[1]
|
薛正铎, 郭不拘, 牛子儒, 等. NaCl和LiF对低温铝电解电流效率的影响[J]. 材料与冶金学报, 2024, 23(1): 16-22.
|
[2]
|
匡野, 颜恒维, 杨光, 等. Na2O对NaF-AlF3低温电解质中Al2O3溶解性能的影响[J]. 轻金属, 2023(6): 25-30.
|
[3]
|
郑勇, 郑永军, 王振, 等. 原铝在离子液体中低温电解精炼的研究[J]. 有色金属(冶炼部分), 2020(5): 51-55.
|
[4]
|
刘一铮, 石斌, 冉岭, 等. 热电池电解质与隔膜材料研究进展[J]. 化工学报, 2021, 72(7): 3524-3537.
|
[5]
|
Zhang, Y., Zhao, Y., Niu, Y., Ren, J. and Hou, H. (2021) Halide and Nitrate Electrolytes of Thermal Batteries. Journal of Energy Engineering, 147, Article ID: 03121002. https://doi.org/10.1061/(asce)ey.1943-7897.0000750
|
[6]
|
安亚辉, 刘风国, 刘爱民, 等. AlCl3-NaCl-LiCl-KCl熔盐电解回收金属铝[J]. 过程工程学报, 2024, 24(7): 825-832.
|
[7]
|
姚坤. 上转换发光材料LiBiF4: Er3+/Yb3+的低温自熔盐制备及发光机理研究[D]: [硕士学位论文]. 南昌: 江西财经大学, 2023.
|
[8]
|
李宇航, 王银斌, 魏强. Fe2O3-Co3O4异质结的熔盐法制备及其析氢性能[J]. 无机盐工业, 2023, 55(8): 51-58.
|
[9]
|
Wang, Y., Wang, Z., Lu, Y., Wu, Y. and Zhang, C. (2025) Phase Diagram Calculation and Neural Network Prediction of Nitrate/Nitrite Molten Salts with Wide Working Temperature Range for Thermal Storage System. Energy, 322, Article ID: 135638. https://doi.org/10.1016/j.energy.2025.135638
|
[10]
|
Vaka, M., Walvekar, R., Khalid, M. and Jagadish, P. (2020) Low-Melting-Temperature Binary Molten Nitrate Salt Mixtures for Solar Energy Storage. Journal of Thermal Analysis and Calorimetry, 141, 2657-2664. https://doi.org/10.1007/s10973-020-09683-y
|
[11]
|
Wang, Y., Ma, Y., Lu, Y., Gao, Q., Wu, Y., Wang, Y., et al. (2024) Phase Diagram Thermodynamic Calculation of KNO3-NaNO2-KNO2 Ternary System Molten Salt and Its Thermophysical Properties Investigation for Thermal Energy Storage. Journal of Energy Storage, 96, Article ID: 112422. https://doi.org/10.1016/j.est.2024.112422
|
[12]
|
Li, J., Zhang, Y., Zhao, Y., Wang, M. and Yang, Y. (2021) Novel High Specific Heat Capacity Ternary Nitrate/Nitrite Eutectic Salt for Solar Thermal Energy Storage. Solar Energy Materials and Solar Cells, 227, Article ID: 111075. https://doi.org/10.1016/j.solmat.2021.111075
|
[13]
|
Li, N., Wang, Y., Liu, Q. and Peng, H. (2022) Evaluation of Thermal-Physical Properties of Novel Multicomponent Molten Nitrate Salts for Heat Transfer and Storage. Energies, 15, Article No. 6591. https://doi.org/10.3390/en15186591
|
[14]
|
Wang, J., Xu, F., Hu, Y., Chen, Z. and Mao, C. (2020) Thermodynamic Investigation of the Ca(NO3)2-NaNO3-KNO3 System for Solar Thermal Energy Storage. Thermochimica Acta, 688, Article ID: 178608. https://doi.org/10.1016/j.tca.2020.178608
|
[15]
|
安周建, 李璐, 毛帅, 等. 硝酸盐基中低温储热相变材料的制备及热物性调控[J]. 华南理工大学学报(自然科学版), 2025, 53(3): 116-126.
