[1]
|
Langer, J., Jimenez de Aberasturi, D., Aizpurua, J., Alvarez-Puebla, R.A., Auguié, B., Baumberg, J.J., et al. (2019) Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 14, 28-117. https://doi.org/10.1021/acsnano.9b04224
|
[2]
|
Von Raben, K.U., Dorain, P.B., Chen, T.T. and Chang, R.K. (1983) and Formation on Oxygenated Ag Surfaces Exposed to Nitrogen Oxide Gases: A Sers Study. Chemical Physics Letters, 95, 269-273. https://doi.org/10.1016/0009-2614(83)87247-9
|
[3]
|
Cialla-May, D., Zheng, X., Weber, K. and Popp, J. (2017) Recent Progress in Surface-Enhanced Raman Spectroscopy for Biological and Biomedical Applications: From Cells to Clinics. Chemical Society Reviews, 46, 3945-3961. https://doi.org/10.1039/c7cs00172j
|
[4]
|
Song, C.Y., Yang, Y.J., Yang, B.Y., Sun, Y.Z., Zhao, Y.P. and Wang, L.H. (2016) An Ultrasensitive SERS Sensor for Simultaneous Detection of Multiple Cancer-Related miRNAs. Nanoscale, 8, 17365-17373. https://doi.org/10.1039/c6nr05504d
|
[5]
|
Yang, Y., Zhu, J., Zhao, J., Weng, G., Li, J. and Zhao, J. (2019) Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. ACS Applied Materials & Interfaces, 11, 3617-3626. https://doi.org/10.1021/acsami.8b21238
|
[6]
|
Du, J., Cui, J. and Jing, C. (2014) Rapid in Situ Identification of Arsenic Species Using a Portable Fe3O4@Ag SERS Sensor. Chemical Communications, 50, 347-349. https://doi.org/10.1039/c3cc46920d
|
[7]
|
Hatab, N.A., Eres, G., Hatzinger, P.B. and Gu, B. (2010) Detection and Analysis of Cyclotrimethylenetrinitramine (RDX) in Environmental Samples by Surface‐Enhanced Raman Spectroscopy. Journal of Raman Spectroscopy, 41, 1131-1136. https://doi.org/10.1002/jrs.2574
|
[8]
|
Pu, H., Xiao, W. and Sun, D. (2017) Sers-microfluidic Systems: A Potential Platform for Rapid Analysis of Food Contaminants. Trends in Food Science & Technology, 70, 114-126. https://doi.org/10.1016/j.tifs.2017.10.001
|
[9]
|
Raja, S.S., Cheng, C., Sang, Y., Chen, C., Zhang, X., Dubey, A., et al. (2020) Epitaxial Aluminum Surface-Enhanced Raman Spectroscopy Substrates for Large-Scale 2D Material Characterization. ACS Nano, 14, 8838-8845. https://doi.org/10.1021/acsnano.0c03462
|
[10]
|
Wang, Y., Lu, N., Wang, W., Liu, L., Feng, L., Zeng, Z., et al. (2013) Highly Effective and Reproducible Surface-Enhanced Raman Scattering Substrates Based on Ag Pyramidal Arrays. Nano Research, 6, 159-166. https://doi.org/10.1007/s12274-013-0291-0
|
[11]
|
Kanipe, K.N., Chidester, P.P.F., Stucky, G.D. and Moskovits, M. (2016) Large Format Surface-Enhanced Raman Spectroscopy Substrate Optimized for Enhancement and Uniformity. ACS Nano, 10, 7566-7571. https://doi.org/10.1021/acsnano.6b02564
|
[12]
|
Tao, Q., Li, S., Zhang, Q.Y., Kang, D.W., Yang, J.S., Qiu, W.W., et al. (2014) Controlled Growth of ZnO Nanorods on Textured Silicon Wafer and the Application for Highly Effective and Recyclable SERS Substrate by Decorating Ag Nanoparticles. Materials Research Bulletin, 54, 6-12. https://doi.org/10.1016/j.materresbull.2014.02.027
|
[13]
|
Xu, Y., Zhang, D., Lin, J., Wu, X., Xu, X., Akakuru, O.U., et al. (2022) Ultrahigh SERS Activity of the TiO2@Ag Nanostructure Leveraged for Accurately Detecting CTCs in Peripheral Blood. Biomaterials Science, 10, 1812-1820. https://doi.org/10.1039/d1bm01821c
|
[14]
|
Wang, J., Hassan, M.M., Ahmad, W., Jiao, T., Xu, Y., Li, H., et al. (2019) A Highly Structured Hollow ZnO@Ag Nanosphere SERS Substrate for Sensing Traces of Nitrate and Nitrite Species in Pickled Food. Sensors and Actuators B: Chemical, 285, 302-309. https://doi.org/10.1016/j.snb.2019.01.052
|
[15]
|
Wu, H., Luo, Y., Hou, C., Huo, D., Zhou, Y., Zou, S., et al. (2019) Flexible Bipyramid-AuNPs Based SERS Tape Sensing Strategy for Detecting Methyl Parathion on Vegetable and Fruit Surface. Sensors and Actuators B: Chemical, 285, 123-128. https://doi.org/10.1016/j.snb.2019.01.038
|
[16]
|
Jin, B., He, J., Li, J. and Zhang, Y. (2018) Lotus Seedpod Inspired SERS Substrates: A Novel Platform Consisting of 3D Sub‐10 Nm Annular Hot Spots for Ultrasensitive SERS Detection. Advanced Optical Materials, 6, Article ID: 1800056. https://doi.org/10.1002/adom.201800056
