[1]
|
Zardavas, D., te Marvelde, L., Milne, R.L., Fumagalli, D., Fountzilas, G., Kotoula, V., et al. (2018) Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data. Journal of Clinical Oncology, 36, 981-990. https://doi.org/10.1200/jco.2017.74.8301
|
[2]
|
Fruman, D.A. and Rommel, C. (2014) PI3K and Cancer: Lessons, Challenges and Opportunities. Nature Reviews Drug Discovery, 13, 140-156. https://doi.org/10.1038/nrd4204
|
[3]
|
Andrikopoulou, A., Chatzinikolaou, S., Panourgias, E., Kaparelou, M., Liontos, M., Dimopoulos, M., et al. (2022) “The Emerging Role of Capivasertib in Breast Cancer”. The Breast, 63, 157-167. https://doi.org/10.1016/j.breast.2022.03.018
|
[4]
|
Willis, O., Choucair, K., Alloghbi, A., Stanbery, L., Mowat, R., Charles Brunicardi, F., et al. (2020) PIK3CA Gene Aberrancy and Role in Targeted Therapy of Solid Malignancies. Cancer Gene Therapy, 27, 634-644. https://doi.org/10.1038/s41417-020-0164-0
|
[5]
|
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6
|
[6]
|
Volinia, S., Hiles, I., Ormondroyd, E., Nizetic, D., Antonacci, R., Rocchi, M., et al. (1994) Molecular Cloning, cDNA Sequence, and Chromosomal Localization of the Human Phosphatidylinositol 3-Kinase p110α (PIK3CA) Gene. Genomics, 24, 472-477. https://doi.org/10.1006/geno.1994.1655
|
[7]
|
Mosele, F., Stefanovska, B., Lusque, A., Tran Dien, A., Garberis, I., Droin, N., et al. (2020) Outcome and Molecular Landscape of Patients with PIK3CA-Mutated Metastatic Breast Cancer. Annals of Oncology, 31, 377-386. https://doi.org/10.1016/j.annonc.2019.11.006
|
[8]
|
Turner, N.C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., et al. (2015) Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. New England Journal of Medicine, 373, 209-219. https://doi.org/10.1056/nejmoa1505270
|
[9]
|
Miricescu, D., Totan, A., Stanescu-Spinu, I., Badoiu, S.C., Stefani, C. and Greabu, M. (2020) PI3K/AKT/mTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. International Journal of Molecular Sciences, 22, Article No. 173. https://doi.org/10.3390/ijms22010173
|
[10]
|
Hillmann, P. and Fabbro, D. (2019) PI3K/mTOR Pathway Inhibition: Opportunities in Oncology and Rare Genetic Diseases. International Journal of Molecular Sciences, 20, Article No. 5792. https://doi.org/10.3390/ijms20225792
|
[11]
|
Li, H., Wen, X., Ren, Y., Fan, Z., Zhang, J., He, G., et al. (2024) Targeting PI3K Family with Small-Molecule Inhibitors in Cancer Therapy: Current Clinical Status and Future Directions. Molecular Cancer, 23, Article No. 164. https://doi.org/10.1186/s12943-024-02072-1
|
[12]
|
Liu, P., Cheng, H., Roberts, T.M. and Zhao, J.J. (2009) Targeting the Phosphoinositide 3-Kinase Pathway in Cancer. Nature Reviews Drug Discovery, 8, 627-644. https://doi.org/10.1038/nrd2926
|
[13]
|
De Santis, M.C., Gulluni, F., Campa, C.C., Martini, M. and Hirsch, E. (2019) Targeting PI3K Signaling in Cancer: Challenges and Advances. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1871, 361-366. https://doi.org/10.1016/j.bbcan.2019.03.003
|
[14]
|
Ihle, N.T., Paine-Murrieta, G., Berggren, M.I., Baker, A., Tate, W.R., Wipf, P., et al. (2005) The Phosphatidylinositol-3-Kinase Inhibitor PX-866 Overcomes Resistance to the Epidermal Growth Factor Receptor Inhibitor Gefitinib in A-549 Human Non-Small Cell Lung Cancer Xenografts. Molecular Cancer Therapeutics, 4, 1349-1357. https://doi.org/10.1158/1535-7163.mct-05-0149
|
[15]
|
