石墨烯材料在污水处理中的应用进展
Research Progress of the Graphene Based Materials in Wastewater Treatment
DOI: 10.12677/wpt.2025.133011, PDF, HTML, XML,    科研立项经费支持
作者: 甘 欣, 周思喆, 郑情妃, 王 颖:安徽理工大学力学与光电物理学院,安徽 淮南
关键词: 石墨烯材料污染物吸附Graphene Based Materials Pollutants Adsorption
摘要: 重金属离子、有机染料、油类和芳香类有机物等污染物带来的水污染问题已经成为威胁生态环境和人类健康的重要挑战,石墨烯材料以其高比表面积和优异的改性能力,在水中污染物吸附领域具有重要的应用前景。本文总结了石墨烯材料对水中重金属离子、有机染料、油类和芳香类有机物吸附领域的应用进展,梳理了掺杂改性对石墨烯材料吸附性能的影响,并对今后的研究趋势进行了展望,以期为高性能石墨烯材料吸附剂的设计和制备提供参考。
Abstract: Water pollution caused by contaminants such as heavy metal ions, organic dyes, oils, and aromatic organic compounds has become a critical challenge threatening ecological environments and human health. Graphene based materials, with their high specific surface area and excellent modification capabilities, demonstrate significant application potential in the adsorption of water pollutants. This article summarizes recent advances in the application of graphene-based materials for adsorbing heavy metal ions, organic dyes, oils, and aromatic organic compounds in aqueous environments. The impact of doping modifications on the adsorption performance of graphene materials is discussed and the prospect for future research trends is provided. The paper aims to offer references for the design and fabrication of high-performance graphene-based adsorbents.
文章引用:甘欣, 周思喆, 郑情妃, 王颖. 石墨烯材料在污水处理中的应用进展[J]. 水污染及处理, 2025, 13(3): 87-94. https://doi.org/10.12677/wpt.2025.133011

1. 引言

重工业的快速发展和人们生产生活范围的不断扩大,产生了大量含有重金属离子、有机染料、油类和芳香类有机物的废水,由此引发的水污染已经成为现代社会极具挑战性的问题。这些污染物通常具有高毒性或致癌作用,排入水中后可能通过水循环等方式在全球范围内迁移,对生态系统和人类健康造成严重危害[1] [2]。基于此,人们提出了各种物理、化学和生物技术用于水中污染物的高效治理,其中吸附法以其简单、高效、安全的优点,成为目前水污染治理的重要路径。

高性能吸附剂的选择、设计与开发是建立可靠吸附工艺的关键。石墨烯是一种碳原子以sp2杂化连接的紧密堆积二维蜂窝状碳纳米材料,其衍生物具有稳定的物理化学性质和优异的吸附性能,这一优势吸引了大量研究学者的关注。如图1所示,自2012年以来,关于石墨烯气凝胶等材料的出版物和引用数量持续上升,相关领域的研究方兴未艾。然而,由于石墨烯原始材料制造成本高,且易发生团聚,造成比表面积下降,吸附性能受限,因此常将石墨烯材料与其它材料掺杂以提高其吸附性能。本文通过相关文献调研和分析,回顾了近年来石墨烯及其掺杂材料在水中污染物处理方面的应用进展,为其在污水处理中的应用提供重要支撑。

Figure 1. Trends in publications and citation counts for graphene materials [3]

1. 石墨烯材料相关出版物与引用数量发展趋势[3]

2. 石墨烯材料对水中重金属离子的吸附应用

生活污水和工业废水中常常含有大量的镉(Cd)、铬(Cr)、汞(Hg)、铜(Cu)及类金属砷(As)等重金属,造成水体环境重金属污染。由于生态系统的富集效应,重金属会在水体环境中以食物链的形式逐渐富集至食物链营养级生物体。当人体摄入重金属含量超过一定浓度时,会产生严重的健康危害。例如,这些重金属大多被国际癌症研究机构认定为一类致癌物,长期暴露会引发肾脏、肝脏功能紊乱,毒害呼吸系统和免疫系统,诱发肾衰竭、内脏器官癌变等。

