[1]
|
Wu, Q., Liu, Y., Zhang, J., et al. (2002) A Review of Recent Frozen Soil Engineering in Permafrost Regions along Qinghai‐Tibet Highway, China. Permafrost and Periglacial Processes, 13, 199-205. https://doi.org/10.1002/ppp.420
|
[2]
|
Zhao, Y., Yu, B., Yu, G. and Li, W. (2014) Study on the Water-Heat Coupled Phenomena in Thawing Frozen Soil around a Buried Oil Pipeline. Applied Thermal Engineering, 73, 1477-1488. https://doi.org/10.1016/j.applthermaleng.2014.06.017
|
[3]
|
马巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014: 39.
|
[4]
|
艾秋池. 川藏铁路季节性粗颗粒冻土边坡长期演化特性研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2020.
|
[5]
|
符进, 朱东鹏, 张会建. 共玉高速公路多年冻土特殊路基基底处理方法研究[J]. 公路, 2016, 61(1): 36-42.
|
[6]
|
陈建兵, 熊治华, 李军, 等. 青藏高原冻土区桥梁使用状况调研及对新建工程的启示[J]. 公路交通科技(应用技术版), 2018, 14(2): 255-258.
|
[7]
|
黄元生, 李鹏, 严福章, 等. 青藏直流输电线路冻土长期抗剪强度预测及影响因素分析[J]. 工程地质学报, 2014, 22(3): 507-514.
|
[8]
|
盛煜, 彭万巍, 福田正己. 超声波技术在冻土物性测试中的应用探讨[J]. 冰川冻土, 2001(4): 432-435.
|
[9]
|
Wang, D., Zhu, Y., Ma, W. and Niu, Y. (2006) Application of Ultrasonic Technology for Physical-Mechanical Properties of Frozen Soils. Cold Regions Science and Technology, 44, 12-19. https://doi.org/10.1016/j.coldregions.2005.06.003
|
[10]
|
黄星, 李东庆, 明锋, 邴慧, 彭万巍. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346-1352.
|
[11]
|
凌贤长, 徐学燕, 徐春华, 等. 冻结哈尔滨粉质黏土超声波速测定试验研究[J]. 岩土工程学报, 2002(4): 456-459.
|
[12]
|
马芹永, 彭万巍, 朱元林. 冻结粘土纵、横波速与温度的关系[J]. 岩石力学与工程学报, 2002, 21(2): 290-293.
|
[13]
|
Christ, M. and Park, J. (2009) Ultrasonic Technique as Tool for Determining Physical and Mechanical Properties of Frozen Soils. Cold Regions Science and Technology, 58, 136-142. https://doi.org/10.1016/j.coldregions.2009.05.008
|
[14]
|
Christ, M., Kim, Y. and Park, J. (2009) The Influence of Temperature and Cycles on Acoustic and Mechanical Properties of Frozen Soils. KSCE Journal of Civil Engineering, 13, 153-159. https://doi.org/10.1007/s12205-009-0153-1
|
[15]
|
Nakano, Y., Martin, R.J. and Smith, M. (1972) Ultrasonic Velocities of the Dilatational and Shear Waves in Frozen Soils. Water Resources Research, 8, 1024-1030. https://doi.org/10.1029/wr008i004p01024
|
[16]
|
Nakano, Y. and Arnold, R. (1973) Acoustic Properties of Frozen Ottawa Sand. Water Resources Research, 9, 178-184. https://doi.org/10.1029/wr009i001p00178
|
[17]
|
Tice, A.R., Anderson, D.M. and Sterrett, K.F. (1981) Unfrozen Water Contents of Submarine Permafrost Determined by Nuclear Magnetic Resonance. Engineering Geology, 18, 135-146. https://doi.org/10.1016/0013-7952(81)90053-3
|
[18]
|
Kleinberg, R.L. and Griffin, D.D. (2005) NMR Measurements of Permafrost: Unfrozen Water Assay, Pore-Scale Distribution of Ice, and Hydraulic Permeability of Sediments. Cold Regions Science and Technology, 42, 63-77. https://doi.org/10.1016/j.coldregions.2004.12.002
|
[19]
|
Wen, Z., Ma, W., Feng, W., Deng, Y., Wang, D., Fan, Z., et al. (2011) Experimental Study on Unfrozen Water Content and Soil Matric Potential of Qinghai-Tibetan Silty Clay. Environmental Earth Sciences, 66, 1467-1476. https://doi.org/10.1007/s12665-011-1386-0
|
[20]
|
Kong, L., Wang, Y., Sun, W. and Qi, J. (2020) Influence of Plasticity on Unfrozen Water Content of Frozen Soils as Determined by Nuclear Magnetic Resonance. Cold Regions Science and Technology, 172, Article ID: 102993. https://doi.org/10.1016/j.coldregions.2020.102993
|
[21]
|
韩大伟, 杨成松, 张莲海, 等. 基于分层核磁测试新技术的未冻水变化规律研究——以砂土冻融过程为例[J]. 冰川冻土, 2022, 44(2): 667-683.