Koul, D., Shen, R., Kim, Y.-., Kondo, Y., Lu, Y., Bankson, J., et al. (2010) Cellular and in Vivo Activity of a Novel PI3K Inhibitor, PX-866, against Human Glioblastoma. Neuro-Oncology, 12, 559-569. https://doi.org/10.1093/neuonc/nop058
|
[16]
|
Ihle, N.T., Lemos, R., Wipf, P., Yacoub, A., Mitchell, C., Siwak, D., et al. (2008) Mutations in the Phosphatidylinositol-3-Kinase Pathway Predict for Antitumor Activity of the Inhibitor PX-866 Whereas Oncogenic Ras Is a Dominant Predictor for Resistance. Cancer Research, 69, 143-150. https://doi.org/10.1158/0008-5472.can-07-6656
|
[17]
|
Ihle, N.T., Williams, R., Chow, S., Chew, W., Berggren, M.I., Paine-Murrieta, G., et al. (2004) Molecular Pharmacology and Antitumor Activity of PX-866, a Novel Inhibitor of Phosphoinositide-3-Kinase Signaling. Molecular Cancer Therapeutics, 3, 763-772. https://doi.org/10.1158/1535-7163.763.3.7
|
[18]
|
Maira, S., Pecchi, S., Huang, A., Burger, M., Knapp, M., Sterker, D., et al. (2012) Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I Pi3-Kinase Inhibitor. Molecular Cancer Therapeutics, 11, 317-328. https://doi.org/10.1158/1535-7163.mct-11-0474
|
[19]
|
Burger, M.T., Pecchi, S., Wagman, A., Ni, Z., Knapp, M., Hendrickson, T., et al. (2011) Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer. ACS Medicinal Chemistry Letters, 2, 774-779. https://doi.org/10.1021/ml200156t
|
[20]
|
Bendell, J.C., Rodon, J., Burris, H.A., de Jonge, M., Verweij, J., Birle, D., et al. (2012) Phase I, Dose-Escalation Study of BKM120, an Oral Pan-Class I PI3K Inhibitor, in Patients with Advanced Solid Tumors. Journal of Clinical Oncology, 30, 282-290. https://doi.org/10.1200/jco.2011.36.1360
|
[21]
|
Xing, Y., Lin, N.U., Maurer, M.A., Chen, H., Mahvash, A., Sahin, A., et al. (2019) Phase II Trial of AKT Inhibitor MK-2206 in Patients with Advanced Breast Cancer Who Have Tumors with PIK3CA or AKT Mutations, and/or PTEN Loss/PTEN Mutation. Breast Cancer Research, 21, Article No. 78. https://doi.org/10.1186/s13058-019-1154-8
|
[22]
|
Kim, H.R., Kang, H.N., Yun, M.R., Ju, K.Y., Choi, J.W., Jung, D.M., et al. (2020) Mouse-Human Co-Clinical Trials Demonstrate Superior Anti-Tumour Effects of Buparlisib (BKM120) and Cetuximab Combination in Squamous Cell Carcinoma of Head and Neck. British Journal of Cancer, 123, 1720-1729. https://doi.org/10.1038/s41416-020-01074-2
|
[23]
|
Liu, N., Rowley, B.R., Bull, C.O., Schneider, C., Haegebarth, A., Schatz, C.A., et al. (2013) BAY 80-6946 Is a Highly Selective Intravenous PI3K Inhibitor with Potent P110α and P110δ Activities in Tumor Cell Lines and Xenograft Models. Molecular Cancer Therapeutics, 12, 2319-2330. https://doi.org/10.1158/1535-7163.mct-12-0993-t
|
[24]
|
Patnaik, A., Appleman, L.J., Tolcher, A.W., Papadopoulos, K.P., Beeram, M., Rasco, D.W., et al. (2016) First-in-Human Phase I Study of Copanlisib (BAY 80-6946), an Intravenous Pan-Class I Phosphatidylinositol 3-Kinase Inhibitor, in Patients with Advanced Solid Tumors and Non-Hodgkin’s Lymphomas. Annals of Oncology, 27, 1928-1940. https://doi.org/10.1093/annonc/mdw282
|
[25]
|
Matasar, M.J., Capra, M., Özcan, M., Lv, F., Li, W., Yañez, E., et al. (2021) Copanlisib plus Rituximab versus Placebo plus Rituximab in Patients with Relapsed Indolent Non-Hodgkin Lymphoma (CHRONOS-3): A Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 22, 678-689. https://doi.org/10.1016/s1470-2045(21)00145-5
|
[26]
|