考虑到重金属离子的严重危害,国内外研究人员开始逐渐将石墨烯材料用于水中重金属离子的吸附。表1列出了氧化石墨烯对水中常见重金属离子的最大吸附量。由表可知,由于氧化石墨烯超高的比表面积,其对水中常见重金属离子均具有优异的吸附性能。此外,研究人员发现,通过石墨烯材料的掺杂设计可以实现吸附性能的进一步提升。Zhou等[4]通过水热合成法制备了MgO掺杂的石墨烯材料,开展了其对Pb2+、Cd2+、Cu2+的吸附实验。实验表表明,掺杂后的石墨烯材料吸附性能更加优越,在25℃时对三种重金属离子的最大吸附量分别为358.96 mg/g、388.4 mg/g和169.8 mg/g,整个吸附过程符合准二级动力学和Langmuir等温吸附模型。Peng [5]制备了新型磺化基–三乙基四胺改性氧化石墨烯/壳聚糖吸附剂,该吸附剂对Pb2+、Cd2+和Ni2+的吸附容量分别达到312.28 mg/g、260.52 mg/g和84.61 mg/g,而在三元体系中,该吸附剂对金属离子仍然表现出高吸附容量及可循环利用特性,但由于多元组分的存在,整个吸附过程呈现显著的竞争吸附效应。

Table 1. Adsorption performance of graphene oxide for heavy metal ions in water

1. 氧化石墨烯吸附水中重金属离子性能

重金属离子

吸附剂

吸附量(mg/g)

吸附条件

参考文献

Pb (Ⅱ)

GO

250

pH 6.0, 298 K

[6]

层状GO

842

pH 6.0, 293 K

[7]

Cu (Ⅱ)

GO

72.6

pH 5.7, 303 K

[8]

Ni (Ⅱ)

62.3

Cd (Ⅱ)

83.8

Zn (Ⅱ)

GO

246

pH 7.0, 293 K

[9]

Au (Ⅱ)

GO

108.34

pH 6.0, 298 K

[10]

Pd (Ⅱ)

80.78

Pt (Ⅱ)

71.38

3. 石墨烯材料对水中染料的吸附应用

合成有机染料广泛存在于皮革、纺织、造纸、化妆品、羊毛和油漆等的生产过程。一般而言,有机染料表现为水溶性,具有稳定的物理化学特性,难以分解。因此,有机染料的水污染问题已经成为全球水资源治理的共性问题。

石墨烯材料优异的多级孔道结构为分子吸附提供了广泛的吸附位点和扩散通道,其在有机染料处理方面的前景被广泛关注。然而,由于石墨烯材料表面官能团种类的限制,纯石墨烯材料对有机染料的吸附效果不甚理想。为解决这一瓶颈,国内外研究人员通过引入其他材料对石墨烯材料进行了定向修饰,有效增强了其对有机染料的吸附性能。Shi等[11]制备了壳聚糖修饰的石墨烯材料,修饰后的石墨烯材料对甲基蓝和甲基橙的吸附性能显著提升,在25℃条件下,甲基橙和甲基蓝的最大吸附量分别为543.4 mg/g和110.9 mg/g。如图2所示,对于甲基橙与甲基蓝的混合体系,石墨烯材料的吸附行为呈现出典型的pH依赖性,且在低初始染料浓度下表现出选择性吸附特征,其中甲基橙通过疏水相互作用和静电相互作用分别与结构中石墨烯本体和壳聚糖结合,甲基蓝则主要通过疏水相互作用与石墨烯本体结合。而在高初始浓度条件下,二者将产生协同吸附,具体表现为甲基橙与甲基蓝可通过静电相互作用结合,并通过疏水相互作用和静电相互作用与石墨烯材料内部结构形成吸附,特别是在3~11的pH范围内协同吸附效果达到最佳。以上研究表明,石墨烯材料能够有效应对水中有机染料的污染问题,可以通过结构定向设计和吸附环境调控实现有机染料的高效去除。

Figure 2. Adsorption of methyl orange and methylene blue in water by chemically modified graphene materials [11]

2. 化学修饰石墨烯材料对水中甲基橙、甲基蓝的吸附[11]

4. 石墨烯材料对水中油类的吸附应用

石油泄漏问题在世界各地频繁发生,如2020年7月,MV Wakashio号油轮在毛里求斯海岸外泄漏了800多吨润滑油、柴油和重油,造成了严重的海洋环境污染。在众多溢油处理方法中,吸附法以操作简单、经济成本低、去除效率高等优点,成为目前处理海上溢油最常用的方法。

Figure 3. Adsorption of heavy oils in water by graphene materials [12]

