[1]
|
曾强, 邬堂春. 中国水污染状况及其引起的健康危害与对策[J]. 中华疾病控制杂志, 2023, 27(5): 503-507.
|
[2]
|
张庆枝, 韩旭, 肖长春. 2020-2022年合肥地区饮用水10种化学物质健康风险评估[J]. 环境与健康杂志, 2024, 41(11): 991-996.
|
[3]
|
Gao, B., Feng, X.B., Zhang, Y.F., Z. Zhou, X., Wei, J.F., Qiao, R., Bi, F.K., Liu, N. and Zhang, X.D. (2024) Graphene-based Aerogels in Water and Air Treatment: A Review. Chemical Engineering Journal, 484, Article ID: 149604. https://doi.org/10.1016/j.cej.2024.149604
|
[4]
|
Zhou, Y., Liang, C., Yu, J. and Jiang, X. (2019) Adsorption Properties of a Novel 3D Graphene/MgO Composite for Heavy Metal Ions. Journal of Central South University, 26, 813-823. https://doi.org/10.1007/s11771-019-4051-5
|
[5]
|
Peng, X., Yan, J., He, C., Liu, R. and Liu, Y. (2024) Sustainable Triethylenetetramine Modified Sulfonated Graphene Oxide/Chitosan Composite for Enhanced Adsorption of Pb(II), Cd(II), and Ni(II) Ions. International Journal of Biological Macromolecules, 261, Article ID: 129741. https://doi.org/10.1016/j.ijbiomac.2024.129741
|
[6]
|
Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal, S., et al. (2015) Kinetics of the Adsorption of Pb(II) Ions from Aqueous Solutions by Graphene Oxide and Thiol Functionalized Graphene Oxide. Journal of Molecular Liquids, 209, 50-57. https://doi.org/10.1016/j.molliq.2015.05.022
|
[7]
|
Zhao, G., Ren, X., Gao, X., Tan, X., Li, J., Chen, C., et al. (2011) Removal of Pb(II) Ions from Aqueous Solutions on Few-Layered Graphene Oxide Nanosheets. Dalton Transactions, 40, 10945-10952. https://doi.org/10.1039/c1dt11005e
|
[8]
|
Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., et al. (2015) Adsorption of Cu2+, Cd2+ and Ni2+ from Aqueous Single Metal Solutions on Graphene Oxide Membranes. Journal of Hazardous Materials, 297, 251-260. https://doi.org/10.1016/j.jhazmat.2015.04.068
|
[9]
|
Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., et al. (2013) Adsorption Characteristics and Behaviors of Graphene Oxide for Zn(II) Removal from Aqueous Solution. Applied Surface Science, 279, 432-440. https://doi.org/10.1016/j.apsusc.2013.04.133
|
[10]
|
Liu, L., Alt, A.R., Benedickter, H. and Bolognesi, C.R. (2012) InP-HEMT X-Band Low-Noise Amplifier with Ultralow 0.6-mW Power Consumption. IEEE Electron Device Letters, 33, 209-211. https://doi.org/10.1109/LED.2011.2176713
|
[11]
|
Shi, Y., Song, G., Li, A., Wang, J., Wang, H., Sun, Y., et al. (2022) Graphene Oxide-Chitosan Composite Aerogel for Adsorption of Methyl Orange and Methylene Blue: Effect of pH in Single and Binary Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641, Article ID: 128595. https://doi.org/10.1016/j.colsurfa.2022.128595
|
[12]
|
Zhang, W., Hu, Q., Yang, F., Shen, Q., Guo, Q., Fan, M., et al. (2023) Preparation of Graphene Aerogels and Their Photothermal Adsorption Performance on Heavy Oil. Journal of Porous Materials, 31, 527-542. https://doi.org/10.1007/s10934-023-01526-z
|
[13]
|
Akanji, I.O., Iwarere, S.A., Sani, B.S., Mukhtar, B., Jibril, B.E. and Daramola, M.O. (2024) Polystyrene-Reduced Graphene Oxide Composite as Sorbent for Oil Removal from an Oil-Water Mixture. Chemical Engineering Science, 298, Article ID: 120383. https://doi.org/10.1016/j.ces.2024.120383
|
[14]
|
Pal Singh, B., Tyagi, L., Vikal, S., Tyagi, S., Tyagi, D., Rani, M., et al. (2024) Spotlighting Graphene-Based Nanomaterials for the Mitigation of Hazardous Water Pollutants: A Review. Inorganic Chemistry Communications, 166, Article ID: 112618. https://doi.org/10.1016/j.inoche.2024.112618
|
[15]
|
Ma, L., Li, K., Wang, C., Liu, B., Peng, H., Mei, Y., et al. (2019) Enhanced Adsorption of Hydrophobic Organic Contaminants by High Surface Area Porous Graphene. Environmental Science and Pollution Research, 27, 7309-7317. https://doi.org/10.1007/s11356-019-07439-2
|
[16]
|
Song, T., Tian, W., Qiao, K., Zhao, J., Chu, M., Du, Z., et al. (2021) Adsorption Behaviors of Polycyclic Aromatic Hydrocarbons and Oxygen Derivatives in Wastewater on N-Doped Reduced Graphene Oxide. Separation and Purification Technology, 254, Article ID: 117565. https://doi.org/10.1016/j.seppur.2020.117565
|
[17]
|
Zhang, S., Li, W., Tang, H., Huang, T. and Xing, B. (2022) Revisit the Adsorption of Aromatic Compounds on Graphene Oxide: Roles of Oxidized Debris. Chemical Engineering Journal, 450, Article ID: 137996. https://doi.org/10.1016/j.cej.2022.137996
|
[18]
|
