丝素蛋白在骨组织工程中的应用
Application of Silk Fibroin in Bone Tissue Engineering
DOI: 10.12677/hjbm.2025.154083, PDF, HTML, XML,    科研立项经费支持
作者: 龚砚硕, 付 钢*:口腔疾病研究重庆市重点实验室,重庆;重庆医科大学附属口腔医院修复科,重庆
关键词: 丝素蛋白骨缺损骨组织工程Silk Fibroin Bone Defect Bone Tissue Engineering
摘要: 骨缺损的修复仍是临床实践中的一大挑战,许多因素限制了自体和同种异体骨的应用。骨组织工程利用支架、细胞和生物活性因子的特殊混合,形成三维模拟骨结构,修复骨缺损,再生骨组织。丝素蛋白作为一种天然生物材料,凭借良好的生物相容性、可控的生物降解性、低免疫原性,以及广泛的来源和易于加工等特征,被设计成膜、水凝胶和支架等结构,在骨组织工程领域发挥着重要作用,拥有广阔的应用前景。本文叙述了丝素蛋白的结构属性和丝素蛋白溶液的制备流程,并对丝素蛋白在骨组织工程中各种形式的应用和改进方法进行了叙述总结。此外,本文还展望了丝素蛋白现阶段在骨组织工程中存在的瓶颈以及接下来的改进方向,展望了更为广阔的前景。
Abstract: The repair of large bone defects remains a major challenge in clinical practice, and many factors limit the application of autologous and allogeneic bone. Bone tissue engineering uses a special mixture of scaffolds, cells and bioactive factors to form a three-dimensional simulated bone structure, repair bone defects, and regenerate bone tissue. Silk fibroin, as a natural biomaterial, has good biocompatibility, controlled biodegradability, low immunogenicity, wide sources and easy processing. Silk fibroin has been designed into membranes, hydrogels and scaffolds, and plays an important role in bone tissue engineering with broad application prospects. In this paper, the structural properties of silk fibroin and the preparation process of silk fibroin solution are described, and the application and improvement methods of silk fibroin in bone tissue engineering are summarized. In addition, we also prospected the bottleneck of silk fibroin in bone tissue engineering at the present stage and the future improvement direction, and looked forward to a broader prospect.
文章引用:龚砚硕, 付钢. 丝素蛋白在骨组织工程中的应用[J]. 生物医学, 2025, 15(4): 773-779. https://doi.org/10.12677/hjbm.2025.154083

1. 引言

由创伤、肿瘤等因素造成的大面积骨缺损一直对口腔健康和生活质量构成了严重威胁,其修复仍然是临床实践中的一项重大挑战[1]

目前,临床上常用植骨材料包括自体骨、同种异体骨和异种骨等[2]。自体骨是骨增量材料的金标准,但获取过程需要开辟第二术区,不仅会增加患者的手术创伤,还存在可获取骨量有限等问题[3]。同种异体骨和异种骨也存在疾病传播、免疫反应和增加患者经济负担等问题。骨组织工程(bone tissue engineering, BTE)成为治疗骨缺损的一种方法[4] [5]

理想的骨组织工程材料应具有良好的生物相容性、优异的力学性能、理想的形态和结构,能够提供促进细胞反应的仿生微环境。可调节的生物降解性、安全的副产物和可控的扩散也很重要[6]。丝素蛋白(SF) 具有良好的生物相容性,是一种很有前景的候选材料,丝素蛋白在组织工程、再生医学、药物递送和医疗器械等不同的医学领域都有广泛应用[7]

2. 丝素的结构属性

丝素蛋白由两条主链组成,一条重链和一条轻链,通过二硫键连接形成重链–轻链络合物。P25是一种糖蛋白,包含asn连接的寡糖链,与H-L复合物疏水连接。重链氨基酸序列由甘氨酸(45.9%)、丙氨酸(30.3%)、丝氨酸(5.3%)、V型aline (1.8%)以及其他4.5%的15种氨基酸型组成[8]。丝I和丝II是丝素蛋白的主要结晶结构,其中丝I是一种亚稳态结晶结构,包含结合的水分子,而丝II是最稳定的状态,这是由于相邻肽块之间的强氢键作用,从而增加了机械性能,包括刚度和抗拉强度[9]

