[1]
|
Chen, J., Xing, X., Liu, D., Gao, L., Liu, Y., Wang, Y., et al. (2024) Copper Nanoparticles Incorporated Visible Light-Curing Chitosan-Based Hydrogel Membrane for Enhancement of Bone Repair. Journal of the Mechanical Behavior of Biomedical Materials, 158, Article ID: 106674. https://doi.org/10.1016/j.jmbbm.2024.106674
|
[2]
|
Li, L., Zhou, G., Wang, Y., Yang, G., Ding, S. and Zhou, S. (2015) Controlled Dual Delivery of BMP-2 and Dexamethasone by Nanoparticle-Embedded Electrospun Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. Biomaterials, 37, 218-229. https://doi.org/10.1016/j.biomaterials.2014.10.015
|
[3]
|
Li, M., You, J., Qin, Q., Liu, M., Yang, Y., Jia, K., et al. (2023) A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 2660. https://doi.org/10.3390/ijms24032660
|
[4]
|
Mao, Z., Bi, X., Yu, C., Chen, L., Shen, J., Huang, Y., et al. (2024) Mechanically Robust and Personalized Silk Fibroin-Magnesium Composite Scaffolds with Water-Responsive Shape-Memory for Irregular Bone Regeneration. Nature Communications, 15, Article No. 4160. https://doi.org/10.1038/s41467-024-48417-8
|
[5]
|
Sahoo, J.K., Hasturk, O., Falcucci, T. and Kaplan, D.L. (2023) Silk Chemistry and Biomedical Material Designs. Nature Reviews Chemistry, 7, 302-318. https://doi.org/10.1038/s41570-023-00486-x
|
[6]
|
Wu, H., Lin, K., Zhao, C. and Wang, X. (2022) Silk Fibroin Scaffolds: A Promising Candidate for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 10, Article 1054379. https://doi.org/10.3389/fbioe.2022.1054379
|
[7]
|
Zhang, M., Matinlinna, J.P., Tsoi, J.K.H., Liu, W., Cui, X., Lu, W.W., et al. (2020) Recent Developments in Biomaterials for Long-Bone Segmental Defect Reconstruction: A Narrative Overview. Journal of Orthopaedic Translation, 22, 26-33. https://doi.org/10.1016/j.jot.2019.09.005
|
[8]
|
Wang, H., Zhang, Y., Zhang, M. and Zhang, Y. (2024) Functional Modification of Silk Fibroin from Silkworms and Its Application to Medical Biomaterials: A Review. International Journal of Biological Macromolecules, 259, Article ID: 129099. https://doi.org/10.1016/j.ijbiomac.2023.129099
|
[9]
|
Zhou, C., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. and Janin, J. (2001) Silk Fibroin: Structural Implications of a Remarkable Amino Acid Sequence. Proteins: Structure, Function, and Bioinformatics, 44, 119-122. https://doi.org/10.1002/prot.1078
|
[10]
|
Aramwit, P., Kanokpanont, S., De-Eknamkul, W. and Srichana, T. (2009) Monitoring of Inflammatory Mediators Induced by Silk Sericin. Journal of Bioscience and Bioengineering, 107, 556-561. https://doi.org/10.1016/j.jbiosc.2008.12.012
|
[11]
|
Deshpande, P.B., Kumar, G.A., Kumar, A.R., Shavi, G.V., Karthik, A., Reddy, M.S., et al. (2011) Supercritical Fluid Technology: Concepts and Pharmaceutical Applications. PDA Journal of Pharmaceutical Science and Technology, 65, 333-344. https://doi.org/10.5731/pdajpst.2011.00717
|
[12]
|
Kim, H.J., Kim, M.K., Lee, K.H., Nho, S.K., Han, M.S. and Um, I.C. (2017) Effect of Degumming Methods on Structural Characteristics and Properties of Regenerated Silk. International Journal of Biological Macromolecules, 104, 294-302. https://doi.org/10.1016/j.ijbiomac.2017.06.019
|
[13]
|
Nguyen, T.P., Nguyen, Q.V., Nguyen, V., Le, T., Huynh, V.Q.N., Vo, D.N., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 11, Article 1933. https://doi.org/10.3390/polym11121933
|
[14]
|