|
[16]
|
Zhang, C., Han, Y., Wu, Y. and Lu, Y. (2021) Comparative Study on High Temperature Thermal Stability of Quaternary Nitrate-Nitrite Mixed Salt and Solar Salt. Solar Energy Materials and Solar Cells, 230, Article ID: 111197. https://doi.org/10.1016/j.solmat.2021.111197
|
[17]
|
Bonk, A., Braun, M. and Bauer, T. (2022) Phase Diagram, Thermodynamic Properties and Long-Term Isothermal Stability of Quaternary Molten Nitrate Salts for Thermal Energy Storage. Solar Energy, 231, 1061-1071. https://doi.org/10.1016/j.solener.2021.12.020
|
[18]
|
Wang, H., Wei, J., Luo, L., Wang, J., Xu, J., Yin, J., et al. (2025) Thermophysical Properties and Phase Diagram Analysis of Binary, Ternary and Quaternary Nitrates for the Thermal Energy Storage Applications. Solar Energy, 286, Article ID: 113151. https://doi.org/10.1016/j.solener.2024.113151
|
[19]
|
罗海华, 沈强, 林俊光, 等. 新型低熔点混合熔盐储热材料的开发[J]. 储能科学与技术, 2020, 9(6): 1755.
|
[20]
|
Zhong, Y., Wang, M., Wang, H. and Yuan, J. (2021) Thermodynamic Description of the Quaternary Mg(NO3)2-KNO3-NaNO3-LiNO3 System and Investigation on the Novel Mg(NO3)2 Based Nitrate Salts with Low Temperature. Solar Energy Materials and Solar Cells, 230, Article ID: 111148. https://doi.org/10.1016/j.solmat.2021.111148
|
[21]
|
Yang, Z., Yin, H., Guo, F., Chen, L., Lai, X., Chen, S., et al. (2023) Design Optimization and Key Thermo-Physical Properties of the NaCl-KCl-FeCl3 Molten Salts for Low-Temperature Thermal Energy Storage. Journal of Energy Storage, 72, Article ID: 108255. https://doi.org/10.1016/j.est.2023.108255
|
[22]
|
Wu, S., Peng, H., Ao, J. and Xie, L. (2022) Design and Development of Novel LiCl-NaCl-KCl-ZnCl2 Eutectic Chlorides for Thermal Storage Fluids in Concentrating Solar Power (CSP) Applications. Solar Energy Materials and Solar Cells, 240, Article ID: 111678. https://doi.org/10.1016/j.solmat.2022.111678
|
[23]
|
Ahn, T., Cheong, H., Kang, S., Lee, J., Kim, M. and Choi, Y. (2022) Development of a Low-Melting-Point Eutectic Salt and Evaluation of Its Discharge Performance for Light Weight Thermal Batteries. RSC Advances, 12, 21978-21981. https://doi.org/10.1039/d2ra03436k
|
[24]
|
Deng, Y., Tang, L., Zhu, J., Yang, W., Wang, J., Yuan, Z., et al. (2024) Low-Energy Consumption LiCl-LiBr-KBr-CsBr Electrolyte for High-Energy Thermal Battery Application. Ceramics International, 50, 20742-20748. https://doi.org/10.1016/j.ceramint.2024.03.199
|
[25]
|
Yin, H., Wang, Z., Lai, X., Wang, Y. and Tang, Z. (2022) Optimum Design and Key Thermal Property of NaCl-KCl-CaCl2 Eutectic Salt for Ultra-High-Temperature Thermal Energy Storage. Solar Energy Materials and Solar Cells, 236, Article ID: 111541. https://doi.org/10.1016/j.solmat.2021.111541
|
[26]
|
Zhao, X., Guo, Y., Lu, S., Hui, Y., Yin, L., Yang, Z., et al. (2023) Design of Refined Quaternary Electrolyte LiF-LiCl-LiBr-LiI Used for the Liquid Metal Battery. ChemPhysChem, 25, e202300546. https://doi.org/10.1002/cphc.202300546
|
[27]
|
Dumaire, T., Ocádiz Flores, J.A., Konings, R.J.M. and Smith, A.L. (2022) A Promising Fuel for Fast Neutron Spectrum Molten Salt Reactor NaCl-ThCl4-PuCl3. SSRN Electronic Journal.