|
[22]
|
杜洋, 唐丽云, 杨柳君, 等. 基于核磁共振下的冻土-结构正融过程界面特性研究[J]. 岩土工程学报, 2019, 41(12): 2316-2322.
|
[23]
|
Tsytovich, N.A., Swinzow, E. and Tschebotarioff, G. (1975) The Mechanics of Frozen Ground. Scripta Book Co.
|
[24]
|
Parameswaran, V.R. and Jones, S.J. (1981) Triaxial Testing of Frozen Sand. Journal of Glaciology, 27, 147-155. https://doi.org/10.3189/s0022143000011308
|
[25]
|
Ladanyi, B. and Benyamina, M.B. (1995) Triaxial Relaxation Testing of a Frozen Sand. Canadian Geotechnical Journal, 32, 496-511. https://doi.org/10.1139/t95-052
|
[26]
|
Sayles, F.H. (1966) Low Temperature Soil Mechanics. USA CRREL Internal Report.
|
[27]
|
马巍, 吴紫汪, 盛煜. 围压对冻土强度特性的影响[J]. 岩土工程学报, 1995(5): 7-11.
|
[28]
|
马巍, 吴紫汪, 张长庆. 冻土的强度与屈服准则[J]. 冰川冻土, 1993(1): 129-133.
|
[29]
|
张晋勋, 杨昊, 单仁亮, 等. 冻结饱水砂卵石三轴压缩强度试验研究[J]. 岩土力学, 2018, 39(11): 3993-4000+4016.
|
[30]
|
王海航, 王鸥, 吴泽, 等. 人工冻结砾石土三轴剪切强度试验研究[J]. 铁道标准设计, 2019, 63(2): 58-62.
|
[31]
|
朱磊, 谢强, 任新红, 等. 川藏线季节性粗颗粒冻土抗剪强度特性试验研究[J]. 铁道学报, 2018, 40(3): 107-111.
|
[32]
|
Chen, H., Guo, H., Yuan, X., Chen, Y. and Sun, C. (2020) Effect of Temperature on the Strength Characteristics of Unsaturated Silty Clay in Seasonal Frozen Region. KSCE Journal of Civil Engineering, 24, 2610-2620. https://doi.org/10.1007/s12205-020-1974-1
|
[33]
|
Niu, Y., Wang, X., Liao, M. and Chang, D. (2022) Strength Criterion for Frozen Silty Clay Considering the Effect of Initial Water Content. Cold Regions Science and Technology, 196, Article ID: 103521. https://doi.org/10.1016/j.coldregions.2022.103521
|
[34]
|
赵军霖. 冻结粗粒土的强度特性研究[D]: [硕士学位论文]. 北京: 北京建筑大学, 2020.
