特细砂混凝土受压与受拉尺寸效应试验研究
Experimental Study on the Compression and Tensile Size Effect of Ultra-Fine Sand
DOI: 10.12677/hjce.2025.147187, PDF, HTML, XML,    科研立项经费支持
作者: 崔 岩, 薛 宁:宁夏农垦建设有限公司,宁夏 银川;车佳玲:宁夏大学土木与水利工程学院,宁夏 银川
关键词: USC超声波速力学性能尺寸效应USC Ultrasonic Wave Velocity Mechanical Properties Size Effect
摘要: 为实现特细砂混凝土(USC)的工程应用,研究了特细砂替代率与试件尺寸对USC超声波速、抗压强度及劈裂抗拉强度的影响,探究了USC受压与受拉尺寸换算系数的变化规律。结果表明:USC的超声波速均随特细砂替代率的增加而降低,特细砂替代率为20%时,边长100 mm和150 mm的USC在28 d时超声波速最高,分别达到3.92 km∙s1和4.24 km∙s1。随特细砂替代率的增加,USC的受压尺寸换算系数逐渐降低,受拉尺寸换算系数先降低后增加再降低。特细砂替代率达60%时,受压与受拉尺寸换算系数均最大程度偏离基准值1。
Abstract: In order to achieve the engineering application of ultra-fine sand concrete (USC), the influences of the substitution rate of ultra-fine sand and the size of specimens on the ultrasonic wave velocity, compressive strength and splitting tensile strength of USC were studied, and the variation law of the conversion coefficient between compressive and tensile dimensions of USC was explored. The results show that the ultrasonic wave velocities of USC decrease with the increase of the substitution rate of ultrafine sand. When the substitution rate of ultrafine sand is 20%, the ultrasonic wave velocities of USC with side lengths of 100 mm and 150 mm are the highest at 28 d, reaching 3.92 km∙s1 and 4.24km∙s1 respectively. With the increase of the substitution rate of ultrafine sand, the compression dimension conversion coefficient of USC gradually decreases, and the tensile dimension conversion coefficient first decreases, then increases, and then decreases again. When the substitution rate of ultrafine sand reaches 60%, the conversion coefficients of compressive and tensile dimensions deviate from the reference value by 1 to the greatest extent.
文章引用:崔岩, 薛宁, 车佳玲. 特细砂混凝土受压与受拉尺寸效应试验研究[J]. 土木工程, 2025, 14(7): 1736-1744. https://doi.org/10.12677/hjce.2025.147187

1. 引言

特细砂指粒径小于0.25 mm、细度模数介于0.7~1.5之间的沙子,通常来源于工程周边的风积砂[1]、疏浚砂[2] [3]及沉积砂[4]等。USC是指以特细砂定量取代河砂或机制砂等细骨料制备的混凝土。李星波等[5]研究了黄河特细砂掺量对水泥砂浆力学性能的影响,发现其立方体抗压强度降低了8.8%。陈劲戈[6]提出了制备UHPC时黄河特细砂的最优级配组合,所得UHPC的28 d抗压强度大于100 MPa。王松亮等[7]采用机制砂与特细砂复配制混凝土,发现随特细砂掺量增加,混凝土的和易性和抗压强度均有所提高。因此,使用USC可实现特细砂就地取材与资源化利用,对降低工程成本、促进建筑行业可持续发展具有重要意义。

