[1]
|
Teo, Z.L., Tham, Y., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-Analysis. Ophthalmology, 128, 1580-1591. https://doi.org/10.1016/j.ophtha.2021.04.027
|
[2]
|
Wang, S., Yu, Q., Wang, Y., Xu, C., Niu, G. and Liu, R. (2022) CircSLC16A12 Absence Inhibits High Glucose-Induced Dysfunction in Retinal Microvascular Endothelial Cells through Mediating miR-140-3p/FGF2 Axis in Diabetic Retinopathy. Current Eye Research, 47, 759-769. https://doi.org/10.1080/02713683.2022.2025845
|
[3]
|
Antonetti, D.A., Silva, P.S. and Stitt, A.W. (2021) Current Understanding of the Molecular and Cellular Pathology of Diabetic Retinopathy. Nature Reviews Endocrinology, 17, 195-206. https://doi.org/10.1038/s41574-020-00451-4
|
[4]
|
Ixcamey, M. and Palma, C. (2021) Diabetic Macular Edema. Disease-a-Month, 67, Article 101138. https://doi.org/10.1016/j.disamonth.2021.101138
|
[5]
|
Holekamp, N.M. (2016) Overview of Diabetic Macular Edema. The American Journal of Managed Care, 22, s284-s291.
|
[6]
|
Chauhan, M.Z., Rather, P.A., Samarah, S.M., Elhusseiny, A.M. and Sallam, A.B. (2022) Current and Novel Therapeutic Approaches for Treatment of Diabetic Macular Edema. Cells, 11, Article 1950. https://doi.org/10.3390/cells11121950
|
[7]
|
王晓杰, 惠琦, 金子, 等. 生长因子在眼的发育及眼部疾病调控中的作用[J]. 浙江大学学报(医学版), 2022, 51(5): 613-625.
|
[8]
|
Zhang, J., Zhang, J., Zhang, C., Zhang, J., Gu, L., Luo, D., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article 3362. https://doi.org/10.3390/cells11213362
|
[9]
|
Tang, J.B., Wu, Y.F., Cao, Y., Chen, C.H., Zhou, Y.L., Avanessian, B., et al. (2016) Basic FGF or VEGF Gene Therapy Corrects Insufficiency in the Intrinsic Healing Capacity of Tendons. Scientific Reports, 6, Article No. 20643. https://doi.org/10.1038/srep20643
|
[10]
|
Tarnawski, A.S. and Ahluwalia, A. (2021) The Critical Role of Growth Factors in Gastric Ulcer Healing: The Cellular and Molecular Mechanisms and Potential Clinical Implications. Cells, 10, Article 1964. https://doi.org/10.3390/cells10081964
|
[11]
|
Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., et al. (1998) Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis. The Journal of Cell Biology, 141, 1659-1673. https://doi.org/10.1083/jcb.141.7.1659
|
[12]
|
Ardizzone, A., Bova, V., Casili, G., Repici, A., Lanza, M., Giuffrida, R., et al. (2023) Role of Basic Fibroblast Growth Factor in Cancer: Biological Activity, Targeted Therapies, and Prognostic Value. Cells, 12, Article 1002. https://doi.org/10.3390/cells12071002
|
[13]
|
Kim, E.J., Lin, W.V., Rodriguez, S.M., Chen, A., Loya, A. and Weng, C.Y. (2019) Treatment of Diabetic Macular Edema. Current Diabetes Reports, 19, Article No. 68. https://doi.org/10.1007/s11892-019-1188-4
|
[14]
|
Ley, C.D., Olsen, M.W.B., Lund, E.L. and Kristjansen, P.E.G. (2004) Angiogenic Synergy of bFGF and VEGF Is Antagonized by Angiopoietin-2 in a Modified in Vivo Matrigel Assay. Microvascular Research, 68, 161-168. https://doi.org/10.1016/j.mvr.2004.06.002
|
[15]
|
Palfi Salavat, M.C., Șeclăman, E.P., Barac, R., et al. (2022) The Role of Anti-VEGF agents in Treatment of Neovascular Glaucoma. Romanian Journal of Ophthalmology, 66, 209-213. https://doi.org/10.22336/rjo.2022.41
|
[16]
|
Chen, J., Lin, X., Bu, C. and Zhang, X. (2018) Role of Advanced Glycation End Products in Mobility and Considerations in Possible Dietary and Nutritional Intervention Strategies. Nutrition & Metabolism, 15, Article No. 72. https://doi.org/10.1186/s12986-018-0306-7