3. 丝素溶液的制备

丝素主要来源于蚕茧。在提取丝素过程中,可以产生丝胶。丝胶是一种无定形的蛋白质聚合物,作为一种胶凝剂发挥作用[10]。研究发现,不含丝胶的丝素纤维比含丝胶的丝素纤维具有更好的力学性能,其拉伸强度提高了50%,模量高达15~17 GPa,断裂应变达到19% [11]。此外,根据之前的报道,无丝胶丝素纤维在体外和体内也显示出更好的生物相容性。此外,丝胶已被证明引起炎症。因此,在BTE应用中,通常会从丝素蛋白中去除丝胶蛋白以确保生物相容性[12]。丝胶是通过脱胶过程从丝素纤维中去除的,脱胶过程通常在煮沸的碱性条件下进行。

目前常用的脱胶方法,简而言之,在去除蚕茧的蛹后,将其修剪成小块,在0.5%w (Na2CO3):w (H2O)的沸水中煮沸20 min,重复3次,以尽可能彻底地完成蚕丝纤维的脱胶过程,煮沸后,将脱胶蚕丝用去离子水洗涤5次。然后,挤出水分,让蚕茧自然干燥,得到脱胶的丝素纤维。然后将脱胶的丝素纤维在9.3 mol/L溴化锂溶液中在60℃下溶解6 h,脱胶的丝素纤维与溶液的质量比为1:10。将完全溶解的丝素蛋白溶液注入截止分子量为8000~140,00Da的透析袋中,在去离子水中透析3天,每6小时换水1次,去除溶液中的盐离子。然后将透析获得的溶液通过38 μm滤器过滤,获得低浓度丝素蛋白溶液[13]

然而,有研究发现,一些传统的方法可能会引入更多的外源性有毒试剂或破坏丝素蛋白和丝胶的化学和物理性质[14]。如脱胶过程中温度过高导致的蛋白质降解变性[15];高浓度的Na2CO3脱胶法容易破坏丝素蛋白分子链,脱胶丝直径减小,热稳定性下降[16]。因此,采用CO2超临界流体[17]、柠檬酸[18]、NaOH [19]等绿色脱胶方法获得丝素蛋白沉淀和脱胶溶液。

4. 丝素蛋白在骨组织工程中的应用研究

丝素蛋白独特的组成具有类似骨组织中细胞外基质(ECM)的生物活性,有不少研究指出,丝素蛋白以膜、支架和水凝胶的材料形态用于骨再生。骨膜形成层的骨祖细胞是成骨细胞的重要来源,对骨缺损愈合至关重要,丝素蛋白膜通常被研究用于骨膜的缺损修复;而水凝胶和多孔支架的三维结构可为骨祖细胞的增殖分化提供足够的空间,从而实现骨再生。

4.1. 膜用于骨缺损修复

人工制备的SF膜可以模拟骨组织的骨膜结构,用于骨缺损修复。成膜后,由于丝素蛋白中存在α-螺旋结构,导致了其相对较低的机械强度,通过改性将其转换为β-片层结构可以提高膜的机械性能。常见的改性方法包括使用甲醇、乙醇、拉伸或紫外线照射等。提高膜的机械强度有利于骨缺损的修复。

Wang等人采用光交联和有机溶剂(乙醇)处理的序贯交联策略制备丝素蛋白水凝胶膜(EA-SF),与单纯光交联制备的水凝胶(E-SF)相比,EA-SF的力学性能显著提高。紫外光交联、75%乙醇处理6 h后,形成膜的压缩强度和拉伸强度分别为(1.18 ± 0.36) MPa和(0.43 ± 0.03) MPa [20]。体外细胞培养结果表明,EA-SF具有良好的生物相容性的同时,能有效屏蔽成纤维细胞(L929)。体内实验(大鼠的皮下植入和颅骨缺损实验)证实了EA-SF具有的稳定性和屏障功能,起到了引导骨再生膜的作用。

Bianco等人将氧化铁磁性纳米粒子引入丝素蛋白基质中,制备了不同负载磁性纳米粒子(纳米粒子/丝素蛋白标称比为5、0.5和0 wt%)的薄膜[21]。在磁场作用下,细胞的增殖和黏附得到了显著促进,从典型成骨标志物的基因表达水平可以看出,它能更快更好地促进成骨分化。