3. 石墨烯材料对水中重油的吸附[12]

图3,Zhang等[12]以氧化石墨烯为原料,聚乙烯吡咯烷酮为交联剂,采用冰模板法制备了具有复杂的孔隙结构的石墨烯气凝胶。基于此,通过改变水热预还原时间、交联剂用量和温度,探究了不同工艺参数对还原石墨烯气凝胶结构的影响。研究表明,水热还原可以有效去除氧化石墨烯中的含氧官能团,而高温处理可以进一步去除含氧官能团,实现气凝胶孔隙的可控调节,但削弱了气凝胶本身的材料力学性能。石墨烯气凝胶对可见光和紫外光具有较高的吸光度,因此在阳光下石墨烯气凝胶和还原氧化石墨烯气凝胶能够实现油水的有效分离。比如,氧化石墨烯气凝胶和还原氧化石墨烯气凝胶在阳光下对稠油的饱和吸附量分别达到自身质量的90.20倍和146.03倍,可达到无光照时的4.6倍和3倍。Akanji等[13]通过静电纺丝法制备了聚苯乙烯–还原氧化石墨烯复合材料,并开展了不同油类的吸附实验。实验结果表明,还原氧化石墨烯的掺杂有效提升了聚苯乙烯对原油、植物油、新鲜发动机油和二手发动机油的吸油性能,且四种油样在不同吸附剂上的吸附数据符合伪二阶动力学模型,而颗粒内扩散(IPD)模型表明,四种油样在复合吸附剂上的吸附呈现出典型分段特征。石墨烯复合材料不仅具有较高的油吸附能力,其重复使用性能也得到有效提升,吸附–解吸循环次数可达三次。石墨烯材料对不同油类的高效吸附性能为水中油类污染物的去除提供了潜在选择。

5. 石墨烯材料对水中芳香类有机物的吸附应用

芳香类有机物是水体中常见的有机污染物,其主要来自于工农业生产中的事故泄露和煤、石油等有机物质的不完全燃烧和热解。在某些情况下会经由皮肤进入人体,或由呼吸系统进入呼吸器官,引发病变,具有强致癌性、致畸性和致突变性,长期暴露在被芳香族化合物分子污染的环境中会对人体产生不可逆的永久性伤害(见图4) [14]

Figure 4. Overview of aromatic organic compounds

4. 芳香类有机物概况

考虑到芳香类有机物对环境和人类健康的严重威胁,国内外学者将石墨烯材料用于水中芳香类有机物的吸附。Ma等[15]采用KOH蚀刻法制备了活化石墨烯材料,用于萘、苯酚、硝基苯和双酚A等芳香类有机物的吸附。研究发现,活化后石墨烯材料比表面积、微孔体积、氧化度显著增加,对芳香类有机物的吸附量比原始石墨烯材料大2~8倍。吸附等温线符合Freundlich模型。解吸实验表明,活化石墨烯的释放速率低于原始石墨烯。疏水作用和π-π相互作用主导着石墨烯材料吸附芳香类有机物行为。Song等[16]采用水热法合成了氮掺杂的还原氧化石墨烯,并将其用于去除水溶液中的多环芳烃及其氧衍生物。掺杂后的石墨烯材料具有较高的介孔率和疏水性对蒽和2-甲基蒽醌具有显著的吸附效率,吸附量分别为5.77 mg/g和9.29 mg/g,相较于氧化石墨烯和还原氧化石墨烯,其吸附能量有了明显提升。吸附过程同时涉及颗粒内扩散、疏水效应和π-π相互作用。Zhang等[17]考虑到实际氧化石墨烯由大块的低氧化石墨烯和小块的高氧化碎片组成,开展了氧化石墨烯对水中芳香族化合物的吸附行为研究,揭示了小块高氧化碎片剥离对氧化石墨烯表面性质的影响,通过吸附动力学实验探讨了小块高氧化碎片对氧化石墨烯吸附容量和吸附速率的影响。

6. 石墨烯材料吸附水中污染物机理

石墨烯材料吸附水中污染物过程的本质在于污染物自溶液向石墨烯材料表面及内部的定向富集,富集过程由石墨烯材料自身性质和污染物性质共同决定。图5展示了石墨烯材料吸附水中污染物的主要机理,主要包含孔隙填充、π-π相互作用、疏水效应、静电相互作用、氢键相互作用等[18]-[22]