|
[17]
|
Gonzalez, V.H., Campbell, J., Holekamp, N.M., Kiss, S., Loewenstein, A., Augustin, A.J., et al. (2016) Early and Long-Term Responses to Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema: Analysis of Protocol I Data. American Journal of Ophthalmology, 172, 72-79. https://doi.org/10.1016/j.ajo.2016.09.012
|
[18]
|
Wang, W. and Lo, A.C.Y. (2018) Diabetic Retinopathy: Pathophysiology and Treatments. International Journal of Molecular Sciences, 19, Article 1816. https://doi.org/10.3390/ijms19061816
|
[19]
|
Stewart, M., Browning, D. and Lee, C. (2018) Diabetic Macular Edema: Evidence-Based Management. Indian Journal of Ophthalmology, 66, 1736-1750. https://doi.org/10.4103/ijo.ijo_1240_18
|
[20]
|
Hussain, R.M., Neiweem, A.E., Kansara, V., Harris, A. and Ciulla, T.A. (2019) Tie-2/Angiopoietin Pathway Modulation as a Therapeutic Strategy for Retinal Disease. Expert Opinion on Investigational Drugs, 28, 861-869. https://doi.org/10.1080/13543784.2019.1667333
|
[21]
|
Liberski, S., Wichrowska, M. and Kocięcki, J. (2022) Aflibercept versus Faricimab in the Treatment of Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: A Review. International Journal of Molecular Sciences, 23, Article 9424. https://doi.org/10.3390/ijms23169424
|
[22]
|
Simó, R. and Hernández, C. (2014) Neurodegeneration in the Diabetic Eye: New Insights and Therapeutic Perspectives. Trends in Endocrinology & Metabolism, 25, 23-33. https://doi.org/10.1016/j.tem.2013.09.005
|
[23]
|
Lai, D., Wu, Y., Shao, C. and Qiu, Q. (2023) The Role of Müller Cells in Diabetic Macular Edema. Investigative Opthalmology & Visual Science, 64, 8. https://doi.org/10.1167/iovs.64.10.8
|
[24]
|
Munk, M.R., Somfai, G.M., de Smet, M.D., Donati, G., Menke, M.N., Garweg, J.G., et al. (2022) The Role of Intravitreal Corticosteroids in the Treatment of DME: Predictive OCT Biomarkers. International Journal of Molecular Sciences, 23, Article 7585. https://doi.org/10.3390/ijms23147585
|
[25]
|
Apte, R.S., Chen, D.S. and Ferrara, N. (2019) VEGF in Signaling and Disease: Beyond Discovery and Development. Cell, 176, 1248-1264. https://doi.org/10.1016/j.cell.2019.01.021
|
[26]
|
Khan, M., Aziz, A.A., Shafi, N.A., Abbas, T. and Khanani, A.M. (2020) Targeting Angiopoietin in Retinal Vascular Diseases: A Literature Review and Summary of Clinical Trials Involving Faricimab. Cells, 9, Article 1869. https://doi.org/10.3390/cells9081869
|
[27]
|
Semeraro, F., Morescalchi, F., Duse, S., Parmeggiani, F., Gambicorti, E. and Costagliola, C. (2013) Aflibercept in Wet AMD: Specific Role and Optimal Use. Drug Design, Development and Therapy, 7, 711-722. https://doi.org/10.2147/dddt.s40215
|
[28]
|
Al Kahtani, E., Xu, Z., Al Rashaed, S., Wu, L., Mahale, A., Tian, J., et al. (2017) Vitreous Levels of Placental Growth Factor Correlate with Activity of Proliferative Diabetic Retinopathy and Are Not Influenced by Bevacizumab Treatment. Eye, 31, 529-536. https://doi.org/10.1038/eye.2016.246
|
[29]
|
Peach, C.J., Mignone, V.W., Arruda, M.A., Alcobia, D.C., Hill, S.J., Kilpatrick, L.E., et al. (2018) Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. International Journal of Molecular Sciences, 19, Article 1264. https://doi.org/10.3390/ijms19041264
|
[30]
|
