated Neurodegenerative Diseases. Ageing Research Reviews, 65, Article ID: 101202. https://doi.org/10.1016/j.arr.2020.101202
|
[13]
|
Dezfouli, M.A., Shalilahmadi, D., Shamsaei, G., Esmaeili, A., Majdinasab, N. and Rashidi, S.K. (2025) Circulating miR-223/NLRP3 Axis and IL-1β Level in Functional Disease Progression of Amyotrophic Lateral Sclerosis. Acta Neurologica Belgica, 125, 783-791. https://doi.org/10.1007/s13760-025-02764-5
|
[14]
|
Bai, H., Zhang, Q., Duan, J., Yu, D. and Liu, L. (2018) Downregulation of Signal Transduction and STAT3 Expression Exacerbates Oxidative Stress Mediated by NLRP3 Inflammasome. Neural Regeneration Research, 13, 2147-2155. https://doi.org/10.4103/1673-5374.241470
|
[15]
|
Guo, Y., Wang, Q., Chen, S. and Xu, C. (2021) Functions of Amyloid Precursor Protein in Metabolic Diseases. Metabolism, 115, Article ID: 154454. https://doi.org/10.1016/j.metabol.2020.154454
|
[16]
|
Liang, T., Zhang, Y., Wu, S., Chen, Q. and Wang, L. (2022) The Role of NLRP3 Inflammasome in Alzheimer’s Disease and Potential Therapeutic Targets. Frontiers in Pharmacology, 13, Article 845185. https://doi.org/10.3389/fphar.2022.845185
|
[17]
|
Lonnemann, N., Hosseini, S., Marchetti, C., Skouras, D.B., Stefanoni, D., D’Alessandro, A., et al. (2020) The NLRP3 Inflammasome Inhibitor OLT1177 Rescues Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 117, 32145-32154. https://doi.org/10.1073/pnas.2009680117
|
[18]
|
Cai, Y., Chai, Y., Fu, Y., Wang, Y., Zhang, Y., Zhang, X., et al. (2022) Salidroside Ameliorates Alzheimer’s Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Frontiers in Aging Neuroscience, 13, Article 809433. https://doi.org/10.3389/fnagi.2021.809433
|
[19]
|
Sbai, O., Djelloul, M., Auletta, A., Ieraci, A., Vascotto, C. and Perrone, L. (2022) RAGE-TXNIP Axis Drives Inflammation in Alzheimer’s by Targeting Aβ to Mitochondria in Microglia. Cell Death & Disease, 13, Article No. 302. https://doi.org/10.1038/s41419-022-04758-0
|
[20]
|
Escudero-Lourdes, C., Uresti-Rivera, E.E., Oliva-González, C., Torres-Ramos, M.A., Aguirre-Bañuelos, P. and Gandolfi, A.J. (2016) Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-Inflammatory Cytokines Gene Expression That Is Consistent with APP and BACE-1: Over-Expression. Neurochemical Research, 41, 2559-2572. https://doi.org/10.1007/s11064-016-1968-z
|
[21]
|
Zhang, H., Wei, W., Zhao, M., Ma, L., Jiang, X., Pei, H., et al. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192. https://doi.org/10.7150/ijbs.57078
|
[22]
|
Jha, D., Bakker, E.N.T.P. and Kumar, R. (2023) Mechanistic and Therapeutic Role of NLRP3 Inflammasome in the Pathogenesis of Alzheimer’s Disease. Journal of Neurochemistry, 168, 3574-3598. https://doi.org/10.1111/jnc.15788
|
[23]
|
Zhang, H., Wang, X., Xu, P., Ji, X., Chi, T., Liu, P., et al. (2020) Tolfenamic Acid Inhibits GSK-3β and PP2A Mediated Tau Hyperphosphorylation in Alzheimer’s Disease Models. The Journal of Physiological Sciences, 70, 29. https://doi.org/10.1186/s12576-020-00757-y
|
[24]
|
Sharma, B., Satija, G., Madan, A., Garg, M., Alam, M.M., Shaquiquzzaman, M., et al. (2022) Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer’s Disease: A Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation, 46, 56-87. https://doi.org/10.1007/s10753-022-01730-0
|
[25]
|
Harris, J., Lang, T., Thomas, J.P.W., Sukkar, M.B., Nabar, N.R. and Kehrl, J.H. (2017) Autophagy and Inflammasomes. Molecular Immunology, 86, 10-15. https://doi.org/10.1016/j.molimm.2017.02.013
|
[26]
|
Song, J., Cui, Z., Lian, L., Han, X., Hou, L., Wang, G., et al. (2020) 20 S-Protopanaxatriol Ameliorates Hepatic Fibrosis, Potentially Involving FXR-Mediated Inflammatory Signaling Cascades. Journal of Agricultural and Food Chemistry, 68, 8195-8204. https://doi.org/10.1021/acs.jafc.0c01978
|
[27]
|
Park, M.H., Lee, M., Nam, G., Kim, M., Kang, J., Choi, B.J., et al. (2019) N, N’-Diacetyl-p-Phenylenediamine Restores Microglial Phagocytosis and Improves Cognitive Defects in Alzheimer’s Disease Transgenic Mice. Proceedings of the National Academy of Sciences of the United States of America, 116, 23426-23436. https://doi.org/10.1073/pnas.1916318116
|
[28]
|
Shippy, D.C., Wilhelm, C., Viharkumar, P.A., Raife, T.J. and Ulland, T.K. (2020) β-Hydroxybutyrate Inhibits Inflammasome Activation to Attenuate Alzheimer’s Disease Pathology. Journal of Neuroinflammation, 17, Article No. 280. https://doi.org/10.1186/s12974-020-01948-5
|
[29]
|
Huang, Y., Jiang, H., Chen, Y., Wang, X., Yang, Y., Tao, J., et al. (2018) Tranilast Directly Targets NLRP3 to Treat Inflammasome‐Driven Diseases. EMBO Molecular Medicine, 10, e8689. https://doi.org/10.15252/emmm.201708689
|
[30]
|
Man, S.M., Karki, R., Malireddi, R.K.S., Neale, G., Vogel, P., Yamamoto, M., et al. (2015) The Transcription Factor IRF1 and Guanylate-Binding Proteins Target Activation of the AIM2 Inflammasome by Francisella Infection. Nature Immunology, 16, 467-475. https://doi.org/10.1038/ni.3118
|
[31]
|
Anderson, F.L., Biggs, K.E., Rankin, B.E. and Havrda, M.C. (2023) NLRP3 Inflammasome in Neurodegenerative Disease. Translational Research, 252, 21-33. https://doi.org/10.1016/j.trsl.2022.08.006
|