|
[28]
|
Sang, L., Lv, X. and Wu, Y. (2023) NaNO3-KNO3-KCl/K2CO3 with the Elevated Working Temperature for CSP Application: Phase Diagram Calculation and Machine Learning. Solar Energy, 252, 322-329. https://doi.org/10.1016/j.solener.2023.02.009
|
[29]
|
Sang, L., Lv, X., Wang, Y., Huang, J. and Wu, Y. (2023) Investigation of KNO2-KNO3-K2CO3 Mixed Molten Salts with Higher Working Temperature for Supercritical CO2 Concentrated Solar Power Application. Journal of Energy Storage, 61, Article ID: 106724. https://doi.org/10.1016/j.est.2023.106724
|
[30]
|
Lai, X., Yin, H., Li, P., Liu, B., Gao, L. and Tang, Z. (2022) Design Optimization and Thermal Storage Characteristics of NaNO3-NaCl-NaF Molten Salts with High Latent Heat and Low Cost for the Thermal Energy Storage. Journal of Energy Storage, 52, Article ID: 104805. https://doi.org/10.1016/j.est.2022.104805
|
[31]
|
Li, Y., Fu, Z., Zhou, S. and Zhu, Q. (2025) The Thermal Performance and Corrosiveness of a New Type of Molten Salt LiNO3-KNO3-KCl. International Communications in Heat and Mass Transfer, 162, Article ID: 108600. https://doi.org/10.1016/j.icheatmasstransfer.2025.108600
|
[32]
|
Huang, H., Liu, W., Li, B., Wang, F., Yin, H. and Tang, Z. (2025) Design and Key Thermo-Physical Properties of NaNO3-KNO3-Na2CO3-NaCl with High Thermal Stability for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 283, Article ID: 113459. https://doi.org/10.1016/j.solmat.2025.113459
|
[33]
|
何聪, 鹿院卫, 宋文兵, 等. 新型相同钠离子混合熔盐相图预测及物性测量[J]. 储能科学与技术, 2021, 10(5): 1729.
|
[34]
|
Han, D., He, X., Hou, Y., Geng, B., Zhang, H., Guene Lougou, B., et al. (2024) Experimental Analysis on Improving Heat Storage Efficiency of High-Temperature Packed Bed System Using Spherical Capsules Filled with MgCl2-KCl-NaCl/Al2O3 Nanoparticles Composite Phase Change Material. Solar Energy Materials and Solar Cells, 277, Article ID: 113106. https://doi.org/10.1016/j.solmat.2024.113106
|
[35]
|
Kang, Z., Xu, J., Liu, H., Lin, Y., Liu, X. and He, M. (2022) Thermophysical Properties of LiF-LiCl-Li2CO3 Eutectic Mixture/Multi-Walled Carbon Nanotubes for Thermal Energy Storage. Solar Energy Materials and Solar Cells, 241, Article ID: 111744. https://doi.org/10.1016/j.solmat.2022.111744
|
[36]
|
Li, Y., Zhou, S.H., Wang, S., Ma, K.Q. and Zhu, Q.Z. (2023) Preparation and Thermal Properties of a Novel Ternary Molten Salt/Expanded Graphite Thermal Storage Material. Journal of Energy Storage, 74, Article ID: 109273. https://doi.org/10.1016/j.est.2023.109273
|
[37]
|
Li, Q., Wei, W., Li, Y., Li, C., Ge, R., Du, Y., et al. (2022) Development and Investigation of Form-Stable Quaternary Nitrate Salt Based Composite Phase Change Material with Extremely Low Melting Temperature and Large Temperature Range for Low-Mid Thermal Energy Storage. Energy Reports, 8, 1528-1537. https://doi.org/10.1016/j.egyr.2021.12.054
|
[38]
|
许荣玉, 陆海涛, 郭荷渡, 等. 低熔点四元硝酸盐基定型复合相变材料的制备与研究[J]. 储能科学与技术, 2024, 13(5): 1451.
|
[39]
|
Li, C., Leng, G., Han, L., Li, Q., Lu, H., Xu, R., et al. (2023) Preparation and Characterization of Quinary Nitrate Salt Based Composite Phase Change Material with Low Melting Point for Low and Medium Temperature Thermal Energy Storage. Journal of Energy Storage, 74, Article ID: 109277. https://doi.org/10.1016/j.est.2023.109277
|