Leão, M.B., Bordin, J.R. and de Matos, C.F. (2023) Specific Surface Area versus Adsorptive Capacity: An Application View of 3D Graphene-Based Materials for the Removal of Emerging Water Pollutants. Water, Air, & Soil Pollution, 234, Article No. 136. https://doi.org/10.1007/s11270-023-06146-6
|
[19]
|
Singh, R., Samuel, M.S., Ravikumar, M., Ethiraj, S. and Kumar, M. (2024) Graphene Materials in Pollution Trace Detection and Environmental Improvement. Environmental Research, 243, Article ID: 117830. https://doi.org/10.1016/j.envres.2023.117830
|
[20]
|
Saeed, M.A., Abdelkader, A., Alshammari, Y., Valles, C. and Alkandary, A. (2025) Graphene Applications in Composites, Energy, and Water Treatment. Macromolecular Materials and Engineering, 310, Article ID: 2400316. https://doi.org/10.1002/mame.202400316
|
[21]
|
Vaz-Ramos, J., Le Calvé, S. and Begin, S. (2025) Polycyclic Aromatic Hydrocarbons in Water Environments: Impact, Legislation, Depollution Processes and Challenges, and Magnetic Iron Oxide/Graphene-Based Nanocomposites as Promising Adsorbent Solutions. Journal of Hazardous Materials, 490, Article ID: 137726. https://doi.org/10.1016/j.jhazmat.2025.137726
|
[22]
|
Lestari, D.Y., Wijaya, K., Syoufian, A., Hariani, P.L., Utami, M., Saviola, A.J., et al. (2025) Unveiling the Potency of Graphene-Based Materials for Water Remediation: A Brief Review. Journal of Molecular Structure, 1335, Article ID: 142018. https://doi.org/10.1016/j.molstruc.2025.142018
|
[23]
|
Obayomi, K.S., Lau, S.Y., Danquah, M.K., Zhang, J., Chiong, T., Takeo, M., et al. (2023) Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). Materials, 16, Article 4379. https://doi.org/10.3390/ma16124379
|
[24]
|
Huang, D., Xu, B., Wu, J., Brookes, P.C. and Xu, J. (2019) Adsorption and Desorption of Phenanthrene by Magnetic Graphene Nanomaterials from Water: Roles of pH, Heavy Metal Ions and Natural Organic Matter. Chemical Engineering Journal, 368, 390-399. https://doi.org/10.1016/j.cej.2019.02.152
|
[25]
|
Yang, X., Li, J., Wen, T., Ren, X., Huang, Y. and Wang, X. (2013) Adsorption of Naphthalene and Its Derivatives on Magnetic Graphene Composites and the Mechanism Investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 118-125. https://doi.org/10.1016/j.colsurfa.2012.11.063
|
[26]
|
Queiroz, R.N., Neves, T.d.F., da Silva, M.G.C., Mastelaro, V.R., Vieira, M.G.A. and Prediger, P. (2022) Comparative Efficiency of Polycyclic Aromatic Hydrocarbon Removal by Novel Graphene Oxide Composites Prepared from Conventional and Green Synthesis. Journal of Cleaner Production, 361, Article ID: 132244. https://doi.org/10.1016/j.jclepro.2022.132244
|
[27]
|
Li, J., Li, Q., Xu, Z. and Yang, X. (2024) Molecular Simulation of Adsorption Behavior for Phenol Aqueous Solution into Layered Graphene Oxides. Separation and Purification Technology, 335, Article ID: 126215. https://doi.org/10.1016/j.seppur.2023.126215
|
[28]
|
Tang, H., Zhang, D., Li, W., Wu, J. and Huang, T. (2025) Role of Oxidized Debris in Determining the Ph-Dependent Adsorption Performance of Graphene Oxide toward Aromatic Pollutants. The Journal of Physical Chemistry C, 129, 6021-6031. https://doi.org/10.1021/acs.jpcc.5c00419
|
[29]
|
Thakkar, R., Gajaweera, S. and Comer, J. (2022) Organic Contaminants and Atmospheric Nitrogen at the Graphene–water Interface: A Simulation Study. Nanoscale Advances, 4, 1741-1757. https://doi.org/10.1039/d1na00570g
|
[30]
|
Ahmad, S.Z.N., Wan Salleh, W.N., Ismail, A.F., Yusof, N., Mohd Yusop, M.Z. and Aziz, F. (2020) Adsorptive Removal of Heavy Metal Ions Using Graphene-Based Nanomaterials: Toxicity, Roles of Functional Groups and Mechanisms. Chemosphere, 248, Article ID: 126008. https://doi.org/10.1016/j.chemosphere.2020.126008
|
[31]
|
Lan, T., Liao, J.L., Yang, Y.Y., Chai, Z.F., Liu, N. and Wang, D.Q. (2019) Competition/Cooperation between Humic Acid and Graphene Oxide in Uranyl Adsorption Implicated by Molecular Dynamics Simulations. Environmental Science & Technology, 53, 5102-5110. https://doi.org/10.1021/acs.est.9b00656
|
[32]
|
Lan, T., Wu, P., Yin, X., Zhao, Y., Liao, J., Wang, D., et al. (2023) Rigidity and Flexibility: Unraveling the Role of Fulvic Acid in Uranyl Sorption on Graphene Oxide Using Molecular Dynamics Simulations. Environmental Science & Technology, 57, 10339-10347. https://doi.org/10.1021/acs.est.3c01026
|