Markham, A. (2017) Copanlisib: First Global Approval. Drugs, 77, 2057-2062. https://doi.org/10.1007/s40265-017-0838-6
|
[27]
|
Choi, J., Manzano, A., Dong, W., Bellone, S., Bonazzoli, E., Zammataro, L., et al. (2021) Integrated Mutational Landscape Analysis of Uterine Leiomyosarcomas. Proceedings of the National Academy of Sciences, 118, e2025182118. https://doi.org/10.1073/pnas.2025182118
|
[28]
|
Santin, A.D., Filiaci, V., Bellone, S., O’Cearbhaill, R., Ratner, E.S., Mathews, C.A., et al. (2020) Phase II Evaluation of Copanlisib, a Selective Inhibitor of PI3KCA, in Patients with Persistent or Recurrent Endometrial Carcinoma Harboring PIK3CA Hotspot Mutations: An NRG Oncology Study (NRG-GY008). Gynecologic Oncology Reports, 31, Article ID: 100532. https://doi.org/10.1016/j.gore.2019.100532
|
[29]
|
Ohwada, J., Ebiike, H., Kawada, H., Tsukazaki, M., Nakamura, M., Miyazaki, T., et al. (2011) Discovery and Biological Activity of a Novel Class I PI3K Inhibitor, Ch5132799. Bioorganic & Medicinal Chemistry Letters, 21, 1767-1772. https://doi.org/10.1016/j.bmcl.2011.01.065
|
[30]
|
Tanaka, H., Yoshida, M., Tanimura, H., Fujii, T., Sakata, K., Tachibana, Y., et al. (2011) The Selective Class I PI3K Inhibitor CH5132799 Targets Human Cancers Harboring Oncogenic PIK3CA Mutations. Clinical Cancer Research, 17, 3272-3281. https://doi.org/10.1158/1078-0432.ccr-10-2882
|
[31]
|
Blagden, S., Olmin, A., Josephs, D., Stavraka, C., Zivi, A., Pinato, D.J., et al. (2014) First-in-Human Study of CH5132799, an Oral Class I PI3K Inhibitor, Studying Toxicity, Pharmacokinetics, and Pharmacodynamics, in Patients with Metastatic Cancer. Clinical Cancer Research, 20, 5908-5917. https://doi.org/10.1158/1078-0432.ccr-14-1315
|
[32]
|
Kong, D. and Yamori, T. (2010) ZSTK474, a Novel Phosphatidylinositol 3-Kinase Inhibitor Identified Using the JFCR39 Drug Discovery System. Acta Pharmacologica Sinica, 31, 1189-1197. https://doi.org/10.1038/aps.2010.150
|
[33]
|
Kong, D., Yamori, T., Yamazaki, K. and Dan, S. (2014) In Vitro Multifaceted Activities of a Specific Group of Novel Phosphatidylinositol 3-Kinase Inhibitors on Hotspot Mutant PIK3CA. Investigational New Drugs, 32, 1134-1143. https://doi.org/10.1007/s10637-014-0152-z
|
[34]
|
Anzai, K., Sekine‐Suzuki, E., Ueno, M., Okamura, M., Yoshimi, H., Dan, S., et al. (2011) Effectiveness of Combined Treatment Using X‐Rays and a Phosphoinositide 3‐Kinase Inhibitor, ZSTK474, on Proliferation of Hela Cells in Vitro and in Vivo. Cancer Science, 102, 1176-1180. https://doi.org/10.1111/j.1349-7006.2011.01916.x
|
[35]
|
Heffron, T.P., Wei, B., Olivero, A., Staben, S.T., Tsui, V., Do, S., et al. (2011) Rational Design of Phosphoinositide 3-Kinase Α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase Β Isoform. Journal of Medicinal Chemistry, 54, 7815-7833. https://doi.org/10.1021/jm2007084
|
[36]
|
Tan, E.S., Cao, B., Kim, J., Al‐Toubah, T.E., Mehta, R., Centeno, B.A., et al. (2020) Phase 2 Study of Copanlisib in Combination with Gemcitabine and Cisplatin in Advanced Biliary Tract Cancers. Cancer, 127, 1293-1300. https://doi.org/10.1002/cncr.33364
|
[37]
|
Fritsch, C., Huang, A., Chatenay-Rivauday, C., Schnell, C., Reddy, A., Liu, M., et al. (2014) Characterization of the Novel and Specific PI3Kα Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials. Molecular Cancer Therapeutics, 13, 1117-1129. https://doi.org/10.1158/1535-7163.mct-13-0865
|
[38]
|