Wang等采用真空紫外臭氧表面活化法对镁合金进行改性,制备了表面涂覆SF的镁合金,与骨髓间充质干细胞具有良好的生物相容性,为骨植入提供了更多的可能性[22]

4.2. 支架用于骨缺损修复

纯SF支架与天然骨组织的强度和模量相比仍具有显著差距,成骨能力不理想。因此,提高SF支架的机械强度成为一种提高支架成骨能力的方法。

通过人工手段模拟骨的天然无机成分,以提高支架的机械强度。如多聚磷酸钙、磷酸钙、双相磷酸钙和β-磷酸三钙等[23]。Fan等将β-磷酸三钙和氧化石墨烯纳米颗粒被同时地整合到丝素蛋白支架中,β-磷酸三钙和氧化石墨烯纳米颗粒的掺入可显著提高支架的理化性能,具有协同促进成骨的作用[24]。加入β-磷酸三钙和氧化石墨烯纳米颗粒的支架组的抗压强度均显著高于纯丝素蛋白支架。且碱性磷酸酶活性和成骨相关基因的表达在β-磷酸三钙和氧化石墨烯纳米粒子的存在下显著增强。

天然骨富含无机离子,如钙、磷、镁和锶。这些离子不仅对骨骼健康不可或缺,而且在骨形成、矿化和重塑等过程中也至关重要[25]。富含这些离子的生物材料可以有效地模拟自然骨环境,增强其与周围骨组织的整合。此外,钙、镁、银和锌等特定的无机离子可以增强这些材料的机械属性和生物相容性。因此,无机离子修饰被视为增强以骨为中心生物材料的生物效能的一种途径[26]

人体98%的锶含量都在骨骼中。考虑到锶和钙是同一周期基团的一部分,锶离子与钙离子具有相似的特征和大小[27] [28]。因此,在羟基磷灰石中,锶离子可以替代钙离子,增强骨移植的成骨性能[29]

Wu等利用人参皂苷和含锶矿物构建丝素蛋白-明胶支架,以促进骨质疏松骨修复[30]。支架释放的具有生物活性的锶离子,刺激骨修复相关基因的表达。体内实验结果还显示,人参皂苷和含锶矿物显著促进支架在骨质疏松性颅骨临界缺损中的骨修复效果。

4.3. 水凝胶用于骨缺损修复

基于丝素蛋白的水凝胶表现出重要的生物学特性,如生物相容性和生物降解性。根据特定的应用需求,可以利用不同的处理方法来获得不同的水凝胶性能。

由于与自然组织的微环境相似,水凝胶在骨再生方面具有显著优势。但是,丝素蛋白水凝胶应用于骨组织修复时,仍存在一些缺陷:机械强度不足,缺乏成骨诱导性。

互穿网络(IPN)是指由至少两个具有正交化学性质的聚合物网络同时或连续形成的[31]。为由两个或多个交联网络通过拓扑纠缠或物理相互作用(如离子力、氢键、疏水相互作用等)形成的一类聚合物复合材料。与单聚合物和其他多组分体系相比,IPN表现出更优越的性能,特别是在相稳定性、机械特性和可控药物递送方面。通过交联相互缠绕,形成独特的空间结构。拓扑纠缠和物理相互作用使具有不同性质的聚合物能够建立稳定的结构,从而使其在大变形后仍能保持结构完整性。与单一组分的聚合物相比,该体系始终表现出更好的机械性能。

Yu等以丝素蛋白(SF)的β-片层为刚性组分,以光聚合甲基丙烯酸壳聚糖(CSMA)网络为柔性组分,通过结构蛋白与结构间材料的相互作用,成功制备了高性能的CSMA/SF骨螺钉,表现出良好的力学性能,随着CSMA的加入,IPN结构的形成,SF水凝胶的机械性能得到改善,最大应力从109.9 kPa变成1187.8 kPa,最大应变从41.5%变为62.5%,CSMA/SF水凝胶的杨氏模量从最初的108.5 kPa增加到383.1 kPa,增加了约3.5倍[32]

羟基磷灰石(Hydroxyapatite, HAp)是一种生物活性陶瓷,具有良好的生物活性、生物相容性和骨传导性。更重要的是,羟基磷灰石(Hydroxyapatite, HAp)与人体骨组织中的无机成分具有相同的化学结构,可以被骨组织吸收和利用。因此被广泛用于制备骨组织工程材料[33]