对于油类和有机溶剂等有机污染物,石墨烯材料丰富孔隙结构为其提供了充足的吸附位点,可轻松实现有机污染物的孔隙填充[19]。对于含有芳香环的有机污染物,污染物内部芳香环与石墨烯结构形成强烈的π-π相互作用,控制着其在石墨烯材料表面的吸附[20]-[28]。此外,石墨烯材料表面存在大量疏水结合位点,非极性有机分子(如油和非极性溶剂等)会与其发生疏水相互作用[29]。由于水中重金属和有机染料常常表现为带电性,其与石墨烯材料间的静电相互作用对其吸附行为具有重要的调控作用[30]-[32]。最后,石墨烯材料表面具有丰富的官能团结构,当水中污染物含有氮、氟、氧等高电负性原子时,易产生氢键相互作用,对其吸附行为和性能也具有显著影响[31] [32]

Figure 5. Adsorption mechanisms of graphene materials for pollutants in water

5. 石墨烯材料吸附水中污染物机理

7. 结语与展望

石墨烯材料以其大比表面积和丰富的含氧官能团等优点,在含重金属离子、有机染料、油类和芳香类有机物等污染物的污水处理领域有着广泛的应用前景,化学掺杂改善了原始石墨烯易聚集、难分离的缺点,提升了石墨烯材料的吸附性能,为污水处理提供了良好的技术支持。然而,尽管现阶段石墨烯材料吸附污染物的相关实验研究已经取得了丰富的研究成果,确定了不同类型石墨烯材料吸附水中多种污染物的性能,但其吸附过程的物理本质还有待深入。例如,现有研究采用分子动力学模拟、第一性原理计算等方法探究了不同种类污染物在石墨烯材料表面的吸附机理,但大多集中于单一种类,甚至单一组分污染物的吸附,而实际水体呈现出典型的多种污染物混合特性,不同类型污染物的吸附机理间存在显著差异,致使实际混合体系中可能存在多种污染物的竞争或协同吸附。因此,考虑水中多种污染物的共存状况,开展多种污染物竞争/协同吸附机理研究,揭示石墨烯材料在实际复杂水环境中吸附行为的物理本质,将是推动石墨烯材料在污水治理领域深入应用的关键。