混凝土尺寸效应[8]-[10]是在不同尺寸的混凝土结构中,由于尺寸变化引起的材料力学性质和结构性能的变化[11]-[14]。许多学者对不同类型混凝土构件的尺寸效应展开了深入研究。Wang等[15]研究了试样尺寸对再生骨料保温混凝土(RATIC)抗压强度和劈裂抗拉强度的影响,发现再生粗骨料替代率对抗压强度、劈裂抗拉强度和弹性模量的尺寸效应均有轻微影响。Peng [16]、Du [17]探讨了再生骨料混凝土(RAC)的基本力学性能和尺寸效应,发现随着混凝土立方体尺寸的增加,RAC的抗压强度逐渐下降,再生骨料取代率的增加降低了尺寸效应对RAC抗压强度的影响。Liu等[18]通过建立细观模型,研究了构件尺寸对轻骨料混凝土(LWAC)拉伸强度的影响,认为水胶比和轻骨料强度显著影响LWAC的尺寸效应。Sim等[19]发现随着混凝土容重的减小,LWAC抗压强度尺寸效应越强。Yu等[20]认为随着立方体尺寸的增加轻质混凝土(LC)的抗压强度逐渐降低,且尺寸效应对LC抗压强度的影响比对普通混凝土抗压强度的影响更明显。Dehestani等[21]-[23]发现随着试样尺寸的增加,自固结混凝土(SCC)强度明显降低。Wen等[24]发现煤矸石混凝土的尺寸效应相较于普通混凝土更加显著。综上所述,诸多学者对不同类型混凝土的尺寸效应开展了大量研究,但对USC尺寸效应的研究仍处于空白。

因此,本文设计两种立方体尺寸(100 mm × 100 mm × 100 mm、150 mm × 150 mm × 150 mm)和5种特细砂替代率(0%、20%、30%、40%、60%)制备USC,开展USC超声波速、抗压强度与劈裂抗拉强度试验,系统分析尺寸效应对USC力学性能的影响,采用Origin拟合USC抗压强度的尺寸效应,建立USC受压尺寸效应拟合方程。

2. 试验概况

2.1. 试验原材料

USC的原料包含六大组分:胶凝材料采用宁夏赛马水泥厂P·O 42.5 R型硅酸盐水泥与宁夏大坝电厂生产的I级粉煤灰,粉煤灰比表面积为1110 m2/kg,烧失量为2.8%,化学组分见表1。细骨料为金樾府基坑特细砂(比表面积150 m2/kg,表观密度2439 kg/m3)与幸德源砼业机制砂(细度模数3.4),特细砂粒径分布见图1;粗骨料为宁夏镇北堡生产的5~25 mm II级人工碎石;外加剂选用萘系液体减水剂,减水率为15%~25%;拌和水均采用宁夏本地自来水。

Figure 1. Distribution of ultra-fine sand particle size

1. 特细砂粒径分布图

Table 1. Chemical components of fly ash

1. 粉煤灰化学组分

Chemical components

CaO

SiO2

Al2O3

Fe2O3

SO3

MgO

TiO2

Mass ratio (%)

6.12

38.5

23.6

7.49

2.13

3.66

2.14

2.2. 试验设计

Table 2. USC mix proportion

2. USC配合比

Group

Cenment

(kg/m3)

Coarse aggregate (kg/m3)

Replacement rate

of fly ash (%)

Replacement rate of

ultra-fine sand (%)

S/B

AF28S0

302.824

1053

28

0

1.92

AF28S2

302.824

1053

28

20

AF28S3

302.824

1053

28

30

AF28S4

302.824

1053

28

40

AF28S6

302.824

1053

28

60

注:编号A表示水胶比0.38;S0、S2、S3、S4、S6分别表示特细砂替代率为0%、20%、30%、40%和60%;F28表示粉煤灰替代率为28%。

试验以水胶比(0.38)、砂率(0.44)及粉煤灰替代率(28%)为定量,以特细砂替代率(0%、20%、30%、40%和60%)为变量配制USC,具体配合比见表2。根据《混凝土物理力学性能试验方法标准》(GB/T 50081-2019)规范,每组配合比制备12个尺寸为100 mm × 100 mm × 100 mm的立方体试件和12个尺寸为150 mm × 150 mm × 150 mm立方体试件。3个边长100 mm和3个边长150 mm的试件为1小组,共4小组,其中1小组用于测定USC3d超声波速与抗压强度,1小组用于测定7 d超声波速与抗压强度,1小组用于测定28 d超声波速与抗压强度,最后1小组用于测定USC 28d劈裂抗拉强度,共计120个试件。

