| [1] | Chen, J., Xing, X., Liu, D., Gao, L., Liu, Y., Wang, Y., et al. (2024) Copper Nanoparticles Incorporated Visible Light-Curing Chitosan-Based Hydrogel Membrane for Enhancement of Bone Repair. Journal of the Mechanical Behavior of Biomedical Materials, 158, Article ID: 106674. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Li, L., Zhou, G., Wang, Y., Yang, G., Ding, S. and Zhou, S. (2015) Controlled Dual Delivery of BMP-2 and Dexamethasone by Nanoparticle-Embedded Electrospun Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. Biomaterials, 37, 218-229. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Li, M., You, J., Qin, Q., Liu, M., Yang, Y., Jia, K., et al. (2023) A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 2660. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Mao, Z., Bi, X., Yu, C., Chen, L., Shen, J., Huang, Y., et al. (2024) Mechanically Robust and Personalized Silk Fibroin-Magnesium Composite Scaffolds with Water-Responsive Shape-Memory for Irregular Bone Regeneration. Nature Communications, 15, Article No. 4160. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Sahoo, J.K., Hasturk, O., Falcucci, T. and Kaplan, D.L. (2023) Silk Chemistry and Biomedical Material Designs. Nature Reviews Chemistry, 7, 302-318. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Wu, H., Lin, K., Zhao, C. and Wang, X. (2022) Silk Fibroin Scaffolds: A Promising Candidate for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 10, Article 1054379. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Zhang, M., Matinlinna, J.P., Tsoi, J.K.H., Liu, W., Cui, X., Lu, W.W., et al. (2020) Recent Developments in Biomaterials for Long-Bone Segmental Defect Reconstruction: A Narrative Overview. Journal of Orthopaedic Translation, 22, 26-33. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Wang, H., Zhang, Y., Zhang, M. and Zhang, Y. (2024) Functional Modification of Silk Fibroin from Silkworms and Its Application to Medical Biomaterials: A Review. International Journal of Biological Macromolecules, 259, Article ID: 129099. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Zhou, C., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. and Janin, J. (2001) Silk Fibroin: Structural Implications of a Remarkable Amino Acid Sequence. Proteins: Structure, Function, and Bioinformatics, 44, 119-122. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Aramwit, P., Kanokpanont, S., De-Eknamkul, W. and Srichana, T. (2009) Monitoring of Inflammatory Mediators Induced by Silk Sericin. Journal of Bioscience and Bioengineering, 107, 556-561. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Deshpande, P.B., Kumar, G.A., Kumar, A.R., Shavi, G.V., Karthik, A., Reddy, M.S., et al. (2011) Supercritical Fluid Technology: Concepts and Pharmaceutical Applications. PDA Journal of Pharmaceutical Science and Technology, 65, 333-344. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Kim, H.J., Kim, M.K., Lee, K.H., Nho, S.K., Han, M.S. and Um, I.C. (2017) Effect of Degumming Methods on Structural Characteristics and Properties of Regenerated Silk. International Journal of Biological Macromolecules, 104, 294-302. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Nguyen, T.P., Nguyen, Q.V., Nguyen, V., Le, T., Huynh, V.Q.N., Vo, D.N., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 11, Article 1933. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Quan, S., Yang, J., Huang, S., Shao, J., Liu, Y. and Yang, H. (2025) Silk Fibroin as a Potential Candidate for Bone Tissue Engineering Applications. Biomaterials Science, 13, 364-378. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L. and Kaplan, D.L. (2011) Materials Fabrication from Bombyx Mori Silk Fibroin. Nature Protocols, 6, 1612-1631. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Sun, W., Gregory, D.A., Tomeh, M.A. and Zhao, X. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article 1499. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Wang, H., Zhang, Y. and Wei, Z. (2021) Dissolution and Processing of Silk Fibroin for Materials Science. Critical Reviews in Biotechnology, 41, 406-424. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Wang, S., Li, X., Xu, W., Yu, Q. and Fang, S. (2024) Advances of Regenerated and Functionalized Silk Biomaterials and Application in Skin Wound Healing. International Journal of Biological Macromolecules, 254, Article ID: 128024. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Wei, S., Wang, Y., Sun, Y., Gong, L., Dai, X., Meng, H., et al. (2023) Biodegradable Silk Fibroin Scaffold Doped with Mineralized Collagen Induces Bone Regeneration in Rat Cranial Defects. International Journal of Biological Macromolecules, 235, Article ID: 123861. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Wang, Y., Yang, Z., Chen, X., Jiang, X. and Fu, G. (2023) Silk Fibroin Hydrogel Membranes Prepared by a Sequential Cross-Linking Strategy for Guided Bone Regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 147, Article ID: 106133. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Del Bianco, L., Spizzo, F., Yang, Y., Greco, G., Gatto, M.L., Barucca, G., et al. (2022) Silk Fibroin Films with Embedded Magnetic Nanoparticles: Evaluation of the Magneto-Mechanical Stimulation Effect on Osteogenic Differentiation of Stem Cells. Nanoscale, 14, 14558-14574. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Wang, C., Fang, H., Qi, X., Hang, C., Sun, Y., Peng, Z., et al. (2019) Silk Fibroin Film-Coated Mgznca Alloy with Enhanced in Vitro and in Vivo Performance Prepared Using Surface Activation. Acta Biomaterialia, 91, 99-111. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Xiao, M., Yao, J., Shao, Z. and Chen, X. (2024) Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomaterials Science & Engineering, 10, 2827-2840. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Liu, F., Liu, C., Zheng, B., He, J., Liu, J., Chen, C., et al. (2020) Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers, 12, Article 69. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Panahifar, A., Chapman, L.D., Weber, L., Samadi, N. and Cooper, D.M.L. (2018) Biodistribution of Strontium and Barium in the Developing and Mature Skeleton of Rats. Journal of Bone and Mineral Metabolism, 37, 385-398. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Zhao, Q., Ni, Y., Wei, H., Duan, Y., Chen, J., Xiao, Q., et al. (2023) Ion Incorporation into Bone Grafting Materials. Periodontology 2000, 94, 213-230. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Zhang, J., Tang, L., Qi, H., Zhao, Q., Liu, Y. and Zhang, Y. (2019) Dual Function of Magnesium in Bone Biomineralization. Advanced Healthcare Materials, 8, e1901030. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Li, Z., Peng, S., Pan, H., Tang, B., Lam, R.W.M. and Lu, W.W. (2011) Microarchitecture and Nanomechanical Properties of Trabecular Bone after Strontium Administration in Osteoporotic Goats. Biological Trace Element Research, 145, 39-46. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Wu, Y., Adeeb, S.M., Duke, M.J., Munoz-Paniagua, D. and Doschak, M.R. (2013) Compositional and Material Properties of Rat Bone after Bisphosphonate And/or Strontium Ranelate Drug Treatment. Journal of Pharmacy & Pharmaceutical Sciences, 16, 52-64. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Wu, T., Liu, W., Huang, S., Chen, J., He, F., Wang, H., et al. (2021) Bioactive Strontium Ions/Ginsenoside Rg1-Incorporated Biodegradable Silk Fibroin-Gelatin Scaffold Promoted Challenging Osteoporotic Bone Regeneration. Materials Today Bio, 12, Article ID: 100141. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Shaygani, H., Shamloo, A., Akbarnataj, K. and Maleki, S. (2024) In Vitro and in Vivo Investigation of Chitosan/Silk Fibroin Injectable Interpenetrating Network Hydrogel with Microspheres for Cartilage Regeneration. International Journal of Biological Macromolecules, 270, Article ID: 132126. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Yu, M., Huang, R., Hua, J., Ru, M., You, R., Huang, Y., et al. (2024) High Biocompatible Bone Screw Enabled by a Rapid and Robust Chitosan/Silk Fibroin Composite Material. International Journal of Biological Macromolecules, 267, Article ID: 131519. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Liu, Y., Shi, C., Ming, P., Yuan, L., Jiang, X., Jiang, M., et al. (2024) Biomimetic Fabrication of SR-Silk Fibroin Co-Assembly Hydroxyapatite Based Microspheres with Angiogenic and Osteogenic Properties for Bone Tissue Engineering. Materials Today Bio, 25, Article ID: 101011. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Zhou, L., Chen, D., Wu, R., Li, L., Shi, T., Shangguang, Z., et al. (2024) An Injectable and Photocurable Methacrylate-Silk Fibroin/Nano-Hydroxyapatite Hydrogel for Bone Regeneration through Osteoimmunomodulation. International Journal of Biological Macromolecules, 263, Article ID: 129925. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Salazar, V.S., Gamer, L.W. and Rosen, V. (2016) BMP Signalling in Skeletal Development, Disease and Repair. Nature Reviews Endocrinology, 12, 203-221. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Mao, Y., Zhang, Y., Wang, Y., Zhou, T., Ma, B. and Zhou, P. (2023) A Multifunctional Nanocomposite Hydrogel with Controllable Release Behavior Enhances Bone Regeneration. Regenerative Biomaterials, 10, rbad046. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Lv, Z., Hu, T., Bian, Y., Wang, G., Wu, Z., Li, H., et al. (2022) A MgFe‐LDH Nanosheet‐incorporated Smart Thermo‐responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. Advanced Materials, 35, e2206545. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Li, M., Wu, H., Gao, K., Wang, Y., Hu, J., Guo, Z., et al. (2024) Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Advanced Healthcare Materials, 13, e2402916. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Paladini, F. and Pollini, M. (2022) Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 15, Article 6952. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Tuwalska, A., Grabska-Zielińska, S. and Sionkowska, A. (2022) Chitosan/silk Fibroin Materials for Biomedical Applications—A Review. Polymers, 14, Article 1343. [Google Scholar] [CrossRef] [PubMed] |