基金项目

本论文受到安徽省大学生创新创业训练计划项目(S202310361187)和安徽理工大学高层次引进人才科研启动基金(2022yjrc92)资助。

参考文献

[1] 曾强, 邬堂春. 中国水污染状况及其引起的健康危害与对策[J]. 中华疾病控制杂志, 2023, 27(5): 503-507.
[2] 张庆枝, 韩旭, 肖长春. 2020-2022年合肥地区饮用水10种化学物质健康风险评估[J]. 环境与健康杂志, 2024, 41(11): 991-996.
[3] Gao, B., Feng, X.B., Zhang, Y.F., Z. Zhou, X., Wei, J.F., Qiao, R., Bi, F.K., Liu, N. and Zhang, X.D. (2024) Graphene-based Aerogels in Water and Air Treatment: A Review. Chemical Engineering Journal, 484, Article ID: 149604.
https://doi.org/10.1016/j.cej.2024.149604
[4] Zhou, Y., Liang, C., Yu, J. and Jiang, X. (2019) Adsorption Properties of a Novel 3D Graphene/MgO Composite for Heavy Metal Ions. Journal of Central South University, 26, 813-823.
https://doi.org/10.1007/s11771-019-4051-5
[5] Peng, X., Yan, J., He, C., Liu, R. and Liu, Y. (2024) Sustainable Triethylenetetramine Modified Sulfonated Graphene Oxide/Chitosan Composite for Enhanced Adsorption of Pb(II), Cd(II), and Ni(II) Ions. International Journal of Biological Macromolecules, 261, Article ID: 129741.
https://doi.org/10.1016/j.ijbiomac.2024.129741
[6] Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal, S., et al. (2015) Kinetics of the Adsorption of Pb(II) Ions from Aqueous Solutions by Graphene Oxide and Thiol Functionalized Graphene Oxide. Journal of Molecular Liquids, 209, 50-57.
https://doi.org/10.1016/j.molliq.2015.05.022
[7] Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., et al. (2011) Removal of Pb(II) Ions from Aqueous Solutions on Few-Layered Graphene Oxide Nanosheets. Dalton Transactions, 40, 10945-10952.
https://doi.org/10.1039/c1dt11005e
[8] Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., et al. (2015) Adsorption of Cu2+, Cd2+ and Ni2+ from Aqueous Single Metal Solutions on Graphene Oxide Membranes. Journal of Hazardous Materials, 297, 251-260.
https://doi.org/10.1016/j.jhazmat.2015.04.068
[9] Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., et al. (2013) Adsorption Characteristics and Behaviors of Graphene Oxide for Zn(II) Removal from Aqueous Solution. Applied Surface Science, 279, 432-440.
https://doi.org/10.1016/j.apsusc.2013.04.133
[10] Liu, L., Alt, A.R., Benedickter, H. and Bolognesi, C.R. (2012) InP-HEMT X-Band Low-Noise Amplifier with Ultralow 0.6-mW Power Consumption. IEEE Electron Device Letters, 33, 209-211.
https://doi.org/10.1109/LED.2011.2176713
[11] Shi, Y., Song, G., Li, A., Wang, J., Wang, H., Sun, Y., et al. (2022) Graphene Oxide-Chitosan Composite Aerogel for Adsorption of Methyl Orange and Methylene Blue: Effect of pH in Single and Binary Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128595.
https://doi.org/10.1016/j.colsurfa.2022.128595
[12] Zhang, W., Hu, Q., Yang, F., Shen, Q., Guo, Q., Fan, M., et al. (2023) Preparation of Graphene Aerogels and Their Photothermal Adsorption Performance on Heavy Oil. Journal of Porous Materials, 31, 527-542.
https://doi.org/10.1007/s10934-023-01526-z
[13] Akanji, I.O., Iwarere, S.A., Sani, B.S., Mukhtar, B., Jibril, B.E. and Daramola, M.O. (2024) Polystyrene-Reduced Graphene Oxide Composite as Sorbent for Oil Removal from an Oil-Water Mixture. Chemical Engineering Science, 298, Article ID: 120383.
https://doi.org/10.1016/j.ces.2024.120383
[14] Pal Singh, B., Tyagi, L., Vikal, S., Tyagi, S., Tyagi, D., Rani, M., et al. (2024) Spotlighting Graphene-Based Nanomaterials for the Mitigation of Hazardous Water Pollutants: A Review. Inorganic Chemistry Communications, 166, Article ID: 112618.
https://doi.org/10.1016/j.inoche.2024.112618
[15] Ma, L., Li, K., Wang, C., Liu, B., Peng, H., Mei, Y., et al. (2019) Enhanced Adsorption of Hydrophobic Organic Contaminants by High Surface Area Porous Graphene. Environmental Science and Pollution Research, 27, 7309-7317.
https://doi.org/10.1007/s11356-019-07439-2
[16] Song, T., Tian, W., Qiao, K., Zhao, J., Chu, M., Du, Z., et al. (2021) Adsorption Behaviors of Polycyclic Aromatic Hydrocarbons and Oxygen Derivatives in Wastewater on N-Doped Reduced Graphene Oxide. Separation and Purification Technology, 254, Article ID: 117565.
https://doi.org/10.1016/j.seppur.2020.117565
[17] Zhang, S., Li, W., Tang, H., Huang, T. and Xing, B. (2022) Revisit the Adsorption of Aromatic Compounds on Graphene Oxide: Roles of Oxidized Debris. Chemical Engineering Journal, 450, Article ID: 137996.
https://doi.org/10.1016/j.cej.2022.137996