2.3. 试验方法

2.3.1. 试件制备与养护

根据试验配合比称量原材料,将水泥、粉煤灰及细骨料依次倒入混凝土搅拌锅中混合搅拌15 s后,加入粗骨料混合搅拌15 s,减水剂加入清水中搅拌均匀后倒入混凝土搅拌锅中继续搅拌2 min。搅拌完成后,将混凝土拌合物分两次装入尺寸为100 mm × 100 mm × 100 mm与150 mm × 150 mm × 150 mm的模具中,在振动台上振捣成型1 min。试件浇筑24 h后脱模,采用非金属超声检测仪(ZBL-U520)测定USC的初始超声波速后,迅速将试件移入标准养护室(温度20 ± 2℃,相对湿度≥95%)养护至规定龄期。

2.3.2. 超声波速、抗压强度与劈裂抗拉强度测定

采用非金属超声检测仪(ZBL-U520)测定脱模后(D0)、3d (D3)、7d (D7)与28d (D28)的USC试件超声波速。试件达到规定龄期后从标准养护室取出,擦干试件表面水分,置于阴凉处晾干,采用试件侧面为测试面,选择5对测试点,测试点布置图见图2。测量时在连接换能器与测点位置均匀涂抹少量凡士林,用于填充试件表面与换能器之间空隙,保证换能器与试件表面接触良好,减少超声波能量损失。

Figure 2. Layout of measuring points

2. 测点布置图

USC立方体试件养护至3 d、7 d、28 d龄期时,根据《混凝土物理力学性能试验方法标准》(GB/T 50081-2019),采用微机控制电液伺服万能试验机(SHT4106)测定试块抗压强度,加载方式为应力控,加载速度为0.5 MPa/s。试块养护至28 d时,使用微机控制电子万能试验机(CMT5305)测定试块劈裂抗拉强度,加载方式为应力控,加载速度为0.08 MPa/s。当加载仪器数值停止上升时表示试件已破坏,停止加载,取3个试件的平均值作为试验值。

2.3.3. 尺寸换算系数

尺寸换算系数β用于量化150 mm与100 mm立方体试件的力学性能差异,实现非基准强度向基准值的转换(GB/T 50081-2019)。如公式(1)所示,该系数以150 mm试件抗压强度为基准定义。

β cu, 100 = f cu, 150 f cu, 100 (1)

式中: f cu, 150 f cu, 100 分别表示边长为150 mm与10 0mm的立方体试件抗压强度,MPa。

3. 结果与讨论

3.1. 超声波速

USC的超声波速变化情况如图3所示。由图可知,不同龄期的边长100 mm与边长150 mm的USC试件超声波速总体上呈现出相同的变化规律,超声波速随特细砂替代率的增加而降低,随养护龄期的增加而增加。相同龄期下,特细砂替代率为20%的USC超声波速最高,养护28 d边长100 mm USC试件超声波速达到3.92 km·s1,边长150 mm USC试件超声波速达到4.24 km·s1。这是因为较小粒径的骨料在混凝土中的传导速度相对较慢,当特细砂替代率增加时,混凝土中细骨料的含量增加,导致骨料的平均粒径变小,使混凝土中形成更多的细小孔隙,这些孔隙会降低混凝土的密实性,最终降低超声波在混凝土中的传播速度[25] [26]

(a) L100 (b) L150

Figure 3. USC ultrasonic velocity

3. USC超声波速

3.2. 抗压强度与劈裂抗拉强度

图4展示了不同规格试件中特细砂掺量对混凝土抗压与劈裂抗拉性能的影响规律。根据图4(a)显示,混凝土抗压强度随特细砂掺量增加呈持续衰减趋势。当养护龄期达28 d、特细砂掺量60%时,100 mm立方体试件抗压强度较基准组降低14.3 MPa (降幅23.3%),而150 mm试件则下降17.7 MPa (降幅30.8%)。该现象源于两方面机理:首先,特细砂比例提升导致骨料体系平均粒径减小,降低了材料密实度;其次,特细砂较大的比表面积使界面过渡区范围扩展[27],削弱了骨料与水泥浆体间的界面粘结强度,双重作用最终造成抗压性能劣化。由图4(b)可知,随特细砂替代率的提高,USC劈裂抗拉强度呈现先降低后增加再降低的变化趋势。当掺量达30%时,强度达到峰值,其中100 mm和150 mm试件分别达到6.5 MPa和5.6 MPa。