|
[17]
|
Lin, D., Wu, Z., Li, S., Zhao, W., Ma, C., Wang, J., et al. (2017) Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano, 11, 1478-1487. https://doi.org/10.1021/acsnano.6b06778
|
[18]
|
Ou, F.S., Hu, M., Naumov, I., Kim, A., Wu, W., Bratkovsky, A.M., et al. (2011) Hot-Spot Engineering in Polygonal Nanofinger Assemblies for Surface Enhanced Raman Spectroscopy. Nano Letters, 11, 2538-2542. https://doi.org/10.1021/nl201212n
|
[19]
|
Botta, R., Eiamchai, P., Horprathum, M., Limwichean, S., Chananonnawathorn, C., Patthanasettakul, V., et al. (2020) 3D Structured Laser Engraves Decorated with Gold Nanoparticle SERS Chips for Paraquat Herbicide Detection in Environments. Sensors and Actuators B: Chemical, 304, Article ID: 127327. https://doi.org/10.1016/j.snb.2019.127327
|
[20]
|
Chirumamilla, M., Toma, A., Gopalakrishnan, A., Das, G., Zaccaria, R.P., Krahne, R., et al. (2014) 3D Nanostar Dimers with a Sub‐10‐nm Gap for Single‐/Few-Molecule Surface‐Enhanced Raman Scattering. Advanced Materials, 26, 2353-2358. https://doi.org/10.1002/adma.201304553
|
[21]
|
Dong, S., Zhang, X., Li, Q., Liu, C., Ye, T., Liu, J., et al. (2020) Springtail‐Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasi‐Doubly Reentrant Structures. Small, 16, Article ID: 2000779. https://doi.org/10.1002/smll.202000779
|
[22]
|
Mu, C., Zhang, J. and Xu, D. (2009) Au Nanoparticle Arrays with Tunable Particle Gaps by Template-Assisted Electroless Deposition for High Performance Surface-Enhanced Raman Scattering. Nanotechnology, 21, Article ID: 015604. https://doi.org/10.1088/0957-4484/21/1/015604
|
[23]
|
Cho, W.J., Kim, Y. and Kim, J.K. (2011) Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility. ACS Nano, 6, 249-255. https://doi.org/10.1021/nn2035236
|
[24]
|
Ryu Cho, Y.K., Rawlings, C.D., Wolf, H., Spieser, M., Bisig, S., Reidt, S., et al. (2017) Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography. ACS Nano, 11, 11890-11897. https://doi.org/10.1021/acsnano.7b06307
|
[25]
|
Chen, S., Kim, S., Chen, W., Yuan, J., Bashir, R., Lou, J., et al. (2019) Monolayer MoS2 Nanoribbon Transistors Fabricated by Scanning Probe Lithography. Nano Letters, 19, 2092-2098. https://doi.org/10.1021/acs.nanolett.9b00271
|
[26]
|
Wu, L., Zhou, H., He, W., et al. (2022) Fabrication of Large-Area and Highly Uniform Interlaced Silicon Grating Arrays for High-Performance SERS Substrates. Surfaces and Interfaces, 32, Article ID: 102156.
|
[27]
|
Zhang, J., Jia, T., Yan, Y., Wang, L., Miao, P., Han, Y., et al. (2019) Label-Free Highly Sensitive Probe Detection with Novel Hierarchical SERS Substrates Fabricated by Nanoindentation and Chemical Reaction Methods. Beilstein Journal of Nanotechnology, 10, 2483-2496. https://doi.org/10.3762/bjnano.10.239
|
[28]
|
Pineau, A., Benzerga, A.A. and Pardoen, T. (2016) Failure of Metals I: Brittle and Ductile Fracture. Acta Materialia, 107, 424-483. https://doi.org/10.1016/j.actamat.2015.12.034
|
[29]
|
Zhang, J., Yan, Y., Hu, Z. and Zhao, X. (2016) Fabrication of Copper Substrates for Surface-Enhanced Raman Scattering Using the Microscratching Method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232, 1310-1315. https://doi.org/10.1177/0954405416666908
|
[30]
|
孔德鹏. AFM加工SERS基底与微流控系统集成研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.
|
[31]
|
Pelleg, J. (2013) Mechanical Properties of Materials. Springer. https://doi.org/10.1007/978-94-007-4342-7
|
[32]
|
Gill, H.S., Thota, S., Li, L., Ren, H., Mosurkal, R. and Kumar, J. (2015) Reusable SERS Active Substrates for Ultrasensitive Molecular Detection. Sensors and Actuators B: Chemical, 220, 794-798. https://doi.org/10.1016/j.snb.2015.05.114
|
[33]
|
Markin, A.V., Markina, N.E., Popp, J. and Cialla-May, D. (2018) Copper Nanostructures for Chemical Analysis Using Surface-Enhanced Raman Spectroscopy. TrAC Trends in Analytical Chemistry, 108, 247-259. https://doi.org/10.1016/j.trac.2018.09.004
|