|
[35]
|
Liu, X., Liu, E., Zhang, D., Zhang, G., Yin, X. and Song, B. (2019) Study on Effect of Coarse-Grained Content on the Mechanical Properties of Frozen Mixed Soils. Cold Regions Science and Technology, 158, 237-251. https://doi.org/10.1016/j.coldregions.2018.09.001
|
[36]
|
Li, D., Yang, X. and Chen, J. (2017) A Study of Triaxial Creep Test and Yield Criterion of Artificial Frozen Soil under Unloading Stress Paths. Cold Regions Science and Technology, 141, 163-170. https://doi.org/10.1016/j.coldregions.2017.06.009
|
[37]
|
汪科迪. 杭州粉土固结和卸载强度特性的三轴试验研究[D]: [硕士学位论文]. 杭州: 浙江科技学院, 2019.
|
[38]
|
I.E. Guryanov, 马巍. 加荷与卸荷过程中的冻土强度特性[J]. 冰川冻土, 1996(1): 55-59.
|
[39]
|
马巍, 常小晓. 加载卸载对人工冻结土强度与变形的影响[J]. 岩土工程学报, 2001(5): 563-566.
|
[40]
|
王衍森, 贾锦波, 冷阳光. 长时高压K0固结再冻结黏土的卸围压强度特性[J]. 岩土工程学报, 2017, 39(9): 1636-1644.
|
[41]
|
董西好, 杨更社, 田俊峰, 等. 侧向卸荷条件下冻结砂岩变形特性[J]. 岩土力学, 2018, 39(7): 2518-2526.
|
[42]
|
Zhao, Y., Yu, B., Yu, G. and Li, W. (2014) Study on the Water-Heat Coupled Phenomena in Thawing Frozen Soil around a Buried Oil Pipeline. Applied Thermal Engineering, 73, 1477-1488. https://doi.org/10.1016/j.applthermaleng.2014.06.017
|
[43]
|
温董瑶, 蒋宁山, 张吾渝, 等. 温升和动荷载作用下寒区冻土动应力-动应变响应规律[J]. 安全与环境工程, 2021, 28(4): 29-34+40.
|
[44]
|
刘亚, 蒋宁山, 张吾俞, 等. 环境负温与升温梯度作用下冻土强度特性试验研究[J]. 公路, 2018, 63(4): 40-46.
|
[45]
|
Li, C., Wang, R., Gu, D., Wang, J., Chen, X., Zhou, J., et al. (2022) Temperature and Ice Form Effects on Mechanical Behaviors of Ice-Richmoraine Soil of Tianmo Valley Nearby the Sichuan-Tibet Railway. Engineering Geology, 305, Article ID: 106713. https://doi.org/10.1016/j.enggeo.2022.106713
|
[46]
|
赵晓东, 周国庆, 陈国舟. 温度梯度冻结黏土破坏形态及抗压强度分析[J]. 岩土工程学报, 2010, 32(12): 1854-1860.
|
[47]
|
Fu, C., Xue, J., Chen, J., Cui, L. and Wang, H. (2024) Evaluating Spatial and Temporal Variations of Soil Water, Heat, and Salt under Autumn Irrigation in the Hetao Irrigation District Based on Distributed SHAW Model. Agricultural Water Management, 293, Article ID: 108707. https://doi.org/10.1016/j.agwat.2024.108707
|
[48]
|
Lu, X., Li, R., Shi, H., Liang, J., Miao, Q. and Fan, L. (2019) Successive Simulations of Soil Water-Heat-Salt Transport in One Whole Year of Agriculture after Different Mulching Treatments and Autumn Irrigation. Geoderma, 344, 99-107. https://doi.org/10.1016/j.geoderma.2019.03.006
|
[49]
|
Chen, J., Gao, X., Zheng, X., Miao, C., Zhang, Y., Du, Q., et al. (2019) Simulation of Soil Freezing and Thawing for Different Groundwater Table Depths. Vadose Zone Journal, 18, 1-14. https://doi.org/10.2136/vzj2018.08.0157
|
[50]
|
薛伟, 周毓彦, 刘建伟, 等. 基于SHAW模型的青藏高原季节冻土区土壤温湿度模拟与评估[J]. 冰川冻土, 2023, 45(1): 54-66.
|
[51]
|
王子龙, 孙秋雨, 李航, 等. SHAW模型模拟积雪覆盖下土壤热过程的不确定性分析[J]. 土壤, 2023, 55(2): 419-425.
|