Zhou等将纳米羟基磷灰石(nHA)与丝素蛋白整合,形成了一种在起始时快速交联的可注射水凝胶SilMA/nHA [34]。随着纳米羟基磷灰石(nHA)掺入比例的增加,水凝胶的整体压缩模量增加。与大鼠骨髓间充质干细胞共培养7 d后,渗入nHA组碱性磷酸酶活性高于对照组,检测大鼠骨髓间充质干细胞的成骨相关基因的表达显示,与对照组相比,SilMA/nHA组的成骨标志物基因在第7天和第14天显著升高。

骨形态发生蛋白2 (BMP-2)是一个公认的有效的骨诱导剂,BMP-2还可以减少潜在的纤维化,同时最大限度地生成新骨,提高骨组织工程的质量[35]

Mao等将银包埋的介孔二氧化硅纳米颗粒(Ag@MSN)与骨形态发生蛋白-2 (BMP-2)共价结合,构建成Ag@MSN-BMP-2/SilMA,对比分析表明,Ag@MSN-BMP-2/SilMA大鼠骨髓间充质干细胞成骨分化的促进程度比其他水凝胶组更大,新骨形成明显增强[36]

Lv等人将骨形态发生蛋白2 (BMP-2)功能化的MgFe-LDH纳米片加入到装载血小板衍生生长因子bb (PDGF-BB)的壳聚糖/丝素蛋白(CS)水凝胶中,构建了一种可注射的智能热响应水凝胶(CSP-LB),该水凝胶可以实现PDGF-BB的爆发释放和BMP-2的持续释放,从而实现高效的骨再生[37]。CSP-LB水凝胶具有良好的血管生成和成骨性能,其碱性磷酸酶活性是CS水凝胶的4.9倍,茜素红染色是CS水凝胶的11倍,细胞迁移率是CS水凝胶的10.7倍。体内实验进一步证明,CSP-LB水凝胶能够显著促进骨再生,骨体积和骨密度分别是CS水凝胶的4.5倍和3.6倍。

Li等以聚丙烯酰胺、聚多巴胺和丝素蛋白为载体,合成了一种负载游离去铁草胺(DFO)和由载骨形态发生蛋白-2 (BMP-2)的矿化ZIF-90的水凝胶PDS-DC,以有效刺激血管生成和成骨[38]。体内和体外结果证实,与其他组相比,PDS-DC能有效实现高质量骨生成。得益于骨形态发生蛋白-2 (BMP-2)的掺入,PDS-DC组的碱性磷酸酶表达显著上调,通过茜素红染色评估不同水凝胶处理对BMSCs矿化特性的影响。结果表明,与对照组和PDS组相比,PDS-DC组显著促进钙化结节的形成。

5. 结论

丝素蛋白作为一种天然蛋白,在医学领域的应用历史悠久,受到广泛认可。其独特的内部结构和分子组成使其具有优异的机械性能、生物可降解性、生物相容性、可加工性和可修饰性,使其优于其他天然聚合物[39]。因此,在各种生物医学应用中,丝素蛋白被广泛应用,尤其是在组织修复指导方面。此外,通过各种加工方法,丝素蛋白可制备成膜、水凝胶、支架、纳米纤维等多种形式。

尽管在丝素蛋白研究方面取得了一些令人鼓舞的成就,但仍存在一些挑战和问题需要进一步解决。首先,丝素蛋白的提取方法需要进一步优化和标准化。由于丝素蛋白提取方法的差异,不能保证不同批次获得的丝素蛋白质量一致。其次,丝素蛋白材料需要改进其力学性能,此外,未来的研究应探索先进的制造技术,如3D打印或静电纺丝,以创建具有层次结构的丝素蛋白支架,更好地复制细胞外基质[16]。而且,丝素蛋白与生长因子或其他生物活性物质之间的相互作用还需要进一步研究。同时,丝素蛋白在骨组织工程中的实际效果和安全性还需要更多的体内和临床研究来验证[40]。综上所述,丝素蛋白在骨组织工程领域显示出巨大的应用潜力,但仍需要进一步的研究和开发。