Quan, S., Yang, J., Huang, S., Shao, J., Liu, Y. and Yang, H. (2025) Silk Fibroin as a Potential Candidate for Bone Tissue Engineering Applications. Biomaterials Science, 13, 364-378. https://doi.org/10.1039/d4bm00950a
|
[15]
|
Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L. and Kaplan, D.L. (2011) Materials Fabrication from Bombyx Mori Silk Fibroin. Nature Protocols, 6, 1612-1631. https://doi.org/10.1038/nprot.2011.379
|
[16]
|
Sun, W., Gregory, D.A., Tomeh, M.A. and Zhao, X. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article 1499. https://doi.org/10.3390/ijms22031499
|
[17]
|
Wang, H., Zhang, Y. and Wei, Z. (2021) Dissolution and Processing of Silk Fibroin for Materials Science. Critical Reviews in Biotechnology, 41, 406-424. https://doi.org/10.1080/07388551.2020.1853030
|
[18]
|
Wang, S., Li, X., Xu, W., Yu, Q. and Fang, S. (2024) Advances of Regenerated and Functionalized Silk Biomaterials and Application in Skin Wound Healing. International Journal of Biological Macromolecules, 254, Article ID: 128024. https://doi.org/10.1016/j.ijbiomac.2023.128024
|
[19]
|
Wei, S., Wang, Y., Sun, Y., Gong, L., Dai, X., Meng, H., et al. (2023) Biodegradable Silk Fibroin Scaffold Doped with Mineralized Collagen Induces Bone Regeneration in Rat Cranial Defects. International Journal of Biological Macromolecules, 235, Article ID: 123861. https://doi.org/10.1016/j.ijbiomac.2023.123861
|
[20]
|
Wang, Y., Yang, Z., Chen, X., Jiang, X. and Fu, G. (2023) Silk Fibroin Hydrogel Membranes Prepared by a Sequential Cross-Linking Strategy for Guided Bone Regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 147, Article ID: 106133. https://doi.org/10.1016/j.jmbbm.2023.106133
|
[21]
|
Del Bianco, L., Spizzo, F., Yang, Y., Greco, G., Gatto, M.L., Barucca, G., et al. (2022) Silk Fibroin Films with Embedded Magnetic Nanoparticles: Evaluation of the Magneto-Mechanical Stimulation Effect on Osteogenic Differentiation of Stem Cells. Nanoscale, 14, 14558-14574. https://doi.org/10.1039/d2nr03167a
|
[22]
|
Wang, C., Fang, H., Qi, X., Hang, C., Sun, Y., Peng, Z., et al. (2019) Silk Fibroin Film-Coated Mgznca Alloy with Enhanced in Vitro and in Vivo Performance Prepared Using Surface Activation. Acta Biomaterialia, 91, 99-111. https://doi.org/10.1016/j.actbio.2019.04.048
|
[23]
|
Xiao, M., Yao, J., Shao, Z. and Chen, X. (2024) Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomaterials Science & Engineering, 10, 2827-2840. https://doi.org/10.1021/acsbiomaterials.4c00373
|
[24]
|
Liu, F., Liu, C., Zheng, B., He, J., Liu, J., Chen, C., et al. (2020) Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers, 12, Article 69. https://doi.org/10.3390/polym12010069
|
[25]
|
Panahifar, A., Chapman, L.D., Weber, L., Samadi, N. and Cooper, D.M.L. (2018) Biodistribution of Strontium and Barium in the Developing and Mature Skeleton of Rats. Journal of Bone and Mineral Metabolism, 37, 385-398. https://doi.org/10.1007/s00774-018-0936-x
|
[26]
|
Zhao, Q., Ni, Y., Wei, H., Duan, Y., Chen, J., Xiao, Q., et al. (2023) Ion Incorporation into Bone Grafting Materials. Periodontology 2000, 94, 213-230. https://doi.org/10.1111/prd.12533
|
[27]
|
Zhang, J., Tang, L., Qi, H., Zhao, Q., Liu, Y. and Zhang, Y. (2019) Dual Function of Magnesium in Bone Biomineralization. Advanced Healthcare Materials, 8, e1901030. https://doi.org/10.1002/adhm.201901030
|
[28]
|