不同尺寸的AF28S6组混凝土3 d抗压强度下降百分率差值为7.8%,7 d为5.9%,28 d为7.5%,28 d劈裂抗拉强度下降百分率差值为5.3%,下降百分率差值均在8%以内,下降幅度基本接近,说明尺寸效应不会影响特细砂替代率对USC抗压强度的降低幅度,这是因为不同尺寸USC在相同特细砂替代率下,虽然USC中含有的特细砂净重量不同,但其特细砂百分率含量均相同,使得USC中受特细砂影响的程度基本相似。

(a) 抗压强度 (b) 劈裂抗拉强度

Figure 4. USC compressive strength and splitting tensile strength

4. USC抗压强度和劈劈裂抗拉强度

3.3. USC抗压强度的尺寸效应

(a) D3 (b) D7 (c) D28

Figure 5. USC compressive strength size conversion factor

5. USC抗压强度尺寸换算系数

Figure 6. Relationship between the replacement rate of ultra-fine sand and the size conversion coefficient of compressive strength

6. 特细砂替代率与抗压强度尺寸换算系数的关系

试验数据带入公式(1)得到USC抗压强度尺寸换算系数与试件边长的关系,如图5所示。USC抗压强度存在明显的尺寸效应,同一特细砂替代率下,较大尺寸试件的抗压强度明显低于较小尺寸试件的抗压强度,养护3 d时,AF28S2、AF28S3、AF28S4及AF28S6组边长为150 mm的USC立方体试件抗压强度分别是边长100 mm试件的0.93、0.90、0.87和0.85倍;养护7 d龄期,分别是边长100 mm试件的0.92、0.91、0.87和0.86倍;养护28 d龄期,分别是边长100 mm试件的0.91、0.91、0.84和0.85倍。

图6为USC试件抗压强度尺寸换算系数与特细砂替代率的关系。USC试件的尺寸换算系数随特细砂替代率的增加逐渐降低,特细砂替代率为60%的USC试件尺寸换算系数偏离1的程度明显大于特细砂替代率为20%、30%及40%的USC试件。

3.4. USC劈裂抗拉强度的尺寸效应

Figure 7. Conversion factors for USC splitting tensile strength dimensions

7. USC劈裂抗拉强度尺寸换算系数

Figure 8. Relationship between the replacement rate of ultra-fine sand and the conversion coefficient of splitting tensile strength dimensions

8. 特细砂替代率与劈裂抗拉强度尺寸换算系数的关系

图7为USC劈裂抗拉强度尺寸换算系数与试件边长的关系。由图可知,USC立方体劈裂抗拉强度与抗压强度相同,均存在明显的尺寸效应,同一特细砂替代率下,较大尺寸试件的强度明显低于较小尺寸试件的强度,AF28S2、AF28S3、AF28S4及AF28S6组边长为150 mm的USC立方体试件劈裂抗拉强度分别是边长100 mm试件的0.80、0.87、0.85和0.78倍。

图8展示了USC试件劈裂抗拉强度尺寸换算系数与特细砂替代率的关联规律。数据显示,该换算系数随特细砂替代率提升呈先下降、再上升、后下降的三阶段变化特征。当特细砂替代比例为30%时,试件尺寸换算系数与基准值1的偏差达到最小值;而当替代比例增至60%时,换算系数与基准值的偏离幅度达到峰值,显示出最显著的材料尺寸效应差异。

4. 结论

(1) 不同尺寸的USC超声波速随特细砂替代率的增加而降低,随养护龄期的增加而增加。抗压强度随特细砂替代率的提高而降低,劈裂抗拉强度随特细砂替代率的提高先降低后增加再降低,特细砂替代率为30%时劈裂抗拉强度最高。