Saint-Geniez, M., Maharaj, A.S.R., Walshe, T.E., Tucker, B.A., Sekiyama, E., Kurihara, T., et al. (2008) Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors. PLOS ONE, 3, e3554. https://doi.org/10.1371/journal.pone.0003554
|
[31]
|
Stewart, M.W. (2015) The Clinical Utility of Aflibercept for Diabetic Macular Edema. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 8, 473-482. https://doi.org/10.2147/dmso.s72792
|
[32]
|
Nicolò, M., Ferro Desideri, L., Vagge, A. and Traverso, C.E. (2021) Faricimab: An Investigational Agent Targeting the Tie-2/Angiopoietin Pathway and VEGF-A for the Treatment of Retinal Diseases. Expert Opinion on Investigational Drugs, 30, 193-200. https://doi.org/10.1080/13543784.2021.1879791
|
[33]
|
Watanabe, D., Suzuma, K., Suzuma, I., Ohashi, H., Ojima, T., Kurimoto, M., et al. (2005) Vitreous Levels of Angiopoietin 2 and Vascular Endothelial Growth Factor in Patients with Proliferative Diabetic Retinopathy. American Journal of Ophthalmology, 139, 476-481. https://doi.org/10.1016/j.ajo.2004.10.004
|
[34]
|
Corliss, B.A., Azimi, M.S., Munson, J.M., Peirce, S.M. and Murfee, W.L. (2016) Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis. Microcirculation, 23, 95-121. https://doi.org/10.1111/micc.12259
|
[35]
|
Shibuya, M. (2011) Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti-and Pro-Angiogenic Therapies. Genes & Cancer, 2, 1097-1105. https://doi.org/10.1177/1947601911423031
|
[36]
|
Furino, C., Boscia, F., Reibaldi, M. and Alessio, G. (2021) Intravitreal Therapy for Diabetic Macular Edema: An Update. Journal of Ophthalmology, 2021, Article 6654168. https://doi.org/10.1155/2021/6654168
|
[37]
|
Khanani, A.M., Guymer, R.H., Basu, K., Boston, H., Heier, J.S., Korobelnik, J., et al. (2021) TENAYA and LUCERNE: Rationale and Design for the Phase 3 Clinical Trials of Faricimab for Neovascular Age-Related Macular Degeneration. Ophthalmology Science, 1, Article 100076. https://doi.org/10.1016/j.xops.2021.100076
|
[38]
|
Sharma, A., Kumar, N., Kuppermann, B.D., Bandello, F. and Loewenstein, A. (2020) Faricimab: Expanding Horizon Beyond VEGF. Eye, 34, 802-804. https://doi.org/10.1038/s41433-019-0670-1
|
[39]
|
Ronca, R., Giacomini, A., Rusnati, M. and Presta, M. (2015) The Potential of Fibroblast Growth Factor/Fibroblast Growth Factor Receptor Signaling as a Therapeutic Target in Tumor Angiogenesis. Expert Opinion on Therapeutic Targets, 19, 1361-1377. https://doi.org/10.1517/14728222.2015.1062475
|
[40]
|
Ornitz, D.M. and Itoh, N. (2015) The Fibroblast Growth Factor Signaling Pathway. WIREs Developmental Biology, 4, 215-266. https://doi.org/10.1002/wdev.176
|
[41]
|
Ucuzian, A.A., Gassman, A.A., East, A.T. and Greisler, H.P. (2010) Molecular Mediators of Angiogenesis. Journal of Burn Care & Research, 31, 158-175. https://doi.org/10.1097/bcr.0b013e3181c7ed82
|
[42]
|
毕建东. 贝复舒滴眼液应用于临床治疗角膜病患者的可行性探讨[J]. 海峡药学, 2018, 30(9): 178-179.
|
[43]
|
王磊. 贝复舒滴眼液治疗角膜溃疡临床疗效分析[J]. 中外医疗, 2016, 35(4): 116-117.
|
[44]
|
Taverna, S., Ghersi, G., Ginestra, A., Rigogliuso, S., Pecorella, S., Alaimo, G., et al. (2003) Shedding of Membrane Vesicles Mediates Fibroblast Growth Factor-2 Release from Cells. Journal of Biological Chemistry, 278, 51911-51919. https://doi.org/10.1074/jbc.m304192200
|
[45]
|
Gualandris, A., Rusnati, M., Belleri, M., et al. (1996) Basic Fibroblast Growth Factor Overexpression in Endothelial Cells: An Autocrine Mechanism for Angiogenesis and Angioproliferative Diseases. Cell Growth & Differentiation, 7, 147-160.