基金项目

本文得到重庆市自然科学基金(CSTB2024NSCQ-MSX0908)的研究资助。

NOTES

*通讯作者。

参考文献

[1] Chen, J., Xing, X., Liu, D., Gao, L., Liu, Y., Wang, Y., et al. (2024) Copper Nanoparticles Incorporated Visible Light-Curing Chitosan-Based Hydrogel Membrane for Enhancement of Bone Repair. Journal of the Mechanical Behavior of Biomedical Materials, 158, Article ID: 106674.
https://doi.org/10.1016/j.jmbbm.2024.106674
[2] Li, L., Zhou, G., Wang, Y., Yang, G., Ding, S. and Zhou, S. (2015) Controlled Dual Delivery of BMP-2 and Dexamethasone by Nanoparticle-Embedded Electrospun Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. Biomaterials, 37, 218-229.
https://doi.org/10.1016/j.biomaterials.2014.10.015
[3] Li, M., You, J., Qin, Q., Liu, M., Yang, Y., Jia, K., et al. (2023) A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 2660.
https://doi.org/10.3390/ijms24032660
[4] Mao, Z., Bi, X., Yu, C., Chen, L., Shen, J., Huang, Y., et al. (2024) Mechanically Robust and Personalized Silk Fibroin-Magnesium Composite Scaffolds with Water-Responsive Shape-Memory for Irregular Bone Regeneration. Nature Communications, 15, Article No. 4160.
https://doi.org/10.1038/s41467-024-48417-8
[5] Sahoo, J.K., Hasturk, O., Falcucci, T. and Kaplan, D.L. (2023) Silk Chemistry and Biomedical Material Designs. Nature Reviews Chemistry, 7, 302-318.
https://doi.org/10.1038/s41570-023-00486-x
[6] Wu, H., Lin, K., Zhao, C. and Wang, X. (2022) Silk Fibroin Scaffolds: A Promising Candidate for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 10, Article 1054379.
https://doi.org/10.3389/fbioe.2022.1054379
[7] Zhang, M., Matinlinna, J.P., Tsoi, J.K.H., Liu, W., Cui, X., Lu, W.W., et al. (2020) Recent Developments in Biomaterials for Long-Bone Segmental Defect Reconstruction: A Narrative Overview. Journal of Orthopaedic Translation, 22, 26-33.
https://doi.org/10.1016/j.jot.2019.09.005
[8] Wang, H., Zhang, Y., Zhang, M. and Zhang, Y. (2024) Functional Modification of Silk Fibroin from Silkworms and Its Application to Medical Biomaterials: A Review. International Journal of Biological Macromolecules, 259, Article ID: 129099.
https://doi.org/10.1016/j.ijbiomac.2023.129099
[9] Zhou, C., Confalonieri, F., Jacquet, M., Perasso, R., Li, Z. and Janin, J. (2001) Silk Fibroin: Structural Implications of a Remarkable Amino Acid Sequence. Proteins: Structure, Function, and Bioinformatics, 44, 119-122.
https://doi.org/10.1002/prot.1078
[10] Aramwit, P., Kanokpanont, S., De-Eknamkul, W. and Srichana, T. (2009) Monitoring of Inflammatory Mediators Induced by Silk Sericin. Journal of Bioscience and Bioengineering, 107, 556-561.
https://doi.org/10.1016/j.jbiosc.2008.12.012
[11] Deshpande, P.B., Kumar, G.A., Kumar, A.R., Shavi, G.V., Karthik, A., Reddy, M.S., et al. (2011) Supercritical Fluid Technology: Concepts and Pharmaceutical Applications. PDA Journal of Pharmaceutical Science and Technology, 65, 333-344.
https://doi.org/10.5731/pdajpst.2011.00717
[12] Kim, H.J., Kim, M.K., Lee, K.H., Nho, S.K., Han, M.S. and Um, I.C. (2017) Effect of Degumming Methods on Structural Characteristics and Properties of Regenerated Silk. International Journal of Biological Macromolecules, 104, 294-302.
https://doi.org/10.1016/j.ijbiomac.2017.06.019
[13] Nguyen, T.P., Nguyen, Q.V., Nguyen, V., Le, T., Huynh, V.Q.N., Vo, D.N., et al. (2019) Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers, 11, Article 1933.
https://doi.org/10.3390/polym11121933