(2) USC抗压强度与劈裂抗拉强度存在明显的尺寸效应,USC的受压尺寸换算系数随特细砂替代率的增加逐渐降低,劈裂抗拉强度尺寸换算系数随特细砂替代率的增加先降低后增加再降低。

(3) 特细砂替代率显著影响尺寸效应强度:替代率达60%时,受压与受拉尺寸换算系数均最大程度偏离基准值1,表明此时尺寸效应对力学性能的影响最为显著。

基金项目

宁夏农垦建设有限公司技术开发合同“低碳、环保型砼系列建筑材料的研究与开发”(技术合同登记号:2022640101000054)。

参考文献

[1] Li, Y.G., Zhang, H.M., Liu, G.X., Hu, D.W. and Ma, X.R. (2020) Multi-Scale Study on Mechanical Property and Strength Prediction of Aeolian Sand Concrete. Construction and Building Materials, 247, Article 118538.
https://doi.org/10.1016/j.conbuildmat.2020.118538
[2] Luan, J.J., Chen, X.D., Ning, Y.J. and Shi, Z.X. (2022) Beneficial Utilization of Ultra-Fine Dredged Sand from Yangtze River Channel as a Concrete Material Based on the Minimum Paste Theory. Case Studies in Construction Materials, 16, e01098.
https://doi.org/10.1016/j.cscm.2022.e01098
[3] Li, S.T., Chen, X.D., Zhang, W., Feng, Z.M. and Wang, R.M. (2022) Mechanical Properties of Alkali Activated Slag Concrete with Ultra Fine Dredged Sand from Yangtze River. Acta Materiae Compositae Sinica, 39, 335-343.
[4] Yan, J., Zhong, S., Chen, S.N., et al. (2022) Study on the Application of Sediment-Based Embankment Building and Ultra-High-Performance Concrete (UHPC) Preparation in the Resource Utilization of Yellow River Sediment. Materials, 15, Article 5668.
[5] 李星波, 刘胜东. 黄河特细砂水泥砂浆的力学性能研究[J]. 低温建筑技术, 2024, 46(12): 153-156.
[6] 陈劲戈. 黄河特细砂最优级配下浆体量对UHPC性能影响研究[J]. 江西建材, 2024(S1): 34-38+47.
[7] 王松亮, 杨占彪, 韩乐乐, 等. 机制砂与特细砂复配在混凝土中的应用研究[J]. 中国水泥, 2021(9): 100-102.
[8] Gonnerman, H.F. (1925) Effects of Size and Shape of Test Specimen on Compressive Strength of Concrete. Structural Materials Research Laboratory.
[9] Fládr, J. and Bílý, P. (2018) Specimen Size Effect on Compressive and Flexural Strength of High-Strength Fibre-Reinforced Concrete Containing Coarse Aggregate. Composites Part B: Engineering, 138, 77-86.
https://doi.org/10.1016/j.compositesb.2017.11.032
[10] Chockalingam, T., Vijayaprabha, C. and Leon Raj, J. (2023) Experimental Study on Size of Aggregates, Size and Shape of Specimens on Strength Characteristics of Pervious Concrete. Construction and Building Materials, 385, Article 131320.
https://doi.org/10.1016/j.conbuildmat.2023.131320
[11] Zhou, J.K., Bi, F.T., Wang, Z.Q. and Zhang, J. (2016) Experimental Investigation of Size Effect on Mechanical Properties of Carbon Fiber Reinforced Polymer (CFRP) Confined Concrete Circular Specimens. Construction and Building Materials, 127, 643-652.
[12] Zhang, Y., Li, H., Abdelhady, A., Yang, J. and Wang, H. (2021) Effects of Specimen Shape and Size on the Permeability and Mechanical Properties of Porous Concrete. Construction and Building Materials, 266, Article 121074.
https://doi.org/10.1016/j.conbuildmat.2020.121074
[13] Ince, R. and Arici, E. (2004) Size Effect in Bearing Strength of Concrete Cubes. Construction and Building Materials, 18, 603-609.
https://doi.org/10.1016/j.conbuildmat.2004.04.002
[14] Peng, Y.J. and Pu, J.W. (2016) Micromechanical Investigation on Size Effect of Tensile Strength for Recycled Aggregate Concrete Using BFEM. International Journal of Mechanics and Materials in Design, 12, 525-538.
https://doi.org/10.1007/s10999-015-9333-y
