[1]
|
DeFronzo, R.A., Reeves, W.B. and Awad, A.S. (2021) Pathophysiology of Diabetic Kidney Disease: Impact of SGLT2 Inhibitors. Nature Reviews Nephrology, 17, 319-334. https://doi.org/10.1038/s41581-021-00393-8
|
[2]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2023) Erratum to “IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045” [Diabetes Res. Clin. Pract. 183 (2022) 109119]. Diabetes Research and Clinical Practice, 204, Article ID: 110945. https://doi.org/10.1016/j.diabres.2023.110945
|
[3]
|
Gupta, S., Dominguez, M. and Golestaneh, L. (2023) Diabetic Kidney Disease: An Update. Medical Clinics of North America, 107, 689-705. https://doi.org/10.1016/j.mcna.2023.03.004
|
[4]
|
Hung, P., Hsu, Y., Chen, T. and Lin, C. (2021) Recent Advances in Diabetic Kidney Diseases: From Kidney Injury to Kidney Fibrosis. International Journal of Molecular Sciences, 22, Article No. 11857. https://doi.org/10.3390/ijms222111857
|
[5]
|
Ricciardi, C.A. and Gnudi, L. (2021) Kidney Disease in Diabetes: From Mechanisms to Clinical Presentation and Treatment Strategies. Metabolism, 124, Article ID: 154890. https://doi.org/10.1016/j.metabol.2021.154890
|
[6]
|
Tang, G., Li, S., Zhang, C., Chen, H., Wang, N. and Feng, Y. (2021) Clinical Efficacies, Underlying Mechanisms and Molecular Targets of Chinese Medicines for Diabetic Nephropathy Treatment and Management. Acta Pharmaceutica Sinica B, 11, 2749-2767. https://doi.org/10.1016/j.apsb.2020.12.020
|
[7]
|
姚琼, 叶太生, 张莹雯, 等. 基于网络药理学及Akt1/mTOR自噬通路探讨黄芪减少糖尿病肾病蛋白尿的作用机制[J]. 世界科学技术-中医药现代化, 2021, 23(8): 2699-2710.
|
[8]
|
Tian, H., Lu, J., He, H., Zhang, L., Dong, Y., Yao, H., et al. (2016) The Effect of Astragalus as an Adjuvant Treatment in Type 2 Diabetes Mellitus: A (Preliminary) Meta-Analysis. Journal of Ethnopharmacology, 191, 206-215. https://doi.org/10.1016/j.jep.2016.05.062
|
[9]
|
Du, Y., Wan, H., Huang, P., Yang, J. and He, Y. (2022) A Critical Review of Astragalus Polysaccharides: From Therapeutic Mechanisms to Pharmaceutics. Biomedicine & Pharmacotherapy, 147, Article ID: 112654. https://doi.org/10.1016/j.biopha.2022.112654
|
[10]
|
纪新建, 张志芳, 闫鑫媛, 等. 基于肠道微生态探讨黄芪扶正调衡治疗糖尿病肾病的研究进展[J]. 中国微生态学杂志, 2024, 36(8): 967-973.
|
[11]
|
李杰辉, 梁彬, 陈壮丽, 等. MEBO对大鼠糖尿病性创面组织中miRNA-21及其靶标TGF-β1/Smads信号通路的影响[J]. 中国老年学杂志, 2024, 44(18): 4448-4452.
|
[12]
|
Voelker, J., Berg, P.H., Sheetz, M., Duffin, K., Shen, T., Moser, B., et al. (2016) Anti-TGF-β1 Antibody Therapy in Patients with Diabetic Nephropathy. Journal of the American Society of Nephrology, 28, 953-962. https://doi.org/10.1681/asn.2015111230
|
[13]
|
郭帅, 方敬, 陈志强. TGF-β1介导的Smad和ERK信号通路在肾纤维化中的研究进展[J]. 中国免疫学杂志, 2022, 38(6): 766-770.
|
[14]
|
李承德, 王煜, 曲敬蓉, 等. 黄芪多糖对糖尿病大鼠肾脏TGF-β1/Smads信号通路的影响[J]. 中国药理学通报, 2018, 34(4): 512-516.
|
[15]
|
Nie, Y., Li, S., Yi, Y., Su, W., Chai, X., Jia, D., et al. (2014) Effects of Astragalus Injection on the TGFβ/Smad Pathway in the Kidney in Type 2 Diabetic Mice. BMC Complementary and Alternative Medicine, 14, Article No. 148. https://doi.org/10.1186/1472-6882-14-148
|
[16]
|
Zhang, Y., Alexander, P.B. and Wang, X. (2016) TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harbor Perspectives in Biology, 9, a022145. https://doi.org/10.1101/cshperspect.a022145
|
[17]
|
张洪江, 凃影叶, 杜飞, 等. TGF-β参与糖尿病肾病的发生发展的机制研究现状[J]. 生命科学, 2020, 32(2): 179-187.