[18] Leão, M.B., Bordin, J.R. and de Matos, C.F. (2023) Specific Surface Area versus Adsorptive Capacity: An Application View of 3D Graphene-Based Materials for the Removal of Emerging Water Pollutants. Water, Air, & Soil Pollution, 234, Article No. 136.
https://doi.org/10.1007/s11270-023-06146-6
[19] Singh, R., Samuel, M.S., Ravikumar, M., Ethiraj, S. and Kumar, M. (2024) Graphene Materials in Pollution Trace Detection and Environmental Improvement. Environmental Research, 243, Article ID: 117830.
https://doi.org/10.1016/j.envres.2023.117830
[20] Saeed, M.A., Abdelkader, A., Alshammari, Y., Valles, C. and Alkandary, A. (2025) Graphene Applications in Composites, Energy, and Water Treatment. Macromolecular Materials and Engineering, 310, Article ID: 2400316.
https://doi.org/10.1002/mame.202400316
[21] Vaz-Ramos, J., Le Calvé, S. and Begin, S. (2025) Polycyclic Aromatic Hydrocarbons in Water Environments: Impact, Legislation, Depollution Processes and Challenges, and Magnetic Iron Oxide/Graphene-Based Nanocomposites as Promising Adsorbent Solutions. Journal of Hazardous Materials, 490, Article ID: 137726.
https://doi.org/10.1016/j.jhazmat.2025.137726
[22] Lestari, D.Y., Wijaya, K., Syoufian, A., Hariani, P.L., Utami, M., Saviola, A.J., et al. (2025) Unveiling the Potency of Graphene-Based Materials for Water Remediation: A Brief Review. Journal of Molecular Structure, 1335, Article ID: 142018.
https://doi.org/10.1016/j.molstruc.2025.142018
[23] Obayomi, K.S., Lau, S.Y., Danquah, M.K., Zhang, J., Chiong, T., Takeo, M., et al. (2023) Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). Materials, 16, Article 4379.
https://doi.org/10.3390/ma16124379
[24] Huang, D., Xu, B., Wu, J., Brookes, P.C. and Xu, J. (2019) Adsorption and Desorption of Phenanthrene by Magnetic Graphene Nanomaterials from Water: Roles of pH, Heavy Metal Ions and Natural Organic Matter. Chemical Engineering Journal, 368, 390-399.
https://doi.org/10.1016/j.cej.2019.02.152
[25] Yang, X., Li, J., Wen, T., Ren, X., Huang, Y. and Wang, X. (2013) Adsorption of Naphthalene and Its Derivatives on Magnetic Graphene Composites and the Mechanism Investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 118-125.
https://doi.org/10.1016/j.colsurfa.2012.11.063
[26] Queiroz, R.N., Neves, T.d.F., da Silva, M.G.C., Mastelaro, V.R., Vieira, M.G.A. and Prediger, P. (2022) Comparative Efficiency of Polycyclic Aromatic Hydrocarbon Removal by Novel Graphene Oxide Composites Prepared from Conventional and Green Synthesis. Journal of Cleaner Production, 361, Article ID: 132244.
https://doi.org/10.1016/j.jclepro.2022.132244
[27] Li, J., Li, Q., Xu, Z. and Yang, X. (2024) Molecular Simulation of Adsorption Behavior for Phenol Aqueous Solution into Layered Graphene Oxides. Separation and Purification Technology, 335, Article ID: 126215.
https://doi.org/10.1016/j.seppur.2023.126215
[28] Tang, H., Zhang, D., Li, W., Wu, J. and Huang, T. (2025) Role of Oxidized Debris in Determining the Ph-Dependent Adsorption Performance of Graphene Oxide toward Aromatic Pollutants. The Journal of Physical Chemistry C, 129, 6021-6031.
https://doi.org/10.1021/acs.jpcc.5c00419
[29] Thakkar, R., Gajaweera, S. and Comer, J. (2022) Organic Contaminants and Atmospheric Nitrogen at the Graphene–water Interface: A Simulation Study. Nanoscale Advances, 4, 1741-1757.
https://doi.org/10.1039/d1na00570g
[30] Ahmad, S.Z.N., Wan Salleh, W.N., Ismail, A.F., Yusof, N., Mohd Yusop, M.Z. and Aziz, F. (2020) Adsorptive Removal of Heavy Metal Ions Using Graphene-Based Nanomaterials: Toxicity, Roles of Functional Groups and Mechanisms. Chemosphere, 248, Article ID: 126008.
https://doi.org/10.1016/j.chemosphere.2020.126008
[31] Lan, T., Liao, J.L., Yang, Y.Y., Chai, Z.F., Liu, N. and Wang, D.Q. (2019) Competition/Cooperation between Humic Acid and Graphene Oxide in Uranyl Adsorption Implicated by Molecular Dynamics Simulations. Environmental Science & Technology, 53, 5102-5110.
https://doi.org/10.1021/acs.est.9b00656
[32] Lan, T., Wu, P., Yin, X., Zhao, Y., Liao, J., Wang, D., et al. (2023) Rigidity and Flexibility: Unraveling the Role of Fulvic Acid in Uranyl Sorption on Graphene Oxide Using Molecular Dynamics Simulations. Environmental Science & Technology, 57, 10339-10347.
https://doi.org/10.1021/acs.est.3c01026