[14] Quan, S., Yang, J., Huang, S., Shao, J., Liu, Y. and Yang, H. (2025) Silk Fibroin as a Potential Candidate for Bone Tissue Engineering Applications. Biomaterials Science, 13, 364-378.
https://doi.org/10.1039/d4bm00950a
[15] Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L. and Kaplan, D.L. (2011) Materials Fabrication from Bombyx Mori Silk Fibroin. Nature Protocols, 6, 1612-1631.
https://doi.org/10.1038/nprot.2011.379
[16] Sun, W., Gregory, D.A., Tomeh, M.A. and Zhao, X. (2021) Silk Fibroin as a Functional Biomaterial for Tissue Engineering. International Journal of Molecular Sciences, 22, Article 1499.
https://doi.org/10.3390/ijms22031499
[17] Wang, H., Zhang, Y. and Wei, Z. (2021) Dissolution and Processing of Silk Fibroin for Materials Science. Critical Reviews in Biotechnology, 41, 406-424.
https://doi.org/10.1080/07388551.2020.1853030
[18] Wang, S., Li, X., Xu, W., Yu, Q. and Fang, S. (2024) Advances of Regenerated and Functionalized Silk Biomaterials and Application in Skin Wound Healing. International Journal of Biological Macromolecules, 254, Article ID: 128024.
https://doi.org/10.1016/j.ijbiomac.2023.128024
[19] Wei, S., Wang, Y., Sun, Y., Gong, L., Dai, X., Meng, H., et al. (2023) Biodegradable Silk Fibroin Scaffold Doped with Mineralized Collagen Induces Bone Regeneration in Rat Cranial Defects. International Journal of Biological Macromolecules, 235, Article ID: 123861.
https://doi.org/10.1016/j.ijbiomac.2023.123861
[20] Wang, Y., Yang, Z., Chen, X., Jiang, X. and Fu, G. (2023) Silk Fibroin Hydrogel Membranes Prepared by a Sequential Cross-Linking Strategy for Guided Bone Regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 147, Article ID: 106133.
https://doi.org/10.1016/j.jmbbm.2023.106133
[21] Del Bianco, L., Spizzo, F., Yang, Y., Greco, G., Gatto, M.L., Barucca, G., et al. (2022) Silk Fibroin Films with Embedded Magnetic Nanoparticles: Evaluation of the Magneto-Mechanical Stimulation Effect on Osteogenic Differentiation of Stem Cells. Nanoscale, 14, 14558-14574.
https://doi.org/10.1039/d2nr03167a
[22] Wang, C., Fang, H., Qi, X., Hang, C., Sun, Y., Peng, Z., et al. (2019) Silk Fibroin Film-Coated Mgznca Alloy with Enhanced in Vitro and in Vivo Performance Prepared Using Surface Activation. Acta Biomaterialia, 91, 99-111.
https://doi.org/10.1016/j.actbio.2019.04.048
[23] Xiao, M., Yao, J., Shao, Z. and Chen, X. (2024) Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomaterials Science & Engineering, 10, 2827-2840.
https://doi.org/10.1021/acsbiomaterials.4c00373
[24] Liu, F., Liu, C., Zheng, B., He, J., Liu, J., Chen, C., et al. (2020) Synergistic Effects on Incorporation of β-Tricalcium Phosphate and Graphene Oxide Nanoparticles to Silk Fibroin/Soy Protein Isolate Scaffolds for Bone Tissue Engineering. Polymers, 12, Article 69.
https://doi.org/10.3390/polym12010069
[25] Panahifar, A., Chapman, L.D., Weber, L., Samadi, N. and Cooper, D.M.L. (2018) Biodistribution of Strontium and Barium in the Developing and Mature Skeleton of Rats. Journal of Bone and Mineral Metabolism, 37, 385-398.
https://doi.org/10.1007/s00774-018-0936-x
[26] Zhao, Q., Ni, Y., Wei, H., Duan, Y., Chen, J., Xiao, Q., et al. (2023) Ion Incorporation into Bone Grafting Materials. Periodontology 2000, 94, 213-230.
https://doi.org/10.1111/prd.12533
[27] Zhang, J., Tang, L., Qi, H., Zhao, Q., Liu, Y. and Zhang, Y. (2019) Dual Function of Magnesium in Bone Biomineralization. Advanced Healthcare Materials, 8, e1901030.
https://doi.org/10.1002/adhm.201901030