|
[18]
|
Lin, M., Yiu, W.H., Wu, H.J., Chan, L.Y.Y., Leung, J.C.K., Au, W.S., et al. (2012) Toll-Like Receptor 4 Promotes Tubular Inflammation in Diabetic Nephropathy. Journal of the American Society of Nephrology, 23, 86-102. https://doi.org/10.1681/asn.2010111210
|
[19]
|
Faure, E., Equils, O., Sieling, P.A., Thomas, L., Zhang, F.X., Kirschning, C.J., et al. (2000) Bacterial Lipopolysaccharide Activates NF-κB through Toll-Like Receptor 4 (TLR-4) in Cultured Human Dermal Endothelial Cells. Differential Expression of TLR-4 and TLR-2 in Endothelial Cells. Journal of Biological Chemistry, 275, 11058-11063. https://doi.org/10.1074/jbc.275.15.11058
|
[20]
|
Shimamoto, A., Chong, A.J., Yada, M., Shomura, S., Takayama, H., Fleisig, A.J., et al. (2006) Inhibition of Toll-Like Receptor 4 with Eritoran Attenuates Myocardial Ischemia-Reperfusion Injury. Circulation, 114, I-270-I-274. https://doi.org/10.1161/circulationaha.105.000901
|
[21]
|
高海洋, 陈曦, 张金存, 等. 隐丹参酮调节HMGB1/TLR4/NF-κB信号通路对单侧输尿管梗阻大鼠肾间质纤维化的影响[J]. 中国老年学杂志, 2024, 44(18): 4516-4520.
|
[22]
|
Guo, M., Gao, J., Jiang, L. and Dai, Y. (2023) Astragalus Polysaccharide Ameliorates Renal Inflammatory Responses in a Diabetic Nephropathy by Suppressing the TLR4/NF-κB Pathway. Drug Design, Development and Therapy, 17, 2107-2118. https://doi.org/10.2147/dddt.s411211
|
[23]
|
Du, L., Qian, X., Li, Y., Li, X., He, L., Xu, L., et al. (2020) Sirt1 Inhibits Renal Tubular Cell Epithelial-Mesenchymal Transition through YY1 Deacetylation in Diabetic Nephropathy. Acta Pharmacologica Sinica, 42, 242-251. https://doi.org/10.1038/s41401-020-0450-2
|
[24]
|
Li, X., Li, Y., Hao, Q., Jin, J. and Wang, Y. (2024) Metabolic Mechanisms Orchestrated by Sirtuin Family to Modulate Inflammatory Responses. Frontiers in Immunology, 15, Article ID: 1448535. https://doi.org/10.3389/fimmu.2024.1448535
|
[25]
|
Huang, K., Huang, J., Xie, X., Wang, S., Chen, C., Shen, X., et al. (2013) Sirt1 Resists Advanced Glycation End Products-Induced Expressions of Fibronectin and TGF-β1 by Activating the Nrf2/ARE Pathway in Glomerular Mesangial Cells. Free Radical Biology and Medicine, 65, 528-540. https://doi.org/10.1016/j.freeradbiomed.2013.07.029
|
[26]
|
Zhang, L., Chen, Z., Gong, W., Zou, Y., Xu, F., Chen, L., et al. (2018) Paeonol Ameliorates Diabetic Renal Fibrosis through Promoting the Activation of the Nrf2/ARE Pathway via Up-Regulating Sirt1. Frontiers in Pharmacology, 9, Article No. 512. https://doi.org/10.3389/fphar.2018.00512
|
[27]
|
Liu, H., Kao, H. and Wu, C. (2019) Exercise Training Upregulates SIRT1 to Attenuate Inflammation and Metabolic Dysfunction in Kidney and Liver of Diabetic db/db Mice. Nutrition & Metabolism, 16, Article No. 22. https://doi.org/10.1186/s12986-019-0349-4
|
[28]
|
Xu, Y., Xu, C., Huang, J., Xu, C. and Xiong, Y. (2024) Astragalus Polysaccharide Attenuates Diabetic Nephropathy by Reducing Apoptosis and Enhancing Autophagy through Activation of Sirt1/FoxO1 Pathway. International Urology and Nephrology, 56, 3067-3078. https://doi.org/10.1007/s11255-024-04038-0
|
[29]
|
Almalki, W.H. and Salman Almujri, S. (2024) Oxidative Stress and Senescence in Aging Kidneys: The Protective Role of SIRT1. EXCLI Journal, 23, 1030-1067.
|
[30]
|
Qian, X., Zhao, J., Yeung, P.Y., Zhang, Q.C. and Kwok, C.K. (2019) Revealing lncRNA Structures and Interactions by Sequencing-Based Approaches. Trends in Biochemical Sciences, 44, 33-52. https://doi.org/10.1016/j.tibs.2018.09.012
|
[31]
|
Saghafi, T., Taheri, R.A., Parkkila, S. and Zolfaghari Emameh, R. (2019) Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. International Journal of Molecular Sciences, 20, Article No. 2939. https://doi.org/10.3390/ijms20122939
|
[32]
|
Guo, J., Liu, Z. and Gong, R. (2019) Long Noncoding RNA: An Emerging Player in Diabetes and Diabetic Kidney Disease. Clinical Science, 133, 1321-1339. https://doi.org/10.1042/cs20190372
|
[33]
|
Chen, Z., Liang, H., Yan, X., Liang, Q., Bai, Z., Xie, T., et al. (2023) Astragalus Polysaccharide Promotes Autophagy and Alleviates Diabetic Nephropathy by Targeting the lncRNA Gm41268/PRLR Pathway. Renal Failure, 45, Article ID: 2284211. https://doi.org/10.1080/0886022x.2023.2284211
|
[34]
|
王兴红, 张福华, 孙静, 等. 基于TXNIP/NLRP3信号通路研究根皮素对糖尿病肾病小鼠肾脏自噬和纤维化的影响[J]. 中药药理与临床, 2023, 39(9): 31-38.
|
[35]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) Wnt/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6
|
[36]
|
鲍芳, 宋杰, 代喆, 等. 黄芪多糖通过失活Wnt信号通路抑制高糖诱导下肾小管上皮细胞凋亡[J]. 中药材, 2019, 42(2): 414-417.
|