|
[46]
|
Presta, M., Andrés, G., Leali, D., Dell’Era, P. and Ronca, R. (2009) Inflammatory Cells and Chemokines Sustain FGF2-Induced Angiogenesis. European Cytokine Network, 20, 39-50. https://doi.org/10.1684/ecn.2009.0155
|
[47]
|
Akl, M.R., Nagpal, P., Ayoub, N.M., Tai, B., Prabhu, S.A., Capac, C.M., et al. (2016) Molecular and Clinical Significance of Fibroblast Growth Factor 2 (FGF2 /bFGF) in Malignancies of Solid and Hematological Cancers for Personalized Therapies. Oncotarget, 7, 44735-44762. https://doi.org/10.18632/oncotarget.8203
|
[48]
|
Boilly, B., Vercoutter-Edouart, A.S., Hondermarck, H., Nurcombe, V. and Le Bourhis, X. (2000) FGF Signals for Cell Proliferation and Migration through Different Pathways. Cytokine & Growth Factor Reviews, 11, 295-302. https://doi.org/10.1016/s1359-6101(00)00014-9
|
[49]
|
Dong, Z., Santeford, A., Ban, N., Lee, T.J., Smith, C., Ornitz, D.M., et al. (2019) FGF2-Induced STAT3 Activation Regulates Pathologic Neovascularization. Experimental Eye Research, 187, Article 107775. https://doi.org/10.1016/j.exer.2019.107775
|
[50]
|
Zittermann, S.I. and Issekutz, A.C. (2006) Basic Fibroblast Growth Factor (bFGF, FGF-2) Potentiates Leukocyte Recruitment to Inflammation by Enhancing Endothelial Adhesion Molecule Expression. The American Journal of Pathology, 168, 835-846. https://doi.org/10.2353/ajpath.2006.050479
|
[51]
|
Reuss, B., Dono, R. and Unsicker, K. (2003) Functions of Fibroblast Growth Factor (FGF)-2 and FGF-5 in Astroglial Differentiation and Blood-Brain Barrier Permeability: Evidence from Mouse Mutants. The Journal of Neuroscience, 23, 6404-6412. https://doi.org/10.1523/jneurosci.23-16-06404.2003
|
[52]
|
Raza, A., Franklin, M.J. and Dudek, A.Z. (2010) Pericytes and Vessel Maturation during Tumor Angiogenesis and Metastasis. American Journal of Hematology, 85, 593-598. https://doi.org/10.1002/ajh.21745
|
[53]
|
Funatsu, H., Yamashita, H., Ikeda, T., Nakanishi, Y., Kitano, S. and Hori, S. (2002) Angiotensin II and Vascular Endothelial Growth Factor in the Vitreous Fluid of Patients with Diabetic Macular Edema and Other Retinal Disorders. American Journal of Ophthalmology, 133, 537-543. https://doi.org/10.1016/s0002-9394(02)01323-5
|
[54]
|
Pepper, M.S., Mandriota, S.J., Jeltsch, M., Kumar, V. and Alitalo, K. (1998) Vascular Endothelial Growth Factor (VEGF)-C Synergizes with Basic Fibroblast Growth Factor and VEGF in the Induction of Angiogenesis in Vitro and Alters Endothelial Cell Extracellular Proteolytic Activity. Journal of Cellular Physiology, 177, 439-452. https://doi.org/10.1002/(sici)1097-4652(199812)177:3<439::aid-jcp7>3.0.co;2-2
|
[55]
|
Saadeh, P.B., Mehrara, B.J., Steinbrech, D.S., Spector, J.A., Greenwald, J.A., Chin, G.S., et al. (2000) Mechanisms of Fibroblast Growth Factor-2 Modulation of Vascular Endothelial Growth Factor Expression by Osteoblastic Cells. Endocrinology, 141, 2075-2083. https://doi.org/10.1210/endo.141.6.7502
|
[56]
|
褚晓凡, 饶明俐, 董家政, 等. 局灶脑缺血时碱性成纤维生长因子和内皮生长因子的表达及其关系[J]. 中国临床康复, 2003, 7(28): 3793-3795+3923.