Li, Z., Peng, S., Pan, H., Tang, B., Lam, R.W.M. and Lu, W.W. (2011) Microarchitecture and Nanomechanical Properties of Trabecular Bone after Strontium Administration in Osteoporotic Goats. Biological Trace Element Research, 145, 39-46. https://doi.org/10.1007/s12011-011-9158-y
|
[29]
|
Wu, Y., Adeeb, S.M., Duke, M.J., Munoz-Paniagua, D. and Doschak, M.R. (2013) Compositional and Material Properties of Rat Bone after Bisphosphonate And/or Strontium Ranelate Drug Treatment. Journal of Pharmacy & Pharmaceutical Sciences, 16, 52-64. https://doi.org/10.18433/j3c59h
|
[30]
|
Wu, T., Liu, W., Huang, S., Chen, J., He, F., Wang, H., et al. (2021) Bioactive Strontium Ions/Ginsenoside Rg1-Incorporated Biodegradable Silk Fibroin-Gelatin Scaffold Promoted Challenging Osteoporotic Bone Regeneration. Materials Today Bio, 12, Article ID: 100141. https://doi.org/10.1016/j.mtbio.2021.100141
|
[31]
|
Shaygani, H., Shamloo, A., Akbarnataj, K. and Maleki, S. (2024) In Vitro and in Vivo Investigation of Chitosan/Silk Fibroin Injectable Interpenetrating Network Hydrogel with Microspheres for Cartilage Regeneration. International Journal of Biological Macromolecules, 270, Article ID: 132126. https://doi.org/10.1016/j.ijbiomac.2024.132126
|
[32]
|
Yu, M., Huang, R., Hua, J., Ru, M., You, R., Huang, Y., et al. (2024) High Biocompatible Bone Screw Enabled by a Rapid and Robust Chitosan/Silk Fibroin Composite Material. International Journal of Biological Macromolecules, 267, Article ID: 131519. https://doi.org/10.1016/j.ijbiomac.2024.131519
|
[33]
|
Liu, Y., Shi, C., Ming, P., Yuan, L., Jiang, X., Jiang, M., et al. (2024) Biomimetic Fabrication of SR-Silk Fibroin Co-Assembly Hydroxyapatite Based Microspheres with Angiogenic and Osteogenic Properties for Bone Tissue Engineering. Materials Today Bio, 25, Article ID: 101011. https://doi.org/10.1016/j.mtbio.2024.101011
|
[34]
|
Zhou, L., Chen, D., Wu, R., Li, L., Shi, T., Shangguang, Z., et al. (2024) An Injectable and Photocurable Methacrylate-Silk Fibroin/Nano-Hydroxyapatite Hydrogel for Bone Regeneration through Osteoimmunomodulation. International Journal of Biological Macromolecules, 263, Article ID: 129925. https://doi.org/10.1016/j.ijbiomac.2024.129925
|
[35]
|
Salazar, V.S., Gamer, L.W. and Rosen, V. (2016) BMP Signalling in Skeletal Development, Disease and Repair. Nature Reviews Endocrinology, 12, 203-221. https://doi.org/10.1038/nrendo.2016.12
|
[36]
|
Mao, Y., Zhang, Y., Wang, Y., Zhou, T., Ma, B. and Zhou, P. (2023) A Multifunctional Nanocomposite Hydrogel with Controllable Release Behavior Enhances Bone Regeneration. Regenerative Biomaterials, 10, rbad046. https://doi.org/10.1093/rb/rbad046
|
[37]
|
Lv, Z., Hu, T., Bian, Y., Wang, G., Wu, Z., Li, H., et al. (2022) A MgFe‐LDH Nanosheet‐incorporated Smart Thermo‐responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. Advanced Materials, 35, e2206545. https://doi.org/10.1002/adma.202206545
|
[38]
|
Li, M., Wu, H., Gao, K., Wang, Y., Hu, J., Guo, Z., et al. (2024) Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Advanced Healthcare Materials, 13, e2402916. https://doi.org/10.1002/adhm.202402916
|
[39]
|
Paladini, F. and Pollini, M. (2022) Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 15, Article 6952. https://doi.org/10.3390/ma15196952
|
[40]
|
Tuwalska, A., Grabska-Zielińska, S. and Sionkowska, A. (2022) Chitosan/silk Fibroin Materials for Biomedical Applications—A Review. Polymers, 14, Article 1343. https://doi.org/10.3390/polym14071343
|