[15] Wang, W.J., Liu, Y.Z., Qin, X.C., et al. (2022) Size Effects on Mechanical Properties of Recycled Aggregate Thermal Insulation Concrete. Construction and Building Materials, 264, Article 120179.
[16] Peng, X., Yang, Q.W. and Qin, F.J. (2021) Size Effect on Recycled Concrete Strength and Its Prediction Model Using Standard Neutrosophic Number. Advances in Civil Engineering, 2021, Article 6634772.
https://doi.org/10.1155/2021/6634772
[17] Du, Y.B., Zhao, Z.Q., Xiao, Q., et al. (2021) Experimental Study on the Mechanical Properties and Compression Size Effect of Recycled Aggregate Concrete. Materials, 14, Article 2323.
[18] Liu, Y., Wu, T., Wei, H., Liu, X. and Pan, Y. (2022) Size Effect on Tensile Strength of Lightweight Aggregate Concrete: A Numerical Investigation. Construction and Building Materials, 323, Article 126541.
https://doi.org/10.1016/j.conbuildmat.2022.126541
[19] Sim, J.I., Yang, K.H., Kim, H.Y. and Choi, B.J. (2013) Size and Shape Effects on Compressive Strength of Lightweight Concrete. Construction and Building Materials, 38, 854-864.
https://doi.org/10.1016/j.conbuildmat.2012.09.073
[20] Yu, Z.P., Tang, R., Guo, Z.Y. and Huang, Q. (2021) Experimental Study on the Influence of Size Effects on Compressive Dynamic Behavior of Lightweight Concrete. Journal of Materials in Civil Engineering, 34, Article 4052.
https://doi.org/10.1061/(asce)mt.1943-5533.0004052
[21] Dehestani, M., Nikbin, I.M. and Asadollahi, S. (2014) Effects of Specimen Shape and Size on the Compressive Strength of Self-Consolidating Concrete (SCC). Construction and Building Materials, 66, 685-691.
https://doi.org/10.1016/j.conbuildmat.2014.06.008
[22] Nikbin, I.M., Dehestani, M., Beygi, M.H.A. and Rezvani, M. (2014) Effects of Cube Size and Placement Direction on Compressive Strength of Self-Consolidating Concrete. Construction and Building Materials, 59, 144-150.
https://doi.org/10.1016/j.conbuildmat.2014.02.008
[23] Asadollahi, S., Saeedian, A., Dehestani, M. and Zahedi, F. (2016) Improved Compressive Fracture Models for Self-Consolidating Concrete (SCC). Construction and Building Materials, 123, 473-480.
https://doi.org/10.1016/j.conbuildmat.2016.07.030
[24] Wen, B., Huang, D., Zhang, L., Song, Q.Y., Gao, G.Y. and Huo, D.W. (2022) Study on Mechanical Properties and Size Effect of Coal Gangue Concrete at Mesoscale. Construction and Building Materials, 360, Article 129551.
[25] Lin, W.T. (2020) Effects of Sand/Aggregate Ratio on Strength, Durability, and Microstructure of Self-Compacting Concrete. Construction and Building Materials, 242, Article 118046.
https://doi.org/10.1016/j.conbuildmat.2020.118046
[26] Zhang, Y.F. and Aslani, F. (2021) Compressive Strength Prediction Models of Lightweight Aggregate Concretes Using Ultrasonic Pulse Velocity. Construction and Building Materials, 292, Article 123419.
https://doi.org/10.1016/j.conbuildmat.2021.123419
[27] Li, J.X. and Yang, E.H. (2017) Macroscopic and Microstructural Properties of Engineered Cementitious Composites Incorporating Recycled Concrete Fines. Cement and Concrete Composites, 78, 33-42.
https://doi.org/10.1016/j.cemconcomp.2016.12.013