|
[57]
|
Tsunoda, S., Nakamura, T., Sakurai, H. and Saiki, I. (2007) Fibroblast Growth Factor‐2‐Induced Host Stroma Reaction during Initial Tumor Growth Promotes Progression of Mouse Melanoma via Vascular Endothelial Growth Factor A‐dependent Neovascularization. Cancer Science, 98, 541-548. https://doi.org/10.1111/j.1349-7006.2007.00432.x
|
[58]
|
Wakisaka, N. and Pagano, J.S. (2003) Epstein-Barr Virus Induces Invasion and Metastasis Factors. Anticancer Research, 23, 2133-2138.
|
[59]
|
Eriksson, K., Magnusson, P., Dixelius, J., Claesson-Welsh, L. and Cross, M.J. (2003) Angiostatin and Endostatin Inhibit Endothelial Cell Migration in Response to FGF and VEGF without Interfering with Specific Intracellular Signal Transduction Pathways. FEBS Letters, 536, 19-24. https://doi.org/10.1016/s0014-5793(03)00003-6
|
[60]
|
Tokuda, H., Hirade, K., Wang, X., Oiso, Y. and Kozawa, O. (2003) Involvement of SAPK/JNK in Basic Fibroblast Growth Factor-Induced Vascular Endothelial Growth Factor Release in Osteoblasts. Journal of Endocrinology, 177, 101-107. https://doi.org/10.1677/joe.0.1770101
|
[61]
|
Zahra, F.T., Sajib, M.S. and Mikelis, C.M. (2021) Role of bFGF in Acquired Resistance Upon Anti-VEGF Therapy in Cancer. Cancers, 13, Article 1422. https://doi.org/10.3390/cancers13061422
|
[62]
|
Tokarz, A., Szuścik, I., Kuśnierz-Cabala, B., et al. (2015) Extracellular Vesicles Participate in the Transport of Cytokines and Angio-Genic Factors in Diabetic Patients with Ocular Complications. Folia Medica Cracoviensia, 55, 35-48.
|
[63]
|
Hill, D.J., Tevaarwerk, G.J., Caddell, C., Arany, E., Kilkenny, D. and Gregory, M. (1995) Fibroblast Growth Factor 2 Is Elevated in Term Maternal and Cord Serum and Amniotic Fluid in Pregnancies Complicated by Diabetes: Relationship to Fetal and Placental Size. The Journal of Clinical Endocrinology & Metabolism, 80, 2626-2632. https://doi.org/10.1210/jcem.80.9.7673405
|
[64]
|
Gong, C.Y., Lu, B., Sheng, Y.C., et al. (2016) The Development of Diabetic Retinopathy in Goto-Kakizaki Rat and the Expression of Angiogenesis-Related Signals. The Chinese Journal of Physiology, 59, 100-108.
|
[65]
|
Wohlfart, P., Lin, J., Dietrich, N., Kannt, A., Elvert, R., Herling, A.W., et al. (2014) Expression Patterning Reveals Retinal Inflammation as a Minor Factor in Experimental Retinopathy of ZDF Rats. Acta Diabetologica, 51, 553-558. https://doi.org/10.1007/s00592-013-0550-2
|
[66]
|
Beranek, M., Kolar, P., Tschoplova, S., Kankova, K. and Vasku, A. (2008) Genetic Variation and Plasma Level of the Basic Fibroblast Growth Factor in Proliferative Diabetic Retinopathy. Diabetes Research and Clinical Practice, 79, 362-367. https://doi.org/10.1016/j.diabres.2007.09.012
|
[67]
|
Li, J.K., Wei, F., Jin, X.H., et al. (2015) Changes in Vitreous VEGF, bFGF and Fibrosis in Proliferative Diabetic Retinopathy after Intravitreal Bevacizumab. International Journal of Ophthalmology, 8, 1202-1206.
|
[68]
|
Jonas, J.B. and Neumaier, M. (2007) Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor in Exudative Age-Related Macular Degeneration and Diffuse Diabetic Macular Edema. Ophthalmic Research, 39, 139-142. https://doi.org/10.1159/000102935
|