[28] Li, Z., Peng, S., Pan, H., Tang, B., Lam, R.W.M. and Lu, W.W. (2011) Microarchitecture and Nanomechanical Properties of Trabecular Bone after Strontium Administration in Osteoporotic Goats. Biological Trace Element Research, 145, 39-46.
https://doi.org/10.1007/s12011-011-9158-y
[29] Wu, Y., Adeeb, S.M., Duke, M.J., Munoz-Paniagua, D. and Doschak, M.R. (2013) Compositional and Material Properties of Rat Bone after Bisphosphonate And/or Strontium Ranelate Drug Treatment. Journal of Pharmacy & Pharmaceutical Sciences, 16, 52-64.
https://doi.org/10.18433/j3c59h
[30] Wu, T., Liu, W., Huang, S., Chen, J., He, F., Wang, H., et al. (2021) Bioactive Strontium Ions/Ginsenoside Rg1-Incorporated Biodegradable Silk Fibroin-Gelatin Scaffold Promoted Challenging Osteoporotic Bone Regeneration. Materials Today Bio, 12, Article ID: 100141.
https://doi.org/10.1016/j.mtbio.2021.100141
[31] Shaygani, H., Shamloo, A., Akbarnataj, K. and Maleki, S. (2024) In Vitro and in Vivo Investigation of Chitosan/Silk Fibroin Injectable Interpenetrating Network Hydrogel with Microspheres for Cartilage Regeneration. International Journal of Biological Macromolecules, 270, Article ID: 132126.
https://doi.org/10.1016/j.ijbiomac.2024.132126
[32] Yu, M., Huang, R., Hua, J., Ru, M., You, R., Huang, Y., et al. (2024) High Biocompatible Bone Screw Enabled by a Rapid and Robust Chitosan/Silk Fibroin Composite Material. International Journal of Biological Macromolecules, 267, Article ID: 131519.
https://doi.org/10.1016/j.ijbiomac.2024.131519
[33] Liu, Y., Shi, C., Ming, P., Yuan, L., Jiang, X., Jiang, M., et al. (2024) Biomimetic Fabrication of SR-Silk Fibroin Co-Assembly Hydroxyapatite Based Microspheres with Angiogenic and Osteogenic Properties for Bone Tissue Engineering. Materials Today Bio, 25, Article ID: 101011.
https://doi.org/10.1016/j.mtbio.2024.101011
[34] Zhou, L., Chen, D., Wu, R., Li, L., Shi, T., Shangguang, Z., et al. (2024) An Injectable and Photocurable Methacrylate-Silk Fibroin/Nano-Hydroxyapatite Hydrogel for Bone Regeneration through Osteoimmunomodulation. International Journal of Biological Macromolecules, 263, Article ID: 129925.
https://doi.org/10.1016/j.ijbiomac.2024.129925
[35] Salazar, V.S., Gamer, L.W. and Rosen, V. (2016) BMP Signalling in Skeletal Development, Disease and Repair. Nature Reviews Endocrinology, 12, 203-221.
https://doi.org/10.1038/nrendo.2016.12
[36] Mao, Y., Zhang, Y., Wang, Y., Zhou, T., Ma, B. and Zhou, P. (2023) A Multifunctional Nanocomposite Hydrogel with Controllable Release Behavior Enhances Bone Regeneration. Regenerative Biomaterials, 10, rbad046.
https://doi.org/10.1093/rb/rbad046
[37] Lv, Z., Hu, T., Bian, Y., Wang, G., Wu, Z., Li, H., et al. (2022) A MgFe‐LDH Nanosheet‐incorporated Smart Thermo‐responsive Hydrogel with Controllable Growth Factor Releasing Capability for Bone Regeneration. Advanced Materials, 35, e2206545.
https://doi.org/10.1002/adma.202206545
[38] Li, M., Wu, H., Gao, K., Wang, Y., Hu, J., Guo, Z., et al. (2024) Smart Implantable Hydrogel for Large Segmental Bone Regeneration. Advanced Healthcare Materials, 13, e2402916.
https://doi.org/10.1002/adhm.202402916
[39] Paladini, F. and Pollini, M. (2022) Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 15, Article 6952.
https://doi.org/10.3390/ma15196952
[40] Tuwalska, A., Grabska-Zielińska, S. and Sionkowska, A. (2022) Chitosan/silk Fibroin Materials for Biomedical Applications—A Review. Polymers, 14, Article 1343.
https://doi.org/10.3390/polym14071343