Rugo, H.S., André, F., Yamashita, T., Cerda, H., Toledano, I., Stemmer, S.M., et al. (2020) Time Course and Management of Key Adverse Events during the Randomized Phase III SOLAR-1 Study of PI3K Inhibitor Alpelisib plus Fulvestrant in Patients with Hr-Positive Advanced Breast Cancer. Annals of Oncology, 31, 1001-1010. https://doi.org/10.1016/j.annonc.2020.05.001
|
[39]
|
Haagensen, E.J., Thomas, H.D., Schmalix, W.A., Payne, A.C., Kevorkian, L., Allen, R.A., et al. (2016) Enhanced Anti-Tumour Activity of the Combination of the Novel MEK Inhibitor WX-554 and the Novel PI3K Inhibitor Wx-037. Cancer Chemotherapy and Pharmacology, 78, 1269-1281. https://doi.org/10.1007/s00280-016-3186-4
|
[40]
|
Janku, F. (2017) Phosphoinositide 3-Kinase (PI3K) Pathway Inhibitors in Solid Tumors: From Laboratory to Patients. Cancer Treatment Reviews, 59, 93-101. https://doi.org/10.1016/j.ctrv.2017.07.005
|
[41]
|
Juric, D., Krop, I., Ramanathan, R.K., Wilson, T.R., Ware, J.A., Sanabria Bohorquez, S.M., et al. (2017) Phase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors. Cancer Discovery, 7, 704-715. https://doi.org/10.1158/2159-8290.cd-16-1080
|
[42]
|
Janku, F., Yap, T.A. and Meric-Bernstam, F. (2018) Targeting the PI3K Pathway in Cancer: Are We Making Headway? Nature Reviews Clinical Oncology, 15, 273-291. https://doi.org/10.1038/nrclinonc.2018.28
|
[43]
|
Song, K.W., Edgar, K.A., Hanan, E.J., Hafner, M., Oeh, J., Merchant, M., et al. (2021) RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Cancer Discovery, 12, 204-219. https://doi.org/10.1158/2159-8290.cd-21-0072
|
[44]
|
Jhaveri, K.L., Accordino, M.K., Bedard, P.L., Cervantes, A., Gambardella, V., Hamilton, E., et al. (2024) Phase I/Ib Trial of Inavolisib Plus Palbociclib and Endocrine Therapy for PIK3CA-Mutated, Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced or Metastatic Breast Cancer. Journal of Clinical Oncology, 42, 3947-3956. https://doi.org/10.1200/jco.24.00110
|
[45]
|
Wei, X., Liu, F., Liu, J., Zhao, H., Zhang, Y., Wang, Z., et al. (2022) First-in-Human Phase Ia Study of the PI3Kα Inhibitor CYH33 in Patients with Solid Tumors. Nature Communications, 13, Article No. 7012. https://doi.org/10.1038/s41467-022-34782-9
|
[46]
|
Varkaris, A., Pazolli, E., Gunaydin, H., Wang, Q., Pierce, L., Boezio, A.A., et al. (2023) Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia. Cancer Discovery, 14, 240-257. https://doi.org/10.1158/2159-8290.cd-23-0944
|
[47]
|
Belli, C., Repetto, M., Anand, S., Porta, C., Subbiah, V. and Curigliano, G. (2023) The Emerging Role of PI3K Inhibitors for Solid Tumour Treatment and Beyond. British Journal of Cancer, 128, 2150-2162. https://doi.org/10.1038/s41416-023-02221-1
|
[48]
|
Buckbinder, L., St. Jean, D.J., Tieu, T., Ladd, B., Hilbert, B., Wang, W., et al. (2023) STX-478, a Mutant-Selective, Allosteric PI3Kα Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kα-Mutant Xenografts. Cancer Discovery, 13, 2432-2447. https://doi.org/10.1158/2159-8290.cd-23-0396
|
[49]
|
Kearney, A.L. and Vasan, N. (2023) A New Wave of PI3Kα Inhibitors. Cancer Discovery, 13, 2313-2315. https://doi.org/10.1158/2159-8290.cd-23-0945
|
[50]
|
Baselga, J., Im, S., Iwata, H., Cortés, J., De Laurentiis, M., Jiang, Z., et al. (2017) Buparlisib plus Fulvestrant versus Placebo plus Fulvestrant in Postmenopausal, Hormone Receptor-Positive, HER2-Negative, Advanced Breast Cancer (BELLE-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 18, 904-916. https://doi.org/10.1016/s1470